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Abstract. This paper is concerned with the existence of mild solutions for fractional semilinear
differential equations with non local conditions in separable Banach spaces. The result is estab-
lished by using the technique of measures of noncompactness in Banach spaces of continuous
functions and Schauder fixed point theorem.

1. Introduction

Our aim in this paper is to discuss the existence of the mild solution for fractional
semilinear nonlocal initial value problem of the form:{

Dαx(t) = Ax(t)+ f (t,x(t)), t ∈ [0,T ],

x(0) = g(x),
(1.1)

where 0 < α < 1, A : D(A) ⊂ E → E is a closed linear operator generating a C0 -
semigroup {U(t)}t�0 and E is a real separable Banach space E .
Recently, the theory of fractional differential equations has attracted much interest due
to their applications in physics, chemistry, biology and so on see [4, 5, 8, 9, 10, 15,
16, 17, 18, 20, 21]. The semilinear evolution nonlocal Cauchy problem was initiated
by Byszewski [2]. The nonlocal condition can be applied in physics with better effect
in applications than the classical initial condition since nonlocal conditions are usually
more precise for physical measurements than the classical initial condition. Lin, Liu
and Jawahdou [7, 11] studied semilinear integrodifferential equations with nonlocal
Cauchy problems under Lipschitz-type conditions. Ntouyas and Tsamatos [14] stud-
ied the global existence of solutions for semilinear evolution equations with nonlocal
conditions via a fixed point analysis approach. Fu and Ezzinbi [19] studied the exis-
tence of mild and strong solutions of semilinear neutral functional differential evolution
equations with nonlocal conditions.

The considerations of this paper are based on the notion of measure of noncom-
pactness in the space of all functions continuous on [0,T ] see [1]. In order to prove the
existence result, we shall rely on the Schauder fixed point theorem.
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The work is organized as follows. Section 2 contains some preliminaries about
fractional calculus and the Hausdorff’s measure of noncompactness. In Section 3 the
existence result is given. In section 4 an application is provided to illustrate the results
of this work.

2. Preliminary tools

In what follows, we will collect some definitions and results which will be needed later.
First, assume that E is a real Banach space with the norm ‖.‖ . Let θ be the zero
element of E. Denote by B(x,r) the closed ball centred at x and with radius r and by
Br the ball B(θ ,r) . If X is a nonempty subset of E we denote by X , Conv(X) the
closure and convex closure of X , respectively. Finally, let us denote by ME the family
of all nonempty and bounded subsets of E and by NE its subfamily consisting of all
relatively compact sets. Following [1] we accept the following definition of the concept
of a measure of noncompactness:

DEFINITION 1. [1] A function μ : ME → R+ is said to be a measure of noncom-
pactness in E if it satisfies the following conditions:

1. The family ker μ = {X ∈ ME : μ(X) = 0} is nonempty and kerμ ⊂ NE .

2. X ⊂ Y ⇒ μ(X) � μ(Y ) .

3. μ(X) = μ(ConvX) = μ(X) .

4. μ(λX +(1−λ )Y) � λ μ(X)+ (1−λ )μ(Y) for λ ∈ [0,1].

5. If (Xn) is a sequence of nonempty, bounded, closed subsets of E such that
Xn+1 ⊂ Xn for n = 1,2, . . . and lim

n→∞
μ(Xn) = 0 then the set X∞ =

⋂∞
n=1 Xn is

nonempty.

REMARK 1. Let us notice that the intersection set X∞ described in axiom 5. sat-
isfies the equality μ(X∞) = 0. In fact, the inequality μ(X∞) � μ(Xn) for n = 1,2, ...
implies that μ(X∞) = 0.

This property of the set X∞ will be very important in our investigations. The most
frequently applied measure of noncompactness is that called the Hausdorff measure of
noncompactness which is defined in the following way

χ(X) = inf{λ > 0 : X can be covered by finitely many balls of radius λ}.

