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SCALAR MULTI–POINT BOUNDARY

VALUE PROBLEMS AT RESONANCE
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Abstract. In this paper we discuss the solvability of multi-point boundary value problems of the
form

y(n)(t)+an−1(t)y(n−1)(t)+ · · ·+a0(t)y(t) = g(t,y(t))

subject to

n

∑
j=1

bi j(0)y( j−1)(t0)+
n

∑
j=1

bi j(1)y( j−1)(t1)+ · · ·+
n

∑
j=1

bi j(k)y( j−1)(tk) = 0

for i = 1, · · · ,n .
We improve upon existing results in the literature regarding multi-point boundary value

problems. Our approach uses an alternative method along with Schaefer’s fixed point theorem.

1. Introduction

In this paper we provide conditions for the existence of nth order scalar differential
equations of the form

y(n)(t)+an−1(t)y(n−1)(t)+ · · ·+a0(t)y(t) = g(t,y(t)) (1.1)

subject to

n

∑
j=1

bi j(0)y( j−1)(t0)+
n

∑
j=1

bi j(1)y( j−1)(t1)+ · · ·+
n

∑
j=1

bi j(k)y( j−1)(tk) = 0 (1.2)

for i = 1, · · · ,n .
Throughout we will assume that the ti, i = 0, · · · ,k , are fixed with 0 = t0 < t1 <

t2 < · · ·< tk = 1, g : R → R is continuous, the coefficients bi j(·) and a0(·), · · · ,an−1(·)
are real valued with a0(t) �= 0 for all t , and the boundary conditions are independent.

Multi-point boundary value problems occur naturally in applications to science
and engineering. Such is the case for many problems arising from the analysis of elastic
beams, vibrations of plates and shells, electric power networks, and telecommunication
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lines, to name a few. For those interested in concrete examples of these applications,
we suggest [3, 9, 10, 16, 18] and the references therein.

Section 4 contains our main result. We obtain an existence theorem in the case
where the nonlinearity, g , satisfies a growth condition in its second component. Crucial
to the result is the end behavior of the nonlinearity and its interaction with the solution
space of the associated linear homogeneous boundary value problem

y(n)(t)+an−1(t)y(n−1)(t)+ · · ·+a0(t)y(t) = 0 (1.3)

subject to the boundary conditions (1.2).

The main focus of this paper will the be solvability of problems at resonance;
that is, systems where the associated linear homogeneous problem, (1.3), subject to the
boundary conditions, (1.2), has nontrivial solutions. In particular, we will be concerned
with the case in which this linear homogeneous problem has 1-dimensional solution
space. The dimension of this solution space is directly related to the complexity in-
volved in solving the nonlinear boundary value problem (1.1)-(1.2). Much can be said
when this solution space is trivial, see [2, 4, 6, 7, 8, 9, 19, 20, 21] and the references
therein. Very little has been said in the 1-dimensional case for general nth order scalar
equations with very general multi-point boundary conditions as in (1.1)-(1.2). For some
results, see [17]. Results when the dimension of the solution space to the linear homo-
geneous problem is greater than 1 may be found in [1, 5, 12, 13, 15].

Our results are of the Landesman-Lazer type, but we would like to point out that
we do not require the nonlinearity to be bounded; in fact, we do not make any assump-
tions about the existence of limx→±∞ g(t,x) . In section 5, we discuss how previous
results in the literature follow directly from our new result. In particular, we show how
the results of [14, 17] are direct consequences our main result, Theorem 4.1. We also
comment on the restrictiveness of the formulation of the operator problem in [17] and
how this was alleviated using the ideas of impulsive differential equations. In section
6, we conclude the paper by giving a concrete example to show the applicability of our
main result, Theorem 4.1.

2. Preliminaries

We rewrite the nth order scalar equation as an equivalent system

x′(t) = A(t)x(t)+ f (t,x(t)), (2.1)

subject to boundary conditions

k

∑
i=0

Bix(ti) = 0, (2.2)
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where x(t) denotes

⎛
⎜⎜⎜⎝

y(t)
y′(t)

...
y(n−1)(t)

⎞
⎟⎟⎟⎠ , by defining, for each t ∈ [0,1] ,

A(t) =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

...
0 0 0 · · · 1

−a0(t) −a1(t) −a2(t) · · · −an−1(t)

⎞
⎟⎟⎟⎟⎟⎠ ,

f : R×R
n → R

n by f (t,x) =

⎛
⎜⎜⎜⎝

0
0
...

g(t,x1)

⎞
⎟⎟⎟⎠ and Bi, i = 0, · · · ,k , by (Bi)rs = brs(i) .

REMARK 2.1. It will be important to know that the independence of the boundary
conditions, (1.2), is equivalent to both the matrix [B0|B1| · · · |Bk] having full row rank

and
k⋂

i=0

Ker(BT
i ) = 0.

