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Abstract. In this paper we study the existence of solutions for the nonlinear elliptic system⎧⎪⎪⎨⎪⎪⎩
Δ2u−Δu+V1(x)u = fu(x,u,v),

Δ2v−Δv+V2(x)v = fv(x,u,v),

u,v ∈ H2(RN) x ∈ R
N ,

where V1(x) and V2(x) are positive continue functions. Under some assumptions on fu(x,u,v)
and fv(x,u,v) , we prove the existence of many nontrivial high and small energy solutions by
variant Fountain theorems. This generalizes the results by Y. Ye and C. Tang (J. Math. Anal.
Appl. 394, 841-854, 2012) to fourth-order nonlinear elliptic system.

1. Introduction

This paper deals with the existence of infinitely many solutions for the fourth-order
nonlinear elliptic system ⎧⎪⎨⎪⎩

Δ2u−Δu+V1(x)u = fu(x,u,v),

Δ2v−Δv+V2(x)v = fv(x,u,v),

u,v ∈ H2(RN), x ∈ R
N ,

(1.1)

where N � 1, Δ2 := Δ(Δ) is the biharmonic operator, F = F(x,u,v) , fu = ∂F
∂u , and

fv = ∂F
∂v . V1(x) , V2(x) and F(x,u,v) are positive functions. We are interested in the

existence of many nontrivial high and small energy solutions.
The study of fourth-order elliptic equations appears to be important in many areas

including the study of travelling waves in suspension bridges and static deflection of an
elastic plate in a fluid. We refer to [7] and their references. The fourth-order elliptic
problems have been extensively studied in recent years, obtained numerous results on
existence, multiplicity of the positive solutions, see for example [8, 10, 11, 12, 13, 14,
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17, 20, 19, 15, 18, 2, 5]. In [20], Zhou and Wu investigated the fourth-order nonlinear
elliptic boundary value problems{

Δ2u+ cΔu = f (x,u) in Ω,

u = Δu = 0 on ∂Ω,
(1.2)

they obtained the existence and multiplicity of sign-changing solutions by variational
techniques. Yang and Zhang in [14] proved the existence of positive, negative and sign-
changing solutions of (1.2) by invariant sets of the gradient flows of the corresponding
variational functionals. In [10], Wang et al. showed that problem (1.2) exist at least
three nontrivial solutions by linking approaches. In [12], Ye and Tang obtained the
existence of infinitely many large-energy and small-energy solutions for the fourth-
order elliptic equation:{

Δ2u−Δu+V(x)u = f (x,u) in R
N ,

u ∈ H2(RN),
(1.3)

by Rabinowitz’s symmetric mountain pass theorem, where V ∈ C(RN ,R) and f ∈
C(RN ×R,R) . Zhang and Tang in [18] established the existence of infinitely many
small energy solutions of (1.3) by using the genus properties in critical point theory
where the nonlinearity f (x,u) is indefinite sign and sublinear at infinity. Cheng in
[2] considered the existence of high energy solutions of (1.3) by using some special
techniques. Under more relaxed assumptions on V (x) , Ye and Tang established the
existence and multiplicity of solutions for a class of fourth-order elliptic equations with
a parameter λ � 1 large enough.

In [6], Jung and Choi studied the fourth-order elliptic system with Dirichlet bound-
ary condition: ⎧⎪⎨⎪⎩

Δ2u+ cΔu = a
(
(u+ v+1)+−1

)
in Ω,

Δ2v+ cΔv = a
(
(u+ v+1)+−1

)
in Ω,

u = 0, v = 0, Δu = 0 Δv = 0 on ∂Ω,

(1.4)

they proved the existence of nontrivial solutions via linking method and the contraction
mapping principle on the Banach space. In [1], Afrouzi et al. studied the existence and
multiplicity of solutions for a class of nonlocal fourth-order systems by critical point
theory.

To the best of our knowledge, the existence of infinitely many nontrivial solutions
of (1.1) has not ever been considered by variational methods. Our main objective in
this article is to study the existence of infinitely many nontrivial high and small energy
solutions for (1.1). Unlike the Rabinowitz’s symmetric mountain pass arguments in
[12], our main idea is to use the variant Fountain theorems generalizes the results in
[12] to fourth-order nonlinear elliptic system.

In this paper, we assume
(H1) Vi(x) are continuous in R

N , and infx∈RN Vi(x) > 0 (i = 1,2) . For each M > 0,
meas {x ∈ R

N :Vi(x) < M} < ∞ (i = 1,2) , where meas denotes the Lebesgue measure
in R

N ;
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(H2)F(x,u,v) ∈C1(RN ×R
2,R+) ;

(H3) There exist a1 , a2 > 0, r ∈ (2,2∗) where 2∗ = ∞ for N � 4 and 2∗ = 2N
N−4 for

N > 4, such that

| fu(x,u,v)|+ | fv(x,u,v)| � a1(|u|r−1 + |v|r−1)+a2(|u|+ |v|), ∀(x,u,v) ∈ R
N ×R

2;

(H4) There exist δ , σ ∈ (1,2) , r ∈ (2,2∗) and a3 > 0, η > 0, ∀(x,u,v) ∈ R
N ×R

2 ,
such that

ζ (x)(|u|δ + |v|δ ) � fu(x,u,v)u+ fv(x,u,v)v

and

| fu(x,u,v)|+ | fv(x,u,v)| � ηm(x)(|u|σ−1 + |v|σ−1)+a3(|u|r−1 + |v|r−1),

where ζ (x) ∈ L
2

2−δ (RN) , m(x) ∈ L
2

2−σ (RN) , ζ (x) > 0, m(x) > 0, for x ∈ R
N ;

(H5) There exists μ ∈ (2,r) , such that

lim
(|u|2+|v|2)→∞

fu(x,u,v)u+ fv(x,u,v)v

(|u|2 + |v|2) μ
2

� C > 0

uniformly for x ∈ R
N ;

(H6) There exists θ � 1, such that ∀s ∈ [0,1] ,

θ£(x,u,v) � £(x,su,sv), ∀(x,u,v) ∈ R
N ×R

2,

where £(x,u,v) = 1
2 ( fu(x,u,v)u+ fv(x,u,v)v)−F(x,u,v) ;

(H7)F(x,u,v) = F(x,−u,−v) for (x,u,v) ∈ R
N ×R

2 .