Other facts concerning measures of noncompactness may be found in [1].In the sequel,
we will work in the space C([0,T ],E) consisting of all functions defined and continuous
on [0,T ] with values in the Banach space E . The space C([0,T ],E) is furnished with
the standard norm

sup
t∈[0,T ]

‖x(t)‖.
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Moreover, For any fixed number r > 0, let us denote

B(r) = {x ∈C([0,T ],E) : ‖x(t)‖ � r, t ∈ [0,T ]}.
the closed ball in C([0,T ],E) centered at zero element θ and with radius r . Next,
we recall some properties of the measure of noncompactness in the space C([0,T ],E)
which will be used in our work (see [1]). Let X be a nonempty and bounded subset of
the space C([0,T ],E) . Fix a positive number t ∈ [0,T ] . For an arbitrary function x ∈ X
and ε > 0 denote by wt(x,ε) the modulus of continuity of x on the interval [0,t] , i.e

wt(x,ε) = sup{‖x(t2)− x(t1)‖ : t1,t2 ∈ [0,t], |t1− t2| � ε}.
Further, let us put:

wt(X ,ε) = sup
{
wt(x,ε) : x ∈ X

}
,

wt
0(X) = lim

ε→0+
wt(X ,ε).

Define
χ(X) = sup{χ(X(t)) : t ∈ [0,T ]},

where χ denotes Hausdorff measure of noncompactness in E . Finally, we define
the function μ on the family of all nonempty and bounded subsets of C([0,T ],E) by
putting

μ(X) = wt
0(X)+ χ(X).

It may be shown that the function μ is the measure of noncompactness in the space
C([0,T ],E) (see [1]). The kernel kerμ is the family of all nonempty and bounded sets
X such that functions belonging to X are equicontinuous on [0,T ] and the set X(t) is
relatively compact in E for t ∈ [0,T ] . This property will be crucial in our further study.
Next, for a given nonempty and bounded subset X of the space C([0,T ],E) . Next, for
a bounded set X ∈C([0,T ],E) , let us denote

∫ t

0
X(s)ds =

{∫ t

0
x(s)ds : x ∈ X

}
.

LEMMA 1. ([6]) If E is a separable Banach space and X ⊂C([0,T ],E) nonempty
and bounded then the function t �→ χ(X(t)) is measurable and

χ
(∫ t

0
X(s)ds

)
�

∫ t

0
χ(X(s))ds, for each t ∈ [0,T ].

The following lemmas borrowed from [12] will be needed in the proof of our existence
result of solution of (1.1).

LEMMA 2. Assume that a set X ⊂C([0,T ],E) is bounded. Then

χ(X([0,t])) � wt
0(X)+ sup

s�t
χ(X(s)), for t ∈ [0,T ]. (2.1)
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LEMMA 3. [3] If X is bounded subset of Banach space E , then for each ε > 0
there is a sequence {xk}∞

k=1 such that

χ(X) � 2χ({xk}∞
k=1)+ ε.

Next, we recall the following known definitions from the theory of fractional calculus.
For more details, see [9].

DEFINITION 2. The Riemann-Liouville fractional integral of u : [0,b] → X of
order α ∈ (0,∞) is defined by

Iα
t u(t) =

1
Γ(α)

∫ t

0
(t − s)α−1u(s)ds.

The Riemann-Liouville fractional derivative of u : [0,b] → X of order α ∈ (0,1) is
defined by

Dα
t u(t) =

1
Γ(1−α)

d
dt

∫ t

0
(t − s)−αu(s)ds.

The Caputo fractional derivative of u : [0,b] → X of order α ∈ (0,1) is defined by

CDα
t u(t) = Dα

t (u(t)−u(0)).

Now let Φα be the Mainardi function:

Φα(z) =
+∞

∑
n=0

(−z)n

n!Γ(−αn+1−α)
,

then

1. Φα(t) � 0, for all t > 0

2.
∫ +∞

0
Φα(t)dt = 1

3.
∫ +∞

0
tηΦα (t)dt =

Γ(1+ η)
Γ(1+ αη)

, η ∈ [0,1] .

For the details we refer to [15]. We set

Sα(t) =
∫ +∞

0
Φα (s)U(stα)ds (2.2)

and

Pα(t) =
∫ +∞

0
αsΦα (s)U(stα )ds. (2.3)

In what follows, we consider The C0 -semigroup {U(t)}t>0 generated by A is contin-
uous and there exists a constant M > 0 such thatM = sup{U(t) : t � 0} < +∞ . Then
we have the following result.
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LEMMA 4. ([15]) Let Sα and Pα be the operators defined respectively by (2.2)
and (2.3). Then

i. ‖Sα(t)x‖ � M‖x‖ ; ‖Pα(t)x‖ � M
Γ(α)‖x‖, for all x ∈ E and t � 0 .

ii. The operators Sα(t)(t � 0) and Pα(t)(t � 0) are strongly continuous.