The nonlinear boundary value problem (2.1)-(2.2) will be viewed as an operator
equation. To do so, we introduce the following spaces and operators. PC{ti}[0,1] will
represent the set of R

n -valued continuous functions on [0,1]\{t1, · · · ,tk−1} which have
right and left-hand limits at each ti , i = 1, · · · ,k− 1. On PC{ti}[0,1] we will use the
supremum norm; that is,

‖φ‖ = sup
t∈[0,1]\{t1,···,tk−1}

|φ(t)|,

where | · | denotes the euclidean norm on R
n . It is well known that when endowed

with this norm, PC{ti}[0,1] is a Banach space. The subset of PC{ti}[0,1] consisting

of continuously differentiable functions φ : [0,1] \ {t1, · · · , tk−1} → R
n such that φ ′

has finite right and left-hand limits at each ti , i = 1, · · · ,k− 1, will be denoted by
PC1

{ti}[0,1] . Finally, we define

X = {φ ∈ PC{ti}[0,1] | B0φ(0)+
k−1

∑
i=1

Biφ(t+i )+Bkφ(1) = 0}.

The topologies on PC1
{ti}[0,1] and X will be those inherited from PC{ti}[0,1] .

We now introduce the operators which will be used to analyze the problem. Let
dom(L ) denote PC1

{ti}[0,1]∩X .

We define a linear operator L : dom(L ) ⊂ X → PC{ti}[0,1]×R
n(k−1) by
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L x =

⎛
⎜⎜⎜⎝

x′(·)−A(·)x(·)
x(t+1 )− x(t−1 )

...
x(t+k−1)− x(t−k−1)

⎞
⎟⎟⎟⎠

We also define a nonlinear operator
F : PC{ti}[0,1]→ PC{ti}[0,1]×R

n(k−1) by

F (x) =

⎛
⎜⎜⎜⎝

f (·,x(·))
0
...
0

⎞
⎟⎟⎟⎠ .

It is now clear that solving the nonlinear boundary value problem (2.1)-(2.2) is
equivalent to solving L x = F (x) .

We begin our study of the nonlinear boundary problem (2.1)-(2.2) by analyzing
the linear nonhomogeneous problem

x′(t) = A(t)x(t)+h(t), t ∈ [0,1]\ {t1,t2, · · · ,tk−1}

x(t+i )− x(t−i ) = vi, i = 1, ...,k−1
(2.3)

subject to the boundary conditions

B0x(0)+
k−1

∑
i=1

Bix(t+i )+Bkx(1) = 0. (2.4)

Here we assume h ∈ PC{ti}[0,1] and each vi , i = 1, · · · ,k− 1, is an element of R
n .

The characterization of this problem will play an important role in our analysis of the
nonlinear boundary value problem using an alternative method.

PROPOSITION 2.2. The linear nonhomogeneous problem (2.3) subject to bound-

ary conditions (2.4) has a solution if and only if for each c ∈ Ker
(( k

∑
i=0

BiΦ(ti)
)T)

,

〈
c,

k

∑
i=1

BiΦ(ti)
(∫ ti

0
Φ−1(s)h(s)ds+

i

∑
j=1

Φ−1(t j)v j

)〉
= 0.

Here 〈·, ·〉 denotes the standard inner product on R
n , Φ is the principal fundamental

matrix solution to x
′
(·) = A(·)x(·) , and

k

∑
j=1

Φ−1(t j)v j :=
k−1

∑
j=1

Φ−1(t j)v j .

Proof.
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Using the variation of parameters formula, we have L x =
(

h
v

)
:=

⎛
⎜⎜⎜⎝

h
v1
...

vk−1

⎞
⎟⎟⎟⎠ if

and only if x is given by

x(t) = Φ(t)

(
x(0)+

∫ t

0
Φ−1(s)h(s)ds+ ∑

ti<t
Φ−1(ti)vi

)

and satisfies the boundary conditions (2.4).

Applying the boundary conditions, we get

(
h
v

)
∈ Im(L ) if and only if there

exists w ∈ R
n such that

k

∑
i=0

BiΦ(ti)w+
k

∑
i=1

BiΦ(ti)
(∫ ti

0
Φ−1(s)h(s)ds+

i

∑
j=1

Φ−1(t j)v j

)
= 0,

which clearly happens if and only if

k

∑
i=1

BiΦ(ti)
(∫ ti

0
Φ−1(s)h(s)ds+

i

∑
j=1

Φ−1(t j)v j

)
∈ Im

( k

∑
i=0

BiΦ(ti)
)
.

The result now follows from the fact that

Im
( k

∑
i=0

BiΦ(ti)
)

= Ker
(( k

∑
i=0

BiΦ(ti)
)T)⊥

.

As a consequence, we get the following result.

COROLLARY 2.3. The linear nonhomogeneous problem (2.3) subject to bound-
ary conditions (2.4) has a unique solution for every h in PC{ti}[0,1] and vi, i = 1, · · · ,k−
1, in R

n if and only if
k

∑
i=0

BiΦ(ti) is invertible.