REMARK 1. With these assumptions on F , we give the following examples of F :
(i)

F(x,u,v) = (2+ ε
1

1+|x| )(|u|p + |v|p + |u|2 + |v|2),
(ii)

F(x,u,v) =
1+ sin2 x1

1+ |x|N
2

(|u|σ + |v|σ )+ |u|p + |v|p.

where x = {x1,x2, . . . ,xN} , 2 < p < 2∗ , 1 < σ < 2. �

We state the main theorems in this paper:

THEOREM 1. Assume that (H1)− (H3) , (H5)− (H7) hold, then problem (1.1)
possesses infinitely many high energy solutions (uk,vk) for all k � k0 (k0 ∈ N) , in the
sense that

I(uk,vk) =
1
2

∫
RN

(
|Δuk|2 + |Δvk|2 + |∇uk|2 + |∇vk|2 +V1(x)(uk)2 +V2(x)(vk)2

)
dx

−
∫

RN
F(x,uk,vk)dx → +∞, as k → ∞.
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THEOREM 2. Assume that (H1) , (H2) , (H4)− (H7) hold, there exists Λ0 > 0 ,
when η < Λ0 , then problem (1.1) possesses infinitely many small energy solutions
(uk,vk) for k ∈ N , in the sense that

I(uk,vk) =
1
2

∫
RN

(
|Δuk|2 + |Δvk|2 + |∇uk|2 + |∇vk|2 +V1(x)(uk)2 +V2(x)(vk)2

)
dx

−
∫

RN
F(x,uk,vk)dx → 0−, as k → ∞.

The paper is organized as follows. In Section 2, we present some preliminary
results and prove some lemmas. In Section 3, we prove our main Theorems.

2. The variational framework and preliminary results

Consider the Sobolev space X = H2(RN) endowed with the norm

‖u‖X =
(∫

RN

(|Δu|2 + |∇u|2 +u2)dx

) 1
2

.

Now, we define the subspaces

W1 =
{

u ∈ X |
∫

RN
V1(x)u2 < ∞

}
,

W2 =
{

v ∈ X |
∫

RN
V2(x)v2 < ∞

}
.

Obviously, W1 and W2 are Hilbert spaces endowed with the norm respectly

‖u‖W1 =
(∫

RN

(|Δu|2 + |∇u|2 +V1(x)u2)dx

) 1
2

, u ∈W1,

‖v‖W2 =
(∫

RN

(|Δv|2 + |∇v|2 +V2(x)v2)dx

) 1
2

, v ∈W2.

Problem (1.1) is posed in the framework of the Hilbert space W = W1 ×W2 with the
standard norm

‖(u,v)‖2
W = ‖u‖2

W1
+‖v‖2

W2
.

In addition, we define |u|p = (
∫
RN |u|pdx)

1
p , which is the usual norm in Lp(RN) and

Lp
2(RN) = Lp(RN)×Lp(RN) with the norm |(u,v)|p = (|u|pp + |v|pp)

1
p . It is well known

that under assumption (H1), the embedding W1 ↪→ Lp(RN) , W2 ↪→ Lp(RN) are com-
pact for p ∈ [2,2∗) , where 2∗ = +∞ for N � 4 and 2∗ = 2N

N−4 for N > 4.
A pair of functions (u,v) ∈W is said to be a weak solution of problem (1.1) if∫

RN

(
ΔuΔϕ1 + ΔvΔϕ2 + ∇u∇ϕ1 + ∇v∇ϕ2 +V1(x)uϕ1 +V2(x)vϕ2

)
dx
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−
∫

RN
fu(x,u,v)ϕ1 + fv(x,u,v)ϕ2dx = 0

for all (ϕ1,ϕ2) ∈W .
The corresponding energy functional of problem (1.1) is defined by

I(u,v) =
1
2
‖(u,v)‖2

W −
∫

RN
F(x,u,v)dx.

In order to verify I(u,v) ∈C1(W,R) , we need the following lemmas

DEFINITION 1. (Definition 3.2, [4]) On the space Lp(RN)∩Lq(RN) , we define
the norm

|u|p∧q = |u|p + |u|q,
on the space Lp

2(RN)∩Lq
2(R

N) , we define the norm

|(u,v)|p∧q = |(u,v)|p + |(u,v)|q,
on the space Lp(RN)+Lq(RN) , we define the norm

|u|p∨q = inf
{|v|p + |w|q : v ∈ Lp(RN),w ∈ Lq(RN),u = v+w

}
.

LEMMA 1. (Lemma 3.3, [4]) Assume that 1 � p, r , q , s < ∞ , f ∈C(RN ×R
2)

and
f (x,u,v) � C1(|u|

p
r + |v| p

r )+C2(|u|
q
s + |v| q

s ),

then, for every (u,v) ∈ Lp
2(RN)

⋂
Lq

2(R
N) , f (·,u,v) ∈ Lr(RN)+Ls(RN) , and the oper-

ator
T : Lp

2(RN)∩Lq
2(R

N) → Lr(RN)+Ls(RN) : (u,v) → f (x,u,v)

is continuous.

Now we consider the functional ψ(u,v) =
∫
RN F(x,u,v)dx , then we have the fol-

lowing result.

LEMMA 2. Assume that (H1)− (H3) hold, then ψ(u,v) ∈C1(W,R) and〈
ψ

′
(u,v),(ϕ1,ϕ2)

〉
=

∫
RN

( fu(x,u,v)ϕ1 + fv(x,u,v)ϕ2)dx,

where (u,v) , (ϕ1,ϕ2) ∈W .