DEFINITION 3. ([15]) Let Sα and Pα be the operators defined respectively by
(2.2) and (2.3). Then a continuous function x : R+ → E satisfying for any t � 0 the
equation

x(t) = Sα(t)g(x)+
∫ t

0
(t − s)α−1Pα(t − s) f (s,x(s))ds. (2.4)

is called a mild solution of the equation (1.1)

In what follows, consider the operators

(Hx)(t) =
∫ t

0
(t− s)α−1Pα(t− s) f (s,x(s))ds,

(Gx)(t) = Sα(t)g(x)

and
(Fx)(t) = (Gx)(t)+ (Hx)(t).

THEOREM 1. (Schauder’s fixed point theorem) Let K be a closed convex subset
of a Banach space E . If F : K → K continuous and F(K) is relatively compact, then
F has a fixed point in K.

3. Main results

In this section by using the usual technique of measure of noncompactness and
its application in differential equations in Banach space(see [12]), we give an existence
result for the problem (1.1). The following hypotheses well be needed in the sequel.

(Af ) (i) (t,x) �→ f (t,x) satisfies the Carathéodory condition, i.e. f (.,x) is measur-
able for x ∈ E ×E and f (t, .) is continuous for a.e. t ∈ [0,T ],

(ii) m : R+ → R+ continuous such that
‖ f (t,x)‖� m(t)φ(‖x(t)‖) for a.e. t ∈ [0,T ] and all x∈ E , where φ : R+ →
(0,∞) is continuous and increasing.

(iii) there exists a positive constant k f such that for any bounded set
X ⊂C([0,T ],E) , one has

χ( f ([0,t]×X)) � k f χ(X([0,t])),

where f ([0,T ]×X) = { f (s,x(s)) : 0 � s � t,x ∈ X}.
(Ag ) (i) The function g : C([0,T ],E) → E is continuous,
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(ii) there exists a positive constant kg such that

χ(g(X)) � kgχ(X([0,T ])),

for each bounded set X ∈C([0,T ],E) .

(A1 ) There exists a constant r > 0 such that for any t ∈ [0,T ]

M sup
x∈B(r)

‖g(x)‖+
M

Γ(α)
φ(r) sup

t∈[0,T ]

∫ t

0

m(s)
(t− s)1−α ds < r.

(A2 ) kg +
T α

Γ(α +1)
k f <

1
3M

.

LEMMA 5. If our assumptions (Af ) and (Ag) are satisfied and a set
X ⊂C([0,T ],E) is bounded. Then

wt
0(HX) � 2M

tα

Γ(α +1)
χ
(

f ([0, t]×X)
)
,

for t ∈ [0,T ]

Proof. Fix T > 0 and denote Z = f
(
[0,t]×X

)
. First, we will show that

lim
ε→0

sup
z∈Z

{‖Pα(t2 − s)−Pα(t1 − s)‖‖z‖ : 0 � s � t1 � t2 � T, t2 − t1 � ε}

� 2M
Γ(α)

χ(Z). (3.1)

Suppose contrary. Then there exists a number d such that

lim
ε→0

sup
z∈Z

{‖Pα(t2− s)−Pα(t1− s)‖‖z‖ : 0 � s � t1 � t2 � t, t2− t1 � ε,} > d. (3.2)

Fix δ > 0 such that

d >
2M

Γ(α)
(χ(Z)+ δ ). (3.3)

Condition (3.2) yields that there exist sequences (t2,n),(t1,n),(sn) ∈ [0,t] and (zn) ∈ Z
, such that t2,n → t, t1,n → t,sn → s and

‖Pα(t2,n − sn)−Pα(t1,n− sn)‖‖zn‖ > d. (3.4)

Suppose that the points l1, l2, ..., lk ∈ E are such that Z ⊂
k⋃

i=1

B(li,χ(Z)+ δ ) . Then

there exist a point z j and a subsequence of (yn) , (which is further denoted by (zn))
such that zn ∈ B(l j,χ(Z)+ δ ) , for n = 1,2, ... Hence we have

‖zn− l j‖ � χ(Z)+ δ .
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Further, we obtain

‖[Pα(t2,n− sn)−Pα(t1,n − sn)]zn‖
� ‖Pα(t2,n− sn)(zn − l j)‖+‖Pα(t2,n − sn)l j −Pα(t1,n − sn)l j‖
+ ‖Pα(t1,n− sn)l j −Pα(t1,n − sn)zn‖
� 2M

Γ(α)
‖zn − l j‖+‖[Pα(t2,n− sn)−Pα(t1,n − sn)]l j‖. (3.5)

Letting n → ∞ and using the properties of the semigroup {U(s)}{0�s�t} , from the
above estimate we get

limsup
n→∞

‖[Pα(t2,nsn)−Pα(t1,n− sn)]zn‖ � χ(Z)+ δ .