Proof. If the linear nonhomogeneous problem has a unique solution, then from
the proof of Proposition 2.2, L is invertible. It follows that

k

∑
i=0

BiΦ(ti)

is one to one. Since
k

∑
i=0

BiΦ(ti) is an n×n matrix, it is also onto.

Now if
k

∑
i=0

BiΦ(ti) is invertible, then the unique solution is given by

x(t) = Φ(t)
(
x(0)+

∫ t

0
Φ−1(s)h(s)ds+ ∑

ti<t
Φ−1(ti)vi

)
,
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where

x(0) =
( k

∑
i=0

BiΦ(ti)
)−1( k

∑
i=1

BiΦ(ti)
(∫ ti

0
Φ−1(s)h(s)ds+

i

∑
j=1

Φ−1(t j)v j

))
.

From Corollary 2.3 we have that the linear homogeneous problem

x′(t) = A(t)x(t), t ∈ [0,1]\ {t1, t2, · · · ,tk−1}

x(t+i )− x(t−i ) = 0, i = 1, ...,k−1
(2.5)

subject to the boundary conditions (2.4) has a nontrivial solution if and only if
k

∑
i=0

BiΦ(ti)

is singular. It will be useful in our construction of the alternative method projection
scheme to have a description of the solution space for this case.

PROPOSITION 2.4. A function x is a solution to the linear homogeneous problem
(2.5) subject to the boundary conditions (2.4) if and only if x(t) = Φ(t)b for some

b ∈ Ker
( k

∑
i=0

BiΦ(ti)
)

.

Proof. From the variation of parameters formula, we have x is a solution to the
linear homogeneous problem if and only if

x(t) = Φ(t)x(0).

It is now clear that the boundary conditions are satisfied if and only if

k

∑
i=0

BiΦ(ti)x(0) = 0.

Since we are assuming that linear homogeneous problem, (1.3), subject to the
boundary conditions in (1.2) has 1-dimensional solution space, Proposition 2.4 implies

dim

(
Ker

( k

∑
i=0

BiΦ(ti)
))

= 1.

Thus, we may choose a vector b such that span{b} = Ker
( k

∑
i=0

BiΦ(ti)
)
. We define

S(t) to be the n× 1 matrix defined by S(t) = Φ(t)b . We then have x ∈ PC{ti}[0,1] is
a solution to the linear homogeneous problem (2.5) subject to the boundary conditions
(2.4) if and only if x = S(·)α for some α ∈ R .

We also choose a vector c which forms a basis for Ker
(( k

∑
i=0

BiΦ(ti)
)T)

and

define
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ΨT (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k

∑
j=1

cT B jΦ(t j)Φ−1(t) 0 � t < t1

k

∑
j=2

cT B jΦ(t j)Φ−1(t) t1 < t < t2

...

cT BkΦ(1)Φ−1(t) tk−1 < t � 1

.

REMARK 2.5. We would like to remark that the representation of ΨT is the main
reason for formulating the boundary value problem (2.1)-(2.2) as an impulsive differ-
ential equation in the space PC{ti}[0,1] .

Using the above definition, we get the following characterization of the Im(L ) .

PROPOSITION 2.6. The linear nonhomogeneousproblem (2.3) with boundary con-

ditions (2.4) has a solution if and only if
∫ 1

0
ΨT (s)h(s)ds+

k−1

∑
i=1

ΨT (t−i )vi = 0 .

3. Alternative Method

We now turn our attention to the main objective of this paper, the study of the
nonlinear boundary value problem (2.1)-(2.2) at resonance. In this case, we choose to
analyze (2.1)-(2.2) using a projection scheme known as the Lyapunov-Schmidt proce-
dure. To do so we construct projections onto the Ker(L ) and Im(L ) . Those interested
in the nonresonant case may see [11, 15].

DEFINITION 3.1.

Define P : X → X by
[Px](t) = S(t)(bT b)−1bTx(0)

From our characterization of the Ker(L ) , we have that P is a projection onto Ker(L ) .

DEFINITION 3.2. Define E : PC{ti}[0,1]×R
n(k−1) → PC{ti}[0,1]×R

n(k−1) by

E

[
h
v

]
=⎡

⎢⎢⎣ h(·)−Ψ(·)
(∫ 1

0
|Ψ(s)|2 ds

)−1(∫ 1

0
ΨT (s)h(s)ds+

k−1

∑
i=1

ΨT (t−i )vi

)

v

⎤
⎥⎥⎦ .

PROPOSITION 3.3. E is a projection onto Im(L ) .
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Proof. The fact that E is continuous, E2 = E , and that Im(E) = Im(L ) follow
easily once we show E is well defined. We therefore content ourselves with showing
that ∫ 1

0
|Ψ(s)|2 ds

is nonzero.