Proof. It follows from (H3) that

F(x,u,v) =
∫ 1

0

dF(x,tu,tv)
dt

dt

=
∫ 1

0
fu(x,tu,tv)u+ fv(x,tu,tv)vdt
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�
∫ 1

0
(| fu(x,tu,tv)|+ | fv(x,tu,tv)|)(|u|+ |v|)dt

�
∫ 1

0
(a1(|tu|r−1 + |tv|r−1)+a2(|tu|+ |tv|)(|u|+ |v|))dt

�2a1(|u|r + |v|r)
∫ 1

0
tr−1dt +2a2(|u|2 + |v|2)

∫ 1

0
tdt

�a1(|u|r + |v|r)+a2(|u|2 + |v|2). (2.1)

Let g(x) := a1(|u(x)|r + |v(x)|r)+a2(|u(x)|2 + |v(x)|2) , then g(x)∈L1(RN) . So, I(u,v)
is well defined.

First, we prove the existence of the Gateaux derivative. Given (ϕ1,ϕ2) ∈W , |t| ∈
[0,1] , θ ∈ (0,1) , then∣∣∣∣F(x,u+ tϕ1,v+ tϕ2)−F(x,u,v)

t

∣∣∣∣
=

(| fu(x,u+ tθϕ1,v+ tθϕ2)||tϕ1|+ | fv(x,u+ tθϕ1,v+ tθϕ2)||tϕ2|
)× 1

|t|
�a1

(|u+ tθϕ1|r−1 + |v+ tθϕ2|r−1)+a2
(|u+ tθϕ1|+ |v+ tθϕ2|

)(|ϕ1|+ |ϕ2|
)

�C
(|u|r−1 + |ϕ1|r−1 + |v|r−1 + |ϕ2|r−1 + |u|+ |ϕ1|+ |v|+ |ϕ2|

)(|ϕ1|+ |ϕ2|
)
.

The Hölder inequality and the sobolev imbedding theorem imply that(|u|r−1 + |ϕ1|r−1 + |v|r−1 + |ϕ2|r−1 + |u|+ |ϕ1|+ |v|+ |ϕ2|
)(|ϕ1|+ |ϕ2|

) ∈ L1(RN).

It follows from the Lebesgue theorem that〈
ψ

′
(u,v),(ϕ1,ϕ2)

〉
=

∫
RN

(
fu(x,u,v)ϕ1 + fv(x,u,v)ϕ2

)
dx.

Next, we prove the continuity of the Gateaux derivative. Assume that (un,vn) →
(u,v) in W. By the sobolev imbedding theorems, (un,vn) ↪→ (u,v) in Lp

2(RN) for
p∈ [2,2∗) . By the Lemma 2.2, we obtain fu(x,un,vn)→ fu(x,u,v) and fv(x,un,vn)→
fv(x,u,v) in Lr

′
(RN) +L2(RN) , where r

′
:= r

r−1 . By the Hölder inequality and the
Sobolev imedding theorem, we get∣∣∣〈ψ

′
(un,vn)−ψ

′
(u,v),(ϕ1,ϕ2)

〉∣∣∣
�

∣∣∣∣∫
RN

( fu(x,un,vn)− fu(x,u,v))ϕ1|+ |( fv(x,un,vn)− fv(x,u,v))ϕ2dx

∣∣∣∣
�| fu(x,un,vn)− fu(x,u,v)|r′ ∨2|ϕ1|r∧2 + | fv(x,un,vn)− fv(x,u,v)|r′ ∨2|ϕ2|r∧2

→0. as n → ∞.

Hence, by the above lemmas, we have I(u,v) ∈ C1(W,R) . The proof is com-
pleted. �
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LEMMA 3. Assume that (H1) , (H2) and (H4) hold, then ψ(u,v) ∈ C1(W,R) ,
and

〈
ψ ′

(u,v),(ϕ1,ϕ2)
〉
=

∫
RN ( fu(x,u,v)ϕ1 + fv(x,u,v)ϕ2)dx , where (u,v) , (ϕ1,ϕ2)∈

W .

Proof. By (H4) , similarly as in the Lemma 2, it is deduced that

F(x,u,v) =
∫ 1

0

dF(x,tu,tv)
dt

dt � 2ηm(x)(|u|σ + |v|σ )+a3(|u|r + |vr|). (2.2)

By the Höld inequality and sobolev imbedding theorem, it can be deduced that

2ηm(x)(|u|σ + |v|σ)+a3(|u|r + |vr|) ∈ L1(RN),

then I(u,v) is well defined.
Almost as the same as in Lemma 2, the Gateaux derivative of ψ(u,v) exists, and〈

ψ
′
(u,v),(ϕ1,ϕ2)

〉
=

∫
RN

( fu(x,u,v)ϕ1 + fv(x,u,v)ϕ2)dx.

Let (un,vn) → (u,v) in W , then

un → u in Lp(RN), for p ∈ [2,2∗), (2.3)

vn → v in Lp(RN), for p ∈ [2,2∗), (2.4)

un → u a.e. x ∈ R
N , (2.5)

vn → v a.e. x ∈ R
N . (2.6)

We claim that∣∣∣∣∫
RN

(
fu(x,un,vn)− fu(x,u,v)

)
ϕ1dx

∣∣∣∣ → 0, as n → ∞, ∀ ϕ1 ∈W1. (2.7)

Otherwise, ∃ ε0 > 0, and a subsequence, denoted by {(unk,vnk)} , such that∣∣∣∣∫
RN

(
fu(x,unk,vnk)− fu(x,u,v)

)
ϕ1dx

∣∣∣∣ > ε0, as k → ∞. (2.8)

Since (un,vn) → (u,v) in L2
2(R

N) , it can be assumed that

|un(k+1)−unk|2 � 2−k, |vn(k+1)− vnk|2 � 2−k, ∀k � 1.

Let us define

(ω1(x),ω2(x)) :=
(
|un1(x)|+

+∞

∑
k=1

|un(k+1)(x)−unk(x)|,

|vn1(x)|+
+∞

∑
k=1

|vn(k+1)(x)− vnk(x)|
)
.
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And ω1(x) ∈ L2(RN) , ω2(x) ∈ L2(RN) . It is clear that

|unk(x)| � ω1(x), |vnk(x)| � ω2(x).