This contradicts (3.3) and (3.4).
Now, fix ε > 0 and t1,t2 ∈ [0,T ], 0 � t2 − t1 � ε . Applying the assumption (Hf ) we
get

‖Hx(t2)−Hx(t1)‖ �
∫ t1

0

‖[Pα(t2 − s)−Pα(t1 − s)] f (s,x(s))‖
(t2 − s)1−α ds

+
∫ t1

0
‖Pα(t1 − s) f (s,x(s))‖( 1

(t1 − s)1−α − 1
(t2 − s)1−α )ds

+
∫ t2

t1

‖Pα(t2 − s) f (s,x(s))‖
(t2− s)1−α ds.

Keeping in mind that
1

(t2 − s)1−α � 1
(t1 − s)1−α , we derive the following inequality

‖Hx(t2)−Hx(t1)‖
� sup{‖Pα(t2− s)−Pα(t1− s)z‖ : 0 � s � t1 � t2 � t,t2− t1 � ε,z ∈ Z}

×
∫ t1

0

ds
(t1− s)1−α

+
M

Γ(α)
sup{‖ f (s,x(s)‖ : s ∈ [0,t],x ∈ X}

∫ t1

0
(

1
(t1 − s)1−α − 1

(t2 − s)1−α )ds

+
M

Γ(α)
sup{‖ f (s,x(s)‖ : s ∈ [0,t],x ∈ X}

∫ t2

t1

ds
(t2 − s)1−α .

Then,

‖Hx(t2)−Hx(t1)‖
� tα

α
sup{‖(Pα(t2− s)−Pα(t1− s))z‖ : 0 � s � t1 � t2 � T,t2− t1 � ε, z ∈ Z}

+
M

Γ(α)
sup{‖ f (s,x(s))‖ : s ∈ [0,t],x ∈ X}

[
(t2 − t1)α + tα

1 − tα
2

]

+
M

αΓ(α)
sup{‖ f (s,x(s))‖ : s ∈ [0,t],x ∈ X}(tα

2 − tα
1 ).
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Letting ε → 0+ and keeping in mind (3.1) we get

wt
0(HX) � 2M

tα

Γ(α +1)
χ
(

f ([0, t]×X)
)
.

LEMMA 6. [13] Assume that assumptions (Ag) are satisfied and let
X ⊂C([0,T ],E) be a bounded set. Then

wt
0(GX) � 2Mχ(g(X)), for t ∈ [0,T ].

THEOREM 2. If the Banach space E is separable then under assumptions (Af ) ,
(Ag) , (A1) and (A2) , Equation (1.1) with initial condition has at least one mild solution
x = x(t) .

Proof. For any arbitrarily fixed x ∈C([0,T ],E) and t ∈ [0,T ] , let r be a positive
number satisfying to the inequality of assumption (A1) .

‖(Fx)(t)‖ � ‖(Hx)(t)‖+‖(Gx)(t)‖
� M‖g(x)‖+

M
Γ(α)

∫ t

0

m(s)
(t− s)1−α φ(‖x(s)‖)ds

� M sup
x∈B(r)

‖g(x)‖+
M

Γ(α)
φ(r) sup

t∈[0,T ]

∫ t

0

m(s)
(t− s)1−α ds < r. (3.6)

The above inequality show that F is a self-mapping of B(r) . Next, we prove that
operator F is continuous in B(θ ,r) . To do this, take arbitrary x,xn ∈ B(θ ,r) such that
xn → x ∈C([0,T ],E) . Observe that

‖ f (s,xn(s))− f (s,x(s))‖
Γ(α)(t − s)1−α � 2

φ(r)
Γ(α)

m(s)
(t− s)1−α ds ∈ L1[0,T ].