Now, suppose
∫ 1

0
|Ψ(s)|2 ds = 0. Then Ψ(·) must be the zero function. Taking

t = 1 and using the definition of Ψ , we see that BT
k c = 0. Thus, c ∈ Ker(BT

k ) . Further,
since Ψ(t) = 0 for all t ∈ (tk−2,tk−1) , we must also have that

BT
k−1c+(Φ−1(tk−1))T ΦT (tk)BT

k c =Ψ(t−k−1) = 0.

Using the fact that c ∈ Ker(BT
k ) , we see that c ∈ Ker(BT

k−1) . Continuing this pro-
cess we get, c ∈ Ker(BT

j ) for all j = 1, · · · ,k . Now by the choice of the c , we have

c ∈ Ker
( k

∑
i=0

ΦT (ti)BT
i

)
. We therefore conclude that c ∈ Ker(BT

0 ) . It follows that

c ∈
k⋂

i=0

Ker(BT
i ).

Since the augmented matrix [B0|B1| · · · |Bk] has full row rank, we must have c = 0,
which is not the case, and the proof is finished.

The following is the result of the Lyapunov-Schmidt projection scheme. We in-
clude the derivation for the convenience of the reader.

PROPOSITION 3.4. Solving L x = Fx is equivalent to solving the system

⎧⎪⎨
⎪⎩

x = MpEF (S(·)α + x)
and∫ 1

0
[Ψ(t)]ng(t, [S(t)α + x(t)]1)dt = 0

where Mp is
(
L|Ker(P)∩dom(L )

)−1
.

Proof. We have

L x = Fx ⇐⇒
⎧⎨
⎩

E(L x−Fx) = 0
and

(I−E)(L x−Fx) = 0

⇐⇒
⎧⎨
⎩

L x−EFx = 0
and

(I−E)Fx = 0
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⇐⇒
⎧⎨
⎩

MpL x−MpEFx = 0
and

(I−E)Fx = 0

⇐⇒
⎧⎨
⎩

(I−P)x−MpEFx = 0
and

(I−E)Fx = 0

⇐⇒

⎧⎪⎨
⎪⎩

(I−P)x = MpEFx
and∫ 1

0
ΨT (t) f (t,x(t))dt = 0

⇐⇒

⎧⎪⎨
⎪⎩

w = MpEF (S(·)α +w)
and∫ 1

0
[Ψ(t)]ng(t, [S(t)α +w(t)]1)dt = 0

4. Main Result

We now come to our main result. Before giving the statement of the theorem,
we introduce some notation that will be useful in the proof. We let s(t) denote the
first component of S(t) , ψ(t) denote the nth component of Ψ(t) and we define p :
R× Im(I−P)→ Im(I−P) by

p(α,x) = MpEF (S(·)α + x).

We also introduce the following sets

O+,+ = {t | ψ(t) > 0 and s(t) > 0},

O+,− = {t | ψ(t) > 0 and s(t) < 0},

O−,+ = {t | ψ(t) < 0 and s(t) > 0},
and

O−,− = {t | ψ(t) < 0 and s(t) < 0}.

THEOREM 4.1. Suppose the following conditions hold:

C1. lim
r→∞

‖g‖r

r
= 0 , where, for s > 0 , ‖g‖s denotes

sup{|g(t,x)| | t ∈ [0,1],x ∈ [−s,s]}.

C2. There exists a real number R and functions W1,U1,W2,U2,w1,u1,w2 and u2 in



458 DANIEL MARONCELLI

L1[0,1] such that

if x > R, then W1(t) � g(t,x) for a.e. t ∈ O+,+

if x < −R, then g(t,x) � U1(t) for a.e. t ∈ O+,+

if x > R, then g(t,x) � u1(t) for a.e. t ∈ O+,−
if x < −R, then w1(t) � g(t,x) for a.e. t ∈ O+,−
if x > R, then g(t,x) � W2(t) for a.e. t ∈ O−,+

if x < −R, then U2(t) � g(t,x) for a.e. t ∈ O−,+

if x > R, then u2(t) � g(t,x) for a.e. t ∈ O−,−
and

if x < −R, then g(t,x) � w2(t) for a.e. t ∈ O−,−

C3. J2 < 0 < J1 , where

J1 =
∫ 1

0
ψ(t)K1(t)dt,

J2 =
∫ 1

0
ψ(t)K2(t)dt,

and K1 and K2 are defined by

K1(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

W1(t) t ∈ O+,+

w1(t) t ∈ O+,−
W2(t) t ∈ O−,+

w2(t) t ∈ O−,−

,

and

K2(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

U1(t) t ∈ O+,+

u1(t) t ∈ O+,−
U2(t) t ∈ O−,+

u2(t) t ∈ O−,−

.

Then, there exists a solution to to the nonlinear boundary value problem (1.1)-(1.2).