Note that, by (H4)∣∣∣∣∫
RN

(
fu(x,unk,vnk)− fu(x,u,v)

)
ϕ1dx

∣∣∣∣
�

∫
RN

(| fu(x,unk,vnk)|+ | fu(x,u,v)|)|ϕ1|dx

�
∫

RN

[
ηm(x)(|unk|σ−1 + |vnk|σ−1 + |u|σ−1 + |v|σ−1)

+a3(|unk|r−1 + |vnk|r−1 + |u|r−1 + |v|r−1)
]|ϕ1|dx

�
∫

RN

[
ηm(x)(|ω1(x)|σ−1 + |ω2(x)|σ−1 + |u|σ−1 + |v|σ−1)

+a3(|ω1(x)|r−1 + |ω2(x)|r−1 + |u|r−1 + |v|r−1)
]|ϕ1|dx.

By the Lebesgue dominated convergence theorem and from (2.5) , (2.6) , it can be
deduced that

lim
k→∞

∣∣∣∣∫
RN

(
fu(x,unk,vnk)− fu(x,u,v)

)
ϕ1dx

∣∣∣∣ → 0, (2.9)

which is contradict to (2.8) . Therefore, (2.7) holds. Similarly,∣∣∣∣∫
RN

(
fv(x,un,vn)− fv(x,u,v)

)
ϕ2dx

∣∣∣∣ → 0, as n → ∞, ∀ ϕ2 ∈W2. (2.10)

Then, ∣∣∣∣〈ψ
′
(un,vn)−ψ

′
(u,v),(ϕ1,ϕ2)

〉∣∣∣∣ �
∣∣∣∣∫

RN

(
fu(x,un,vn)− fu(x,u,v)

)
ϕ1dx

∣∣∣∣
+

∣∣∣∣∫
RN

(
fv(x,un,vn)− fv(x,u,v)

)
ϕ2dx

∣∣∣∣
→ 0,

as n → ∞ . Hence, ψ(u,v) ∈C1(W,R) . The proof is completed. �
From the above lemma, replace the (H3) with (H4) , I(u,v) ∈C1(W,R) . Let W

be a banach space with the norm ‖.‖ and let Wj be a sequences of subspaces of W with
dim Wj < ∞ for each j ∈ N . Further, W = ⊕ j∈NWj , the closure of the direct sum of
all Wj . Set

Yk = ⊕k
j=0Wj, Zk = ⊕∞

j=kWj

and
Bk = {u ∈ Yk : ‖u‖ � ρk} Sk = {u ∈ Zk : ‖u‖ = rk},

for ρk > rk > 0. Consider a familarly of C1 -functionals Iλ : W → R defined by

Iλ = A(u)−λB(u).

The following two variant fountain theorems were established in [21].
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THEOREM 3. Assume that the functional Iλ defined above satisfies
(A1)Iλ maps bounded sets into bounded sets uniformly for λ ∈ [1,2] , and Iλ (−u) =
Iλ (u) for all λ ∈ [1,2] , u ∈W ;
(A2) B(u) � 0 for all u ∈W , A(u) → ∞ or B(u) → ∞ as ‖u‖→ ∞;
or
(A3) B(u) � 0 for all u ∈W ,B(u) →−∞ as ‖u‖→ ∞;
(A4) There exists ρk > rk > 0 such that

bk(λ ) = lim
u∈Zk,‖u‖=rk

Iλ (u) > ak(λ ) = max
u∈Yk,‖u‖=ρk

Iλ (u), ∀λ ∈ [1,2],

Then
bk(λ ) � ck(λ ) = inf

γ∈Γk
max
u∈Bk

Iλ (γ(u)), ∀λ ∈ [1,2],

where Γk = {γ ∈C(Bk,W ) : γ is odd,γ|∂Bk
= id} (k � 2) . Moreover, for almost every

λ ∈ [1,2] , there exists a sequence {uk
n(λ )} such that

sup
n
‖uk

n(λ )‖ < ∞, I
′
λ (uk

n(λ )) → 0 and Iλ (uk
n(λ )) → ck(λ ) as n → ∞.

THEOREM 4. Assume that Iλ defined above satisfies
(B1) Iλ maps bounded sets into bounded sets uniformly for λ ∈ [1,2] , and Iλ (−u) =
Iλ (u) for all (λ ,u) ∈ [1,2]×W ;
(B2) B(u) � 0 for all u ∈ W and B(u) → ∞ as ‖u‖ → ∞ on any finite dimensional
subspace of W;
(B3) There exists ρk > rk > 0 such that

ak(λ ) = inf
u∈Zk,‖u‖=ρk

Iλ (u) � 0, bk(λ ) = max
u∈Yk,‖u‖=rk

Iλ (u) < 0, ∀λ ∈ [1,2]

and

dk(λ ) = inf
u∈Zk,‖u‖�ρk

Iλ (u) → 0, k → ∞, uni f ormly f or λ ∈ [1,2].

Then there exist λn → 1 ,u(λn) ∈ Yn such that

I
′
λn
|Yn(u(λn)) = 0 and Iλn(u(λn)) → ck as n → ∞,

where ck ∈ [dk(2),bk(1)] . In particular, if u(λn) has a convergent subsequence for
every k , then I1 has infinitely many nontrivial critical points uk ∈ W\{0} satisfying
I1(uk) → 0− as k → ∞ .

In order to apply the above two theorems to prove our main results, we define

A(u,v) =
1
2
‖(u,v)‖2, B(u,v) =

∫
RN

F(x,u,v)dx,

and

Iλ (u,v) = A(u,v)−λB(u,v) =
1
2
‖(u,v)‖2−λ

∫
RN

F(x,u,v)dx,

for all (u,v) ∈W and λ ∈ [1,2] .
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3. Existence results

LEMMA 4. For the any k−dimensional subspace W̃ of W , there exists ε p
k > 0 ,

εδ
k > 0 such that

meas
{

x ∈ R
N : |u|p + |v|p � ε p

k ‖(u,v)‖p
}

� ε p
k , (u,v) ∈ W̃\{(0,0)}, p ∈ [2,2∗),

(3.1)
and

meas{x ∈ R
N : ζ (x)(|u|δ + |v|δ ) � εδ

k ‖(u,v)‖δ} � εδ
k ∀(u,v) ∈ W̃\{(0,0)}, (3.2)

where δ ∈ (1,2) and ζ (x) : R
N → R is a positive continuous functional such that

ζ (x) ∈ L
2

2−δ (RN) .