So by Lebesgue dominated convergence theorem and assumption (Ag)(i) we derive
that F is continuous on B(r) . Further, let us consider the sequence (Qn) of subsets of
C([0,T ],E) , where Q0 = B(r) and Qn = Conv(FQn−1) for n ∈ N . Observe that all of
this sequence are nonempty, closed and convex.
Moreover, Qn+1 ⊂ Qn for n ∈ N . Further, let us put

un(t) = χ(Qn([0,t])), vn(t) = wt
0(Qn).

Observe that each of functions un(t) and vn(t) are nondecreasing, while sequences
(un(t)) and (vn(t)) are nonincreasing at any fixed t ∈ [0,T ] . Then sequences (un(t))
and (vn(t)) have limits. Let

u∞(t) = lim
n→∞

un(t) and v∞(t) = lim
n→∞

vn(t), for t ∈ [0,T ].

By Lemmas 6 and (Ag) we get

χ(GQn([0,t])) � wt
0(GQn)+ sup

s�t
χ(GQn(s))



Differ. Equ. Appl. 7, No. 4 (2015), 489–501. 497

� 2Mχ(g(Qn))+ sup
s�t

χ(GQn(s))

� 3Mχ(g(Qn([0,T ])))
� 3Mkgun(T ). (3.7)

Moreover, taking into account Lemmas 5, 6, and (Af )(iii) we infer the following esti-
mate

χ(HQn([0, t])) � wt
0(HQn)+ sup

s�t
χ(HQn(s))

� 2Mtα

Γ(α +1)
χ( f ([0,t]×Qn)

+ sup
s�t

χ
(∫ s

0

Pα(s,τ)
(s− τ)1−α f (τ,Qn(τ))dτ

)

� 2Mtα

Γ(α +1)
χ( f ([0,t]×Qn)

+
Mkf

Γ(α)
sup
s�t

∫ s

0

dτ
(s− τ)1−α χ(Qn(τ))dτ

� 2Mkf tα

Γ(α)
un(t)+

Mkf

Γ(α +1)
sup
s�t

∫ s

0

dτ
(s− τ)1−α un(τ)dτ. (3.8)

Then

un+1(t) = χ(Qn+1([0,t])) = χ(FQn([0,t]))
� χ(HQn[0,t])+ χ(GQn[0,t])
� 3Mkgun(T )

+
2Mkf tα

Γ(α)
un(t)+

Mkf

Γ(α)
sup
s�t

∫ s

0

dτ
(s− τ)1−α un(τ)dτ. (3.9)

Letting n → ∞ we get

u∞(t) � 3Mkgu∞(T )+
2Mkf tα

Γ(α)
u∞(t)+

Mkf

Γ(α)
sup
s�t

∫ t

0

dτ
(s− τ)1−α u∞(τ)dτ (3.10)

keeping in mind that the functions un(t) is nondecreasing , we get

u∞(t) � 3Mkgu∞(T )+
3Mkf tα

Γ(α +1)
u∞(t). (3.11)

Putting t = T ,

u∞(t) � 3M
(
kg +

3Mkf Tα

Γ(α +1)

)
u∞(T ). (3.12)

In view of (A2) we conclude that

u∞(T ) = 0. (3.13)
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Moreover, applying Lemmas (3.3), (3.2), (Ag)(ii) and (Af )(iii) we derive

vn+1(t) = wt
0(FQn) � wt

0(HQn)+wt
0(GQn)

� 2kgMun(T )+
2Mkf tα

Γ(α +1)
un(t). (3.14)

Letting n → ∞ we get

v∞(t) � 2kgMu∞(T )+
2Mkf tα

Γ(α +1)
u∞(t).

Putting t = T , and keeping in mind (3.13) we conclude

v∞(T ) = 0.

Then, on has proved that lim
n→∞

μ(Qn) = 0. Hence, in view of Remark 1, we deduce that

the set Q∞ =
⋂
n�0

Qn is nonempty, compact and convex. Then, by Schauder theorem we

conclude, that the operator F : Q∞ → Q∞ has at least one fixed point x = x(t) . This
completes the proof.

4. Final remark

In this section we are going to discuss the assumptions of theorem 2.

PROPOSITION 1. Assume that f satisfies the Lipschiz conditions i.e there exist a
constant k f > 0 such that ‖ f (t,x)− f (t,y)‖ � k f ‖x− y‖ for any t ∈ [0,T ] and for all
x,y ∈ E . Then f satisfies the hypothesis (Af )(iii) .