Proof. Without loss of generality, we will assume that ‖s‖ = 1. We start by mak-
ing R× Im(I−P) a Banach space using the max norm

‖(α,x)‖ = max{|α|,‖x‖},

and by defining H : R× Im(I−P) → R× Im(I−P) by

H(α,x) =

⎛
⎝α −

∫ 1

0
ψ(t)g(t,s(t)α + x1(t))dt

p(α,x)

⎞
⎠ .
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It is clear, from Proposition 3.4, that the solutions to (2.1)-(2.2) are the fixed points
of H . We would like to remark here that since Mp is an integral operator (see Corollary
2.3) and PC{ti}[0,1] has been given the supremum norm, Mp is compact by Arzelá-
Ascoli applied to the subintervals of [0,1] . Further, since g is sublinear, so is F . We
then have that F maps bounded sets to bounded sets under the supremum norm. It
follows easily that p is a compact mapping, and thus, so is H . We will show that (2.1)-
(2.2) has a solution by showing that H satisfies Shaefer’s fixed point theorem; that is,
if

FP := {(α,x) | (α,x) = λH(α,x) for some λ ∈ (0,1)}

is a priori bounded, then H has a fixed point.

To this end, first note that by the absolute continuity of the integral, we have that
there is a δ > 0 such that ∫

T
ψ(t)K1(t)dt >

J1

2

and ∫
T

ψ(t)K2(t)dt <
J2

2

whenever m(Tc) < δ , where m denotes Lebesgue measure.

For 0 < η < 1, let Aη denote {t ∈ [0,1] | |s(t)| � η} . Since {t | s(t) = 0} has
Lebesgue measure zero, it follows that m(Aη) → 1 as η → 0. We may therefore chose
η∗ > 0 such that if 0 < η � η∗ , then m(Ac

η) < δ .

Let a be a positive real number with

D1 :=
2
∥∥MpE

∥∥a

1−∥∥MpE
∥∥a

< 1.

Using C1., we may then choose b such that |g(t,x)| � a|x|+ b all x ∈ R and every
t ∈ [0,1] . We let D2 denote

2
∥∥MpE

∥∥b

1−∥∥MpE
∥∥a

and choose r∗ > 1 such that for r � r∗ ,

r− (D1r+D2) > R. (4.1)

Define Ωη to be the closed ball of radius
r∗

η
. We will show that ∂Ωη ∩FP = /0 ,

for ‘small’ enough η . This will show that FP is a priori bounded and thus H will have
a fixed point by Schaefer’s fixed point theorem.
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To see this, first suppose (α,x) ∈ ∂Ωη , with ‖x‖ =
r∗

η
. We then have

‖p(α,x)‖ =
∥∥∥MpEF

(
S(·)α + x

)∥∥∥
�
∥∥MpE

∥∥sup
t
|g(t,s(t)α + x1(t))|

�
∥∥MpE

∥∥(a(sup
t
|s(t)α|+ sup

t
|x1(t)|)+b)

�
∥∥MpE

∥∥(a(|α|+‖x‖)+b)

� 1
2
(1−∥∥MpE

∥∥a)(|α|+‖x‖) (Using ((4.1)) and η < 1)

� 1
2
(1−∥∥MpE

∥∥a)
2r∗

η
<

r∗

η

Thus, x �= λ p(α,x) when (α,x) ∈ ∂Ωη and ‖x‖ =
r∗

η
.

Now suppose (α,x) ∈ ∂Ωη , with |α| = r∗

η
. We may assume that there exists a

λ ∈ (0,1) such that x = λ p(α,x) . From our above calculation, we have

|x(t)| = |λ p(α,x)(t)| � |MpEF
(
S(t)α + x(t)

)
|

�
∥∥MpE

∥∥ |g(t,s(t)α + x1(t))|
�
∥∥MpE

∥∥(a(|s(t)α|+ |x1(t)|)+b)

�
∥∥MpE

∥∥(a(|s(t)α|+ |x(t)|)+b).

Rearranging, we get

|x(t)| �
∥∥MpE

∥∥(a|s(t)α|+b)
1−∥∥MpE

∥∥a
� D1|s(t)α|+D2.

Since

|s(t)α + x1(t)| � |s(t)α|− |x1(t)|
� |s(t)α|− |x(t)|
� |s(t)α|− (D1|s(t)α|+D2)

= |s(t)| r
∗

η
− (D1|s(t)| r

∗

η
+D2),

we have, by the choice of r∗ , that for every t ∈ Aη , |s(t)α +x1(t)|> R . If α > 0, then
we have

W1(t) � g(t,s(t)α + x1(t)) for a.e. t ∈ O+,+ ∩Aη

w1(t) � g(t,s(t)α + x1(t)) for a.e. t ∈ O+,−∩Aη

g(t,s(t)α + x1(t)) � W2(t) for a.e. t ∈ O−,+ ∩Aη

and

g(t,s(t)α + x1(t)) � w2(t) for a.e. t ∈ O−,−∩Aη .
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Thus, ψ(t)g(t,s(t)α + x1(t)) � ψ(t)K1(t) for a.e. t ∈ Aη . It follows that

∫
Aη

ψ(t)g(t,s(t)α + x1(t))dt �
∫

Aη
ψ(t)K1(t)dt.

If η < η∗ , then m(Ac
η) < δ , so

∫
Aη

ψ(t)K1(t)dt >
J1

2
.