The verification of Lemma 4 is almost the same as in [12].

LEMMA 5. Let

αk(p) = sup
(u,v)∈Zk,‖(u,v)‖W =1

‖(u,v)‖p → 0 k → ∞, for p ∈ [2,2∗), (3.3)

where the Zk is defined in Theorem 3 .

Proof. Suppose that this is not the case, then there exists an ε0 > 0 and {(u j,v j)}⊂
W with {(u j,v j)} ⊥Wkj−1 such that

‖u j,v j‖W = 1, ‖(u j,v j)‖Lp
2 (RN ) � ε0,

where k j → ∞ as j → ∞ . For any (u,v) ∈W , we may find {(uj,v j)} ∈Wkj−1 , such
that (u j,v j) → (u,v) as j → ∞ . Hence∣∣〈(u j,v j),(u,v)

〉∣∣ =
∣∣〈(u j,v j),(u j,v j)− (u,v)

〉∣∣
� ‖(u j −u,v j − v)‖
→ 0 as j → ∞.

Thus, (u j,v j) ⇀ 0 in W . By the sobolev theorem, (u j,v j) → (0,0) in LP
2 (RN) . This

is a contradiction. The proof is completed. �

LEMMA 6. Let (H1) , (H2) , (H3) , and (H5) hold, then there exist ρk > rk > 0
such that for all λ ∈ [1,2] ,

bk(λ ) = lim
(u,v)∈Zk,‖(u,v)‖=rk

Iλ (u,v) > ak(λ ) = max
(u,v)∈Yk,‖(u,v)‖=ρk

Iλ (u,v). (3.4)
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Proof. From (2.1) in Lemma 2, we have

F(x,u,v) � a1(|u|r + |v|r)+a2(|u|2 + |v|2) ∀x ∈ R
N , (u,v) ∈ R

2.

Therefore, with Lemma 5, ∃ k0 , for (u,v) ∈ Zk , k � k0 , we have

Iλ (u,v) =
1
2
‖(u,v)‖2

W −λ
∫

RN
F(x,u,v)dx

� 1
2
‖(u,v)‖2

W −λ
∫

RN
a1(|u|r + |v|r)+a2(|u|2 + |v|2)dx

� 1
2
‖(u,v)‖2

W −2αr
k(r)a1‖(u,v)‖r

W −2α2
k (2)a2‖(u,v)‖2

W

� 1
4
‖(u,v)‖2

W −αr
k(r)c‖(u,v)‖r

W .

If we choose rk = (8αr
k(r)c)

1
2−r , where c = 2a1 , then for any (u,v)∈Zk with ‖(u,v)‖=

rk , we get

Iλ (u,v) � 1
8
(8αr

k (r)c)
2

2−r > 0,

which implies that

bk(λ ) = inf
(u,v)∈Zk,‖(u,v)‖=rk

Iλ (u,v) � 1
8
(8αr

k(r)c)
2

2−r > 0, ∀λ ∈ [1,2]. (3.5)

By (H5) , ∃ L > 0, |u|2 + |v|2 � L , then

fu(x,u,v)u+ fv(x,u,v)v � c1(|u|2 + |v|2) μ
2 � c2(|u|μ + |v|μ),

then

F(x,u,v) =
∫ 1

0
fu(x,tu,tv)u+ fv(x,tu, ,tv)vdt

=
∫ 1

0

fu(x,tu,tv)tu+ fv(x, tu,tv)tv
t

dt

�
∫ 1

0

c2(|tu|μ + |tv|μ)
t

dt

� c3(|u|μ + |v|μ), (3.6)

where c3 = c2
μ .

Note Ωk(μ) = {x ∈ R
N : |u|μ + |v|μ � εμ

k ‖(u,v)‖μ} . Since |u|2 + |v|2 � (|u|μ + |v|μ)
2
μ

with 2
μ ∈ (0,1) and (3.1) in Lemma 4, there exists Rk with (εμ

k Rμ
k )

2
μ � L , ‖(u,v)‖�

Rk , (u,v) ∈ Yk , then |u|2 + |v|2 � L when x ∈ Ωk(μ) . Hence, for any (u,v) ∈ Yk ,with
‖(u,v)‖W � Rk , we have

Iλ (u,v) � 1
2
‖(u,v)‖2

W −
∫

RN
F(x,u,v)dx
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� 1
2
‖(u,v)‖2

W −
∫

Ωk(μ)
c3(|u|μ + |v|μ)dx

� 1
2
‖(u,v)‖2

W − c3(ε
μ
k )2‖(u,v)‖μ

W →−∞ as ‖(u,v)‖→ ∞.

Then, ∃ ρ0 > Rk , such that Iλ (u,v)|∂B(ρ0) < 0. Then, we choose ρk > max{rk,ρ0}
ak(λ ) = max

(u,v)∈Yk,‖(u,v)‖=ρk

Iλ (u,v) < 0 ∀k ∈ N, λ ∈ [1,2].

The proof is completed. �

LEMMA 7. Let (H1) , (H2) , (H4) and (H5) hold, ∃ Λ0 > 0 , when η < Λ0 ,
there exist ρk > rk > 0 , such that

ak(λ ) = inf
(u,v)∈Zk,‖(u,v)‖=ρk

Iλ (u,v) � 0,

bk(λ ) = max
(u,v)∈Yk,‖(u,v)‖=rk

Iλ (u,v) < 0, ∀ λ ∈ [1,2],

and

dk(λ ) = inf
(u,v)∈Zk,‖(u,v)‖�ρk

Iλ (u,v) → 0 k → ∞, uniformly for λ ∈ [1,2].