Proof. Let us take X ⊂C([0,T ],E) be a nonempty and bounded subset and fix t ∈
[0,T ] nd ε > 0. Let ρ = χ(X [0,t]) , then by definition of χ , there exist a1,a2, ...,an ∈E
such that X([0, t]) ⊂ ∪n

1B(ai,ε) . By the continuity of t �→ f (t,ai) on [0,t] for i =
1,2, ...,n we deduce that there exist a partition 0 = b1 < b2 < ... < bn = t of the interval
[0,t] such that for each s ∈ [b j−1,b j] for j = 1,2, ..., p

‖ f (s j−1,ai)− f (s j,ai)‖ � ε, for i = 1,1,2, ...,n.

let s ∈ [0, t] and x ∈ X . For i and j chooses such that s ∈ [b j−1,b j] we get

‖ f (s,x(s)) − f (b j,ai)‖
� ‖ f (s,x(s))− f (b j,ai)‖+‖ f (s,x(s))− f (s,ai)‖+‖ f (s,ai)− f (b j,ai)‖
� k f ‖x(s)−ai‖+ ε
� k f (ρ + ε)+ ε. (4.1)

This prove that f ([0,t]×X)⊂ ∪n
1 ∪p

1 B( f (b j,ai),k f (ρ + ε)+ ε) . Therefore

χ( f ([0,t]×X)) � k f χ(X [0,t]).
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PROPOSITION 2. Assume that g is compact, then the hypothesis (Ag)(ii) is sat-
isfies and A2 can be replaced by

(A′
2) k f <

Γ(α +1)
3MTα .

5. Application

In what follows we investigate some particular cases. Let X = L2(Rn) . Consider
the following fractional parabolic nonlocal Cauchy problem:{

Dαu(t,z) = (Δu)(t,z)+ f (t,u(t,z)) t ∈ [0,1], z ∈ R
n,

u(0,z) = g(z) (5.1)

where Dα is the Caputo fractional partial derivative of order 0 < α < 1, f is a given
function. Moreover,

(Δu)(t,z) = Σn
i, j=1ai, j(z)

∂u
∂ zi∂ z j

(t,z)+ Σn
i=1bi(z)

∂u
∂ zi

(t,z)+ c(z)u(t,z), (5.2)

where the coefficients ai, j , bi , c , i, j = 1,2, ...,n satisfy the usual uniformly ellipticity
conditions.
We define an operator A by A = L with the domain

D(A) = {v(.) ∈ X : H2(Rn)}.
From [19], we know that A generates an analytic, noncompact semigroup {U(t)}t�0

on L2(Rn.) In addition, there exists a constant M > 0 such that

M = sup{‖U(t)‖ ; t �} < ∞.

Let’s take α =
1
2

and f (t,x(t)) = t−
1
2 tanx(t) . Then from ‖ f (t,x(t))‖ � π

2
t−

1
2 , we

get (Af )(i) and (Af )(ii) holds with φ(‖x‖) = 1. From

‖ f (t,x(t))− f (t,y(t))‖ � t−
1
2 ‖x− y‖∞

and the proposition 1 we get that (Af )(iii) is satisfied.
Now, we estimate the constant kg from assumption Ag in two cases.

(1) If the function g : C([0,1],E) → E is given by formula

g(x) =
p

∑
i=1

cix(ti),

where x(ti) = u(ti, .) , that is x(ti)z = u(ti,z) , z ∈ R
n and ci ∈ R , ti ∈ [0,1] ,

i = 1,2, ..., p . Then it is easy to show that

χ(g(X)) �
( p

∑
i=1

|ci|
)

χ(X), for X ⊂C([0,1],E).

Take kg =
p

∑
i=1

|ci| , then the assumption Ag is satisfied.
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(2) Let us take now

g(x) =
∫ 1

0
l(s,x(s))ds,

wher l : [0,1]×E → E is Carathéodory function and there exists a function ψ ∈
L1([0,1],R+) such that for any bounded X ⊂ E

χ(l(t,X)) � ψ(t)χ(X), for a.e t ∈ [0,1]

Using Lemma 3 we obtain

χ(g(X)) � 2
(∫ 1

0
ψ(t)dt

)
χ(X).

Hence, (Ag) is satisfied with constant kg = 2
∫ 1
0 ψ(t)dt .
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