We then have that∫ 1

0
ψ(t)g(t,s(t)α + x1(t))dt =

∫
Aη

ψ(t)g(t,s(t)α + x1(t))dt +
∫
Ac

η
ψ(t)g(t,s(t)α + x1(t))dt

�
∫

Aη
ψ(t)g(t,s(t)α + x1(t))dt−m(Ac

η)‖ψ‖(a sup
t∈Ac

η

|s(t)α + x1(t)|+b)

�
∫

Aη
ψ(t)K1(t)dt−m(Ac

η)‖ψ‖(a( sup
t∈Ac

η

|s(t)α|+D1 sup
t∈Ac

η

|s(t)α|+D2)+b)

�
∫

Aη
ψ(t)K1(t)dt−m(Ac

η)‖ψ‖(a(η
r∗

η
+D1η

r∗

η
+D2)+b)

=
∫

Aη
ψ(t)K1(t)dt−m(Ac

η)‖ψ‖(a(r∗ +D1r
∗ +D2)+b)

� J1

2
−m(Ac

η)‖ψ‖(a(r∗ +D1r
∗ +D2)+b).

Since m(Ac
η ) → 0 as η → 0, we may choose η sufficiently ‘small’ so that

∫ 1

0
ψ(t)g(t,s(t)α + x1(t))dt > 0.

Similarly, if α < 0, then ψ(t)g(t,s(t)α + x1(t)) � ψ(t)K2(t) for a.e. t ∈ Aη , so
that ∫

Aη
ψ(t)g(t,s(t)α + x1(t))dt �

∫
Aη

ψ(t)K2(t)dt <
J2

2
,

when η < η∗ .

We then also have
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∫ 1

0
ψ(t)g(t,s(t)α + x1(t))dt =

∫
Aη

ψ(t)g(t,s(t)α + x1(t))dt +
∫

Ac
η

ψ(t)g(t,s(t)α + x1(t))dt

�
∫

Aη
ψ(t)g(t,s(t)α + x1(t))dt +m(Ac

η)‖ψ‖(a sup
t∈Ac

η

|s(t)α + x1(t)|+b)

�
∫

Aη
ψ(t)K1(t)dt +m(Ac

η)‖ψ‖(a(r∗ +D1r
∗ +D2)+b)

<
J2

2
+m(Ac

η)‖ψ‖(a(r∗ +D1r
∗ +D2)+b).

Thus, for ‘small’ enough η ,∫ 1

0
ψ(t)g(t,s(t)α + x1(t))dt < 0.

We conclude that in either case, for ‘small’ enough η , α and∫ 1

0
ψ(t)g(t,s(t)α + x1(t))dt

have the same sign. If (α,x) = λH(α,x) for some λ ∈ (0,1) , then

α = λ α −λ
∫ 1

0
ψ(t)g(t,s(t)α + x1(t))dt

or

(1−λ )α + λ
∫ 1

0
ψ(t)g(t,s(t)α + x1(t))dt = 0,

which is not the case since α and
∫ 1

0
ψ(t)g(t,s(t)α + x1(t))dt have the same sign.

This shows that FP∩∂Ωη = /0 for ‘small’ η and thus FP is a priori bounded. It
follows from Schaefer’s fixed point theorem that H has a fixed point. This fixed point
is a solution to (1.1)-(1.2).

REMARK 4.2. If the inequalities of Theorem 4.1 are reversed; that is,

if x > R, then W1(t) � g(t,x) for a.e. t ∈ O+,+

if x < −R, then g(t,x) � U1(t) for a.e. t ∈ O+,+

if x > R, then g(t,x) � u1(t) for a.e. t ∈ O+,−
if x < −R, then w1(t) � g(t,x) for a.e. t ∈ O+,−
if x > R, then g(t,x) � W2(t) for a.e. t ∈ O−,+

if x < −R, then U2(t) � g(t,x) for a.e. t ∈ O−,+

if x > R, then u2(t) � g(t,x) for a.e. t ∈ O−,−
and

if x < −R, then g(t,x) � w2(t) for a.e. t ∈ O−,−,
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then provided J1 < 0 < J2 , (1.1)-(1.2) has a solution. The proof is essentially the same.

REMARK 4.3. The proof of Theorem 4.1 actually shows that when g has linear
growth; that is, |g(t,x)| � a|x|+b for all t ∈ [0,1] and every x ∈ R , then provided a is
sufficiently ‘small’ (

2
∥∥MpE

∥∥a

1−∥∥MpE
∥∥a

< 1

)
,

(1.1)-(1.2) will have a solution whenever C2. and C3. hold. We prefer the formula-

tion in C1. ( lim
r→∞

‖g‖r

r
= 0) for its simplicity and ‘ease’ of calculation, as the relative

‘smallness’ of a may be something which is difficult to calculate.

5. Comparision to previous results

In this section we show how Theorem 4.1 improves upon existing results in the
literature.