Proof. By (2.2) in Lemma 3, for (u,v) ∈ Zk , it follows that

Iλ (u,v) =
1
2
‖(u,v)‖2

W −λ
∫

RN
F(x,u,v)dx

� 1
2
‖(u,v)‖2

W −4
∫

RN
ηm(x)(|u|σ + |v|σ )+a3(|u|r + |vr|)dx

� 1
2
‖(u,v)‖2

W −4η |m(x)| 2
2−σ

(|u|σ2 + |v|σ2 )−2a3(|u|rr + |v|rr)

� 1
2
‖(u,v)‖2

W −8η |m(x)| 2
2−σ

(|u|2 + |v|2) σ
2 −2a3(|u|rr + |v|rr)

� 1
2
‖(u,v)‖2

W −8η |m(x)| 2
2−σ

ασ
k (2)‖(u,v)‖σ

W −2c3αr
k (r)‖(u,v)‖r

W

� ‖(u,v)‖σ
W

(1
2
‖(u,v)‖2−σ

W −8ηε0|m(x)| 2
2−σ

− c4‖(u,v)‖r−σ
W

)
,

where ε0 = supk∈N ασ
k (2) , c4 = 2c3 supk∈N αr

k(r) .
Let

f (t) =
1
2
t2−σ − c4t

r−σ , t � 0.

fmax = f (x) with x = ( 2−σ
2c4(r−σ) )

1
r−2 , such that

fmax = (
1
2
)

r−σ
r−2 .c

2−σ
2−r
4 .(

2−σ
r−σ

)
2−σ
r−2 .

r−2
r−σ

> 0.
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Denote Λ0 = 1
8ε−1

0 |m(x)|−1
2

2−σ
fmax , when η < Λ0 , ρk = x . Then

ak(λ ) = inf
(u,v)∈Zk,‖(u,v)‖=ρk

Iλ (u,v) � 0. (3.7)

In addition, for all λ ∈ [1,2] , and (u,v) ∈ Zk , with ‖(u,v)‖ � ρk , we have

Iλ (u,v) � −8η |m(x)| 2
2−σ

ασ
k (2)‖(u,v)‖σ

W −a3αr
k (r)‖(u,v)‖r

W → 0−, as k → ∞.

Therefore

dk(λ ) = inf
(u,v)∈Zk,‖(u,v)‖�ρk

Iλ (u,v) → 0, as k → ∞ uniformly for λ ∈ [1,2].

(3.8)
From (H4) , it can be obtained that ∀(u,v,x) ∈ R

N ×R
2 ,

F(x,u,v) =
∫ 1

0
fu(x,tu,tv)u+ fv(x,tu,tv)vdt

�
∫ 1

0

fu(x,tu,tv)tu+ fv(x, tu,tv)tv
t

dt

�
∫ 1

0

ζ (x)(|tu|δ + |tv|δ)
t

dt

� 1
2

ζ (x)(|u|δ + |v|δ ).

So, if (u,v) ∈ Yk , by Lemma 4, one can get

Iλ (u,v) =
1
2
‖(u,v)‖2

W −
∫

RN
F(x,u,v)dx

� 1
2
‖(u,v)‖2

W − 1
2

∫
RN

ζ (x)(|u|δ + |v|δ )dx

� 1
2
‖(u,v)‖2

W − 1
2
(εδ

k )2‖(u,v)‖δ
W , x ∈ R

N , (u,v) ∈ R
2.

Hence, we choose rk > 0, small enough satisfying rk < ρk such that

bk(λ ) = max
(u,v)∈Yk,‖(u,v)‖W=rk

Iλ (u,v) < 0, for all λ ∈ [1,2]. (3.9)

The proof is completed. �
Proof of Theorem 1.1. From the assumption (H2) , we know that B(u,v) � 0 for

all (u,v)∈W , and A(u,v)→ ∞ as ‖(u,v)‖→ ∞ . Moreover, Iλ (−u,−v) = Iλ (u,v) for
all (u,v) ∈W , and λ ∈ [1,2] . It follows from the conditions (H1) , (H2) and (H3) ,
Iλ (u,v) maps bounded sets into bounded sets uniformly for λ ∈ [1,2] . Combining with
Lemma 6, (A1) , (A2) , (A4) of Theorem 3 are verified. Therefore, for a.e. λ ∈ [1,2] ,
there exists a sequence {(uk

n(λ ),vk
n(λ ))}∞

n=1 , such that

sup
n

∥∥∥(
uk

n(λ ),vk
n(λ )

)∥∥∥ < ∞, I
′
λ

(
uk

n(λ ),vk
n(λ )

)
→ 0, Iλ

(
uk

n(λ ),vk
n(λ )

)
→ ck(λ )

(3.10)
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as n → ∞ . By Theorem 3, (3.5) and the assumption that r > 2, it implies that

ck(λ ) � bk(λ ) = inf
(u,v)∈Zk,‖(u,v)‖=rk

Iλ (u,v) � 1
8
(8αr

k c)
2

2−r = bk → +∞, (3.11)

as k → ∞ . Also since

ck(λ ) = inf
r∈Γk

max
(u,v)∈Bk

Iλ (u,v) � max
(u,v)∈Bk

Iλ (u,v) = ck.

Hence,
bk � ck(λ ) � ck, for k � k0. (3.12)

If we choose a sequence λm ∈ [1,2] , such that λm → 1, it follows from (3.10)
that the sequence

{(
uk

n(λm),vk
n(λm)

)}
is bounded. If we can prove that the sequence{(

uk
n(λm),vk

n(λm)
)}

has a strong convergent subsequence as n → ∞ , we can assume
that

lim
n→∞

(
uk

n(λm),vk
n(λm)

)
=

(
uk(λm),vk(λm)

)
for every m ∈ N and k � k0 . By (3.10) and (3.12) , we can get

I
′
λm

(
(uk(λm),vk(λm)

)
= (0,0) and Iλm

(
uk(λm),vk(λm)

) ∈ [bk,ck] for k � k0. (3.13)

If we can prove that
{(

uk(λm),vk(λm)
)}∞

m=1 possesses a strong convergent subse-
quence with the limit

(
uk,vk

) ∈W for all k � k0 , the limit
(
uk,vk

)
is a critical point

of I(u,v) = I1(u,v) with I(uk,vk) ∈ [bk,ck] . Since bk → ∞ as k → ∞ , we get infinitely
many nontrivial critical points of I(u,v) . Consequently, problem (1.1) possesses in-
finitely many nontrivial solutions with high energy.