5.1. General Multi-point

In [17] the authors look at the existence of solutions to (1.1)-(1.2). They obtain
results by placing conditions on the nonlinearity, g , which are much more restrictive
than Theorem 4.1. Their main result, written in terms of the notation of this paper, is
the following:

THEOREM 5.1. Suppose (1.3) subject to boundary conditions (1.2) has a 1 - di-
mensional solution space. If

H1. g is independent of t ,

H2. g is Lipschitz continuous,

H3. g(±∞) := limx→±∞ g(x) exist,

and

H4. L1L2 < 0 , where

L1 = g(+∞)
∫
{s(t)>0}

ψ(t)dt +g(−∞)
∫
{s(t)<0}

ψ(t)dt

and

L2 = g(−∞)
∫
{s(t)>0}

ψ(t)dt +g(+∞)
∫
{s(t)<0}

ψ(t)dt,

then, there exists a solution to the nonlinear boundary value problem (1.1)-(1.2).

THEOREM 5.2. If the assumptions of Theorem 5.1 hold, then so do those of The-
orem 4.1.
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Proof. Suppose the conditions of Theorem 5.1 hold and assume L2 < 0 < L1 .

Since g(±∞) exist, we must have that g is bounded and thus clearly limr→∞
‖g‖r

r = 0.
Let ε > 0 and define the functions W1,U1,W2,U2,w1,u1,w2 and u2 in Theorem 4.1
as follows: W1(t) = g(+∞)− ε , U1(t) = g(−∞) + ε , W2(t) = g(+∞) + ε , U2(t) =
g(−∞)− ε , w1(t) = g(−∞)− ε , u1(t) = g(+∞) + ε , w2(t) = g(−∞) + ε , u2(t) =
g(+∞)− ε . It is clear that for these functions there exists an R , depending on ε , such
that C2. of Theorem 4.1 holds.

Now, if we calculate J1 =
∫ 1

0
ψ(t)K1(t)dt , we get

∫
O+,+

ψ(t)(g(+∞)− ε)dt +
∫
O+,−

ψ(t)(g(−∞)− ε)dt

+
∫
O−,+

ψ(t)(g(+∞)+ ε)dt +
∫

O−,−
ψ(t)(g(−∞)+ ε)dt,

or

g(+∞)
∫

O+,+∪O−,+
ψ(t)dt +g(−∞)

∫
O+,−∪O−,+

ψ(t)dt−
∫ 1

0
|ψ(t)|εdt.

However, this is equal to L1 −
∫ 1

0
|ψ(t)|εdt. Similarly, J2 = L2 +

∫ 1

0
|ψ(t)|εdt . Since

we are assuming L2 < 0 < L1 , it is easy to see that for small enough ε , J2 < 0 < J1 .
The case where L1 < 0 < L2 follows from Remark (4.2) by a similar argument.

REMARK 5.3. Theorem 5.2 shows that Theorem 4.1 is a substantial improvement
of the result found in [17]. Firstly, Theorem 4.1 allows for functions which depend on
time. Secondly, it shows that the Lipschitz condition placed on g was superficial; it was
needed only because of the authors formulation of the problem in L2[0,1] , something
we overcome by formulating the problem as an impulsive differential equation in the
space PC{ti}[0,1] . Finally, it does not require the existence of g(±∞) , an assumption
much more restrictive than C1. of Theorem 4.1.

5.2. Sturm-Liouville

In [14] the authors prove the existence of solutions to regular Sturm-Liouville
problems of the form

(p(t)x′(t))′ +q(t)x(t)+ λx(t) = f (x(t)) (5.1)

subject to
ax(0)+bx′(0) = 0 and cx(1)+dx′(1) = 0, (5.2)

where throughout it is assumed that f : R → R, p : [0,1] → R and q : [0,1] → R

are continuous, p(t) > 0 for all t ∈ [0,1] , a2 +b2,c2 +d2 > 0, and λ is an eigenvalue
of the associated linear Sturm-Liouville problem.

Their main result is the following:
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THEOREM 5.4. Suppose f : R → R satisfies | f (x)| � M1|x|β + M2 , where M1

and M2 are nonnegative constants and β ∈ [0,1) . If there exist z∗,J > 0 such that

∀z > z∗, f (z) > J and ∀z < −z∗, f (z) < −J,

then there exists a solution to (5.1)-(5.2).

Theorem 5.4 is also a consequence of Theorem 4.1. This follows from the fact that
in the case of the Sturm-Liouville problem, because of the self-adjointness associated
with it, ψ(t) and s(t) (Theorem 4.1), may be chosen to be equal. In this case, O+,−
and O−,+ are empty. With g(t,x) = f (x) , C2. of Theorem 4.1 then simplifies to

(NC2.) There exists a real number R and functions W1,U1,w2 and u2 in L1[0,1]
such that

if x > R, then W1(t) � g(t,x) for a.e. t ∈ O+,+

if x < −R, then g(t,x) � U1(t) for a.e. t ∈ O+,+

if x > R, then u2(t) � g(t,x) for a.e. t ∈ O−,−
and

if x < −R, then g(t,x) � w2(t) for a.e. t ∈ O−,−.

If we take R = z∗ , W1 = J = u2 and U1 = −J = w2 , then

J1 =
∫ 1

0
ψ(t)K1(t)dt =

∫ 1

0
|ψ(t)|Jdt and

∫ 1

0
ψ(t)K2(t)dt = −

∫ 1

0
|ψ(t)|Jdt = J2,

so that clearly J2 < 0 < J1 . It is now evident that C1.-C3. of Theorem 4.1 are satisfied.

6. Example

In what follows, we give a concrete example of the application of our main result,
Theorem 4.1. We note that the results of Theorem 4.1 remain valid for multi-point
conditions in any interval [a,b] , so we do not restrict our example to [0,1] .

Consider
y′′(t)+ y(t) = g(t,y(t)) (6.1)

subject to
y(0)− y(π/6)− y′(π/3) = 0 and y(π/6)− y(π/3)= 0. (6.2)

Looking at equations (1.1) and (1.2), we see that n = k = 2. Writing this in system
form, we have

x′(t) = Ax(t)+ f (x(t))

subject to
B0x(0)+B1x(π/6)+B2x(π/3) = 0,

where

x(t) =
[

y(t)
y′(t)

]
,
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A =
[

0 1
−1 0

]
,

B0 =
[
1 0
0 0

]
,B1 =

[−1 0
1 0

]
and B2 =

[
0 −1
−1 0

]
,

and f : R×R
2 → R

2 is defined by f (t,x) =
(

0
g(t,x1)

)
. For completeness, we point

out that it is clear that [B0|B1|B2] has full row rank.
From the basic theory of second-order linear differential equations, it follows that

Φ(t) =
[

cos(t) sin(t)
−sin(t) cos(t)

]
.

Calculating B0Φ(0)+B1Φ(π/6)+B2Φ(π/3) , we get[
1 −1
a −a

]
,

where a =
√

3−1
2

. Thus, Ker(B0Φ(0) +B1Φ(π/6)+ B2Φ(π/3)) is 1-dimensional

and we may take

S(t) =
[
cos(t)+ sin(t)
cos(t)− sin(t)

]
.

It follows that s(t) = cos(t)+ sin(t) .
Further, using the definition of Ψ(t)T , it follows that we may take

ψ(t) = [Ψ(t)]2 =

{
sin(t) 0 < t < π/6

bcos(t)− csin(t) π/6 < t < π/3
,

where b =
√

3√
3−1

− 1
2

and c =
√

3
2

+
1√

3−1
.

From the descriptions of s and ψ , we get the following:

O+,+ = {t | ψ(t) > 0 and s(t) > 0} = (0, tan−1(b/c)),
O+,− = {t | ψ(t) > 0 and s(t) < 0} = /0,

O−,+ = {t | ψ(t) < 0 and s(t) > 0} = (tan−1(b/c),π/3)
and

O−,− = {t | ψ(t) < 0 and s(t) < 0} = /0.

C2. of Theorem 4.1 then simplifies to
(NNC2.) There exists a real number R and functions W1,U1,W2 and U2 in L1[0,1]

such that

if x > R, then W1(t) � g(t,x) for a.e. t ∈ O+,+

if x < −R, then g(t,x) � U1(t) for a.e. t ∈ O+,+

if x > R, then g(t,x) � W2(t) for a.e. t ∈ O−,+

and

if x < −R, then U2(t) � g(t,x) for a.e. t ∈ O−,+.
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If we define

g(t,x) = ((tan−1(b/c)− t)

(( 1
ln(2+ |x|)

)
x+

x|x|β
1+ |x| ln(1+ |x|)+M

)
,

where β ∈ [0,1) and M is any positive constant, then clearly ‖g‖r
r → 0 as r → ∞ , so

that C1. of Theorem 4.1 holds.
Further, if we define W1(t) = (tan−1(b/c)− t) = −U1(t) and W2(t) = 0 = U2(t) ,

then there certainly exists and R such that NNC2. holds.
Finally,

J1 =
∫ 1

0
ψ(t)K1(t)dt =

∫
O++

ψ(t)W1(t)dt +
∫
O−+

ψ(t)W2(t)dt

=
∫

O++
ψ(t)W1(t)dt > 0

and

J2 =
∫ 1

0
ψ(t)K2(t)dt =

∫
O++

ψ(t)U1(t)dt +
∫
O−+

ψ(t)U2(t)dt

=
∫

O++
ψ(t)U1(t)dt < 0.

Thus, C3. of Theorem 4.1 holds. It now follows from Theorem 4.1 that the nonlinear
multi-point boundary value problem (6.1) subject to (6.2) has a solution.
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[13] D. MARONCELLI AND J. RODRÍGUEZ, Weakly nonlinear boundary value problems with impulses,
Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 20 (2013), 641–656.
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