(1) We prove that the sequence
{(

uk
n(λm),vk

n(λm)
)}∞

n=1 has a strong convergent sub-
sequence. Since

{(
uk

n(λm),vk
n(λm)

)}∞
n=1 is bounded, up to a subsequence, denoted by{(

uk
n(λm),vk

n(λm)
)}∞

n=1 , there exists sequence
(
uk(λm),vk(λm)

)
, such that(

uk
n(λm),vk

n(λm)
)

⇀
(
uk(λm),vk(λm)

)
in W,(

uk
n(λm),vk

n(λm)
)
→

(
uk(λm),vk(λm)

)
in Lp

2(R
N), p ∈ [2,2∗).

Again,〈
dIλm

(
uk

n(λm),vk
n(λm)

)
−dIλm

(
uk(λm),vk(λm)

)
,(

uk
n(λm)−uk(λm),vk

n(λm)− vk(λm)
)〉

=
∥∥∥(

uk
n(λm)−uk(λm),vk

n(λm − vk(λm)
)∥∥∥2

W

−λm

∫
RN

(
fu

(
x,uk

n(λm),vk
n(λm)

)− fu
(
x,uk(λm),vk(λm)

))(
uk

n(λm)−uk(λm)
)
dx
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−λm

∫
RN

(
fv

(
x,uk

n(λm),vk
n(λm)

)− fv
(
x,uk(λm),vk(λm)

))(
vk
n(λm)− vk(λm)

)
dx.

(3.14)

Since dIλm

(
uk

n(λm),vk
n(λm)

)→ 0 and
(
uk

n(λm),vk
n(λm)

)
⇀

(
uk(λm),vk(λm)

)
as n→ ∞ ,

then〈
dIλm

(
uk

n(λm),vk
n(λm)

)−dIλm

(
uk(λm),vk(λm)

)
,(

uk
n(λm)−uk(λm),vk

n(λm)− vk(λm)
)〉 → 0.

From (H1) ,(H3) , Lemma 1 and
{
(uk

n(λm),vk
n(λm))

}∞
n=1 is bounded, it implies∣∣∣∣∫

RN

(
fu

(
x,uk

n(λm),vk
n(λm)

)− fu
(
x,uk(λm),vk(λm)

))(
uk

n(λm)−uk(λm)
)
dx

∣∣∣∣
�

∥∥∥ fu
(
x,uk

n(λm),vk
n(λm)

)− fu
(
x,uk(λm),vk(λm)

)∥∥∥
r′ ∨2

∥∥∥uk
n(λm)−uk(λm)

∥∥∥
r∧2

→ 0, as n → ∞. (3.15)

Similarly,∣∣∣∣∫
RN

(
fv

(
x,uk

n(λm),vk
n(λm)

)− fv
(
x,uk(λm),vk(λm)

))(
vk
n(λm)− vk(λm)

)
dx

∣∣∣∣ → 0.

(3.16)
then, it follows from (3.14) , (3.15) , (3.16) that∥∥∥(

uk
n(λm)−uk(λm),vk

n(λm)− vk(λm)
)∥∥∥2

W
→ 0, n → ∞.

Therefore, (
uk

n(λm),vk
n(λm)

)
→

(
uk(λm),vk(λm)

)
, n → ∞, for k � k0.

(2) We prove that
{(

uk(λm),vk(λm)
)}∞

m=1 has a strong convergent subsequence in W .
Since

{(
uk(λm),vk(λm)

)}∞
m=1 satisfying (3.13) . We claim that

{(
uk(λm),vk(λm)

)}∞
m=1

is bounded in W . If it is not the case, we consider

(
ũk(λm), ṽk(λm)

)
:=

( uk(λm)
‖(uk(λm),vk(λm))‖W

,
vk(λm)

‖(uk(λm),vk(λm))‖W

)
,

then up to a subsequence, still denoted by
(
ũk(λm), ṽk(λm)

)
, ∃(ũk, ṽk) , such that(

ũk(λm), ṽk(λm)
)

⇀ (ũk, ṽk), in W,(
ũk(λm), ṽk(λm)

) → (ũk, ṽk), in Lp
2(RN), p ∈ [2,2∗),

ũk(λm) → ũk, a.e. x ∈ R
N ,

ṽk(λm) → ṽk, a.e. x ∈ R
N .
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Case1 : if (ũk, ṽk) �= (0,0) in W . Since

1−
〈
I
′
λm

(
uk(λm),vk(λm)

)
,
(
uk(λm),vk(λm)

)〉
∥∥(uk(λm),vk(λm))

∥∥2
W

=λm

∫
RN

fu
(
x,uk(λm),vk(λm)

)
uk(λm)+ fv

(
x,uk(λm),vk(λm)

)
vk(λm)∥∥(uk(λm),vk(λm))

∥∥2
W

dx

=λm

∫
Ωm

(|ũk(λm)|2 + |ṽk(λm)|2)
· fu

(
x,uk(λm),vk(λm)

)
uk(λm)+ fv

(
x,uk(λm),vk(λm)

)
vk(λm)

|uk(λm)|2 + |vk(λm)|2 dx,

where Ωm =
{
x ∈ R

N :
(
ũk(λm), ṽk(λm)

) �= (0,0)
}

. By (3.13) , (H5) and Fatou’s
Lemma, we can deduce a contradiction that

1 = liminf
m→∞

λm

∫
Ωm

((|ũk(λm)|2 + |ṽk(λm)|2)
· fu

(
x,uk(λm),vk(λm)

)
uk(λm)+ fv

(
x,uk(λm),vk(λm)

)
vk(λm)

|uk(λm)|2 + |vk(λm)|2
)
dx

→∞, as m → ∞.

Case 2: If
(
ũk, ṽk

)
= (0,0) in W . we can define

Iλm

(
tmuk(λm),tmvk(λm)

)
= max

t∈[0,1]
Iλm

(
tuk(λm),tvk(λm)

)
.

For any β > 0, letting
(
uk(λm),vk(λm)

)
=

√
4β

(
ũk(λm), ṽk(λm)

)
, one can has(

uk(λm),vk(λm)
) → (0,0), in Lp

2(RN), p ∈ [2,2∗),

uk(λm) → 0, a.e. x ∈ R
N,

vk(λm) → 0, a.e. x ∈ R
N.

Similarly as (2.9) in Lemma 3 and by (H3) , we can find ω(x) ∈ L1(RN) , such that∣∣F(
x,uk(λm),vk(λm)

)∣∣ � ω(x),

hence, using the Lebesgue dominated convergence theorem, we have

lim
m→∞

∫
RN

F
(
x,uk(λm),vk(λm)

)
dx =

∫
RN

F(x,0,0)dx = 0.

Thus, for m large enough,
√

4β
∥∥(uk(λm),vk(λm))

∥∥−1 ∈ (0,1) , we derive that

Iλm

(
tmuk(λm), tmvk(λm)

)
� Iλm

(
uk(λm),vk(λm)

)
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=
1
2

∥∥(uk(λm),vk(λm))
∥∥2

W −λm

∫
RN

F
(
x,uk(λm),vk(λm)

)
dx,

which implies that

liminf
m→∞

Iλm

(
tmuk(λm),tmvk(λm)

)
� β → ∞, as β → ∞.

Since Iλm(0,0) = 0, and Iλm(uk(λm),vk(λm)) ∈ [bk,ck] , we see that, for m sufficiently
large, tm ∈ (0,1) and〈

I
′
λm

(
tmuk(λm), tmvk(λm)

)
,
(
tmuk(λm),tmvk(λm)

)〉
=tm

d
dt
|t=tm Iλm

(
tuk(λm),tvk(λm)

)
=0.

Therefore, using (H6) , it can be deduced that

λm

∫
RN

1
2

(
fu

(
x,uk(λm),vk(λm)

)
uk(λm)+ fv

(
x,uk(λm),vk(λm)

)
vk(λm)

)
−F

(
x,uk(λm),vk(λm)

)
dx

� λm
1
θ

∫
RN

1
2

(
fu

(
x,tmuk(λm),tmvk(λm)

)
tmuk(λm)

+ fv
(
x,tmuk(λm),tmvk(λm)

)
tmvk(λm)−F

(
x,tmuk(λm),tmvk(λm)

))
dx

=
1
θ

Iλm

(
tmuk(λm),tmvk(λm)

) → ∞, m → ∞.

However, from (3.13) , it implies that

λm

∫
RN

1
2

(
fu

(
x,uk(λm),vk(λm)

)
uk(λm)+ fv

(
x,uk(λm),vk(λm)

)
vk(λm)

−F
(
x,uk(λm),vk(λm)

))
dx

=Iλm

(
uk(λm),vk(λm)

)− 1
2

〈
I
′
λm

(
uk(λm),vk(λm)

)
,
(
uk(λm),vk(λm)

)〉
=Iλm

(
uk(λm),vk(λm)

) ∈ [
bk,ck

]
.

This is a contradiction. similarly in (1) , we can prove the sequence {(uk(λm),vk(λm))}
has a strongly convergent subsequence. Then there exists (uk,vk) ∈ W , such that
I(uk,vk) ∈ [bk,ck] and I

′
(uk,vk) = (0,0) . The proof is completed. �

Proof of Theorem 1.2 From the (3.6) and the discussion in Lemma 6 on any
finite dimensional subspace of W , we get

B(u,v) =
∫

RN
F(x,u,v)dx → ∞, as ‖(u,v)‖W → ∞.

By the assumption (H2) , we know that B(u,v) � 0, for all (u,v) ∈ W , and by the
assumption (H1) , (H4) , Iλ (u,v) maps bounded sets into bounded sets uniformly for
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λ ∈ [1,2] . By (H7) , Iλ (u,v) = Iλ (−u,−v) , for all λ ∈ [1,2] and (u,v) ∈W . Com-
bining with Lemma 7, we see that all the conditions of Theorem 4 are verified. Con-
sequently, for each k ∈ N , there exists λn → 1, (u(λn),v(λn)) ∈Yn , such that

I
′
λn
|Yn (u(λn),v(λn)) = (0,0), Iλn → ck ∈ [dk(2),bk(1)], as n → ∞. (3.17)

Let Pn : W → Yn , is the orthogonal projection operator for all n ∈ N , where Yn is the
n−dimensional subspace of W . By (3.17) , we have〈

PnI
′
λn

(
u(λn),v(λn)

)
,
(
u(λn),v(λn)

)〉
=

〈
I
′
λn

(
u(λn),v(λn)

)
,Pn

(
u(λn),v(λn)

)〉
=

〈
I
′
λn

(
u(λn),v(λn)

)
,(u(λn),v(λn))

〉
.

So, as the proof in Theorem 1.1,
{
(u(λn),v(λn))

}
is bounded in W . Up to a subse-

quence, ∃ (u,v) in W , such that
(
u(λn),v(λn)

)
⇀ (u,v) in W . (3.17) can be changed

into that

I
′
λn

(
u(λn),v(λn)

) → (0,0), Iλn → ck ∈ [dk(2),bk(1)], as n → ∞.

Therefore, as (1) in Theorem 1.1, there exists (u,v) , such that (u(λn),v(λn)) → (u,v)
in W . So, for every k ∈ N , we obtain the critical point of I(u,v) with I

′
(u,v) =

(0,0) and I(u,v) = ck ∈ [dk(2),bk(1)] . Therefore, from Theorem 2.6, problem (1.1)
possesses infinitely many nontrivial critical points with small energy. The proof is
completed. �
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