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POSITIVE SOLUTIONS FOR A FOURTH ORDER

DIFFERENTIAL INCLUSION WITH BOUNDARY VALUES

JOHN S. SPRAKER

(Communicated by Sotiris K. Ntouyas)

Abstract. An existence result for positive solutions of a fourth order differential inclusion is
proven. This is accomplished by using a certain fixed point theorem on cones and a minor
extension of the Ascoli theorem. This inclusion allows both the function and its derivative on the
right-hand side.

1. Introduction

In this article the following will be proven:

THEOREM 1. Let F : [0,1]× [0,∞)× [0,∞)→ P(R) be compact and convex val-
ued, measurable in t for all (x,y) ∈ R

2 , upper semicontinuous in (x,y) for almost all
t ∈ [0,1] and

1) for all r > 0 , there exists hr ∈ L1([0,1],R) such that for almost all t , every (x,y) ∈
R

2 with | (x,y) |< r and every γ ∈ F(t,x,y) , | γ |� hr(t) holds;

2) there exist α,β , α < β , [α,β ] ⊂ (0,1) and F1 ⊂ [α,β ] of full measure such that
for every k > 0, there exists L > 0, such that p > L implies that

infx∈[0,∞)
F(t,x, p)

p
> k for all t ∈ F1;

here infx∈[0,∞)
F(t,x,p)

p means infx∈[0,∞)infy∈F(t,x,p)
y
p ;

3) there exists M > 0 such that for almost all t and all (x, p) ∈ [0,∞)× [0,∞) , y ∈
F(t,x, p) implies that y � −M.

Then there exists a positive solution to problem (1) below for λ > 0 sufficiently
small: {

u′′′(t) ∈ λF(t,u(t),u′(t)) a.e.

u(0) = u′(0) = u′′(1) = u′′′(1) = 0, λ > 0.
(1)
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Basic definitions of properties of set valued functions, differential inclusions, and
operators on set valued functions may be found in many sources such as [1], [3] , and
[4].

An example of such a function F satisfying the three conditions in the theorem to
be proven is the following: for all (t,x,y) ∈ (0,1]× [0,∞)× [0,∞) ,

F(t,x,y) =

⎧⎪⎨⎪⎩
[2t(x2 + y2−1),t(x2 + y2−1)], x2 + y2 < 1,

[t(x2 + y2−1),2t(x2 + y2−1)], x2 + y2 > 1

0, t = 0 or x2 + y2 = 1.

Let [α,β ] be any subinterval of (0,1) , F1 any set of full measure in [α,β ],
and M = 2. It can be easily shown that in this case one can let hr(t) = 2t(r2 + 1) ∈
L1([0,1],R) and for p > 1,

infx∈[0,∞)
F(t,x, p)

p
=

( p2−1
p

)
t >

( p2−1
p

)
α,

which clearly approaches infinity as p does.
Note that the theorem in [6] will not apply here since among other things F is a

function of three variables.
In this theorem we use the following definition of a positive solution.

DEFINITION. u : [0,1] → R is a positive solution to (1) if

i) u ∈ AC3([0,1],R) (by this we mean u′ , u′′ and u′′′ are each absolutely continuous
on [0,1]),
ii) u′′′′(t) ∈ λF(t,u(t),u′(t)) for almost all t ∈ [0,1] ,
iii) u(0) = 0, u′(0) = 0, u′′(1) = 0, u′′′(1) = 0,

iv) u(t) > 0 for all t ∈ (0,1] .

This theorem generalizes a result due to Ma [9], which proved existence of positive
solutions to the problem{

u′′′′(t) = λ f (t,u(t),u′(t)), t ∈ [0,1],

u(0) = 0, u′(0) = 0, u′′(1) = 0, u′′′(1) = 0,

where f : [0,1]× [0,∞)× [0,∞) is continuous and satisfies a number of other conditions.
Ma’s result is also similar to one by Yang [13].

Condition 2) may seem a little unusual. In [9] Ma requires the following to be
satisfied by f :

There exists a subinterval [α,β ] ⊂ (0,1) with α < β such that

limp → ∞
f (x,u, p)

p
= ∞ uniformly for (x,u) ∈ [α,β ]× [0,∞).

Thus condition 2) in theorem 1 is simply a set valued version of this.
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Note also that the condition need only be satisfied on a proper subinterval [α,β ]
of [0,1] rather than the entire interval as is often required with this type of assumption.
See for example [8].

We will see that several of Ma’s proofs in [9] carry over to the set valued case quite
nicely.

The use of fixed point theorems for such problems with different boundary values
than ours is quite common. For example in [2] the Covitz-Nadler fixed point theorem
is used to obtain existence theorems for a fourth order differential inclusion which gen-
eralize results in [12] where the Ky Fan fixed point theorem is used. In [10] monotone
methods, upper and lower solutions, and a maximum principle are used to obtain cer-
tain extremal solutions to a fourth order single valued problem which has the second
derivative on the right hand side. In [7] a contraction mapping principle involving the
Green’s function is applied to obtain a Filippov type existence result.

In [6] the following theorem is proven:

THEOREM [6]: Let F : [0,1]×R → P ([0,∞)) be compact- and convex-valued,
Lebesgue measurable in t for each x , upper semicontinuous in x for almost all t and
for each r > 0 there exists a function hr ∈ L1([0,1],R) such that |y|� hr(t) for almost
all t , every x ∈ R with |x| < r and every y ∈ F(t,x) . Also, assume certain technical
assumptions hold. Then, there exists a positive solution to the problem{

u′′′′(t) ∈ F(t,u(t)), t ∈ [0,1]

u(0) = 0, u′(0) = 0, u′′(1) = 0, u′′′(1) = 0.
(1)

The technical assumptions mentioned above require the knowledge of the Green’s
function which will not be needed here. Also, instead of the second condition in
theorem 1, the corresponding assumptions in the theorem in [6] require that there exists
c∈ L1 ([0,1], [0,∞)) such that for all ε > 0 there exists H > 0 such that there is a set of
full measure S such that for all t ∈ S , all x∈ (0,H) and all y∈ F(t,x) , y � [c(t)+ ε]x .
There is a similar condition involving a measurable function d(t) which serves as a type

of lower bound for infF(t,x)
x as x approaches infinity for almost all t . The current result

will not need such complicated assumptions. The fact that the differential inclusion has
λ which may be chosen to be as small as needed will allow some slight alterations in
the right hand side which were not possible in [6]. The same fixed point theorem below
was used in [6], however. Applying it will involve showing the complete continuity of
a certain operator which in [6] was accomplished by relying on a well known theorem.
In the current setting complete continuity will be proven using a generalization of the
Ascoli theorem which is specified later in the paper. Following Ma in [9], F is also
allowed to take on values that are in P ([−M,∞)) for some positive M but only for
almost all t . This is slightly more general than the result in [6] in which only subsets
of [0,∞) are allowed. Obviously, the major difference between the result in [6] and the
current theorem is the fact that F will now be allowed to depend on u′(t) as well as t
and u(t).

We will need the following set-valued version of the Guo-Krasnoselskii fixed point
theorem for cones which is theorem 3 in [6] and is a special case of theorem 5.5 in [5].
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THEOREM 2. Let (X ,‖·‖) be a Banach space over the reals, and let P ⊆ X be
a cone in X . Let H1 and H2 be real numbers such that H2 > H1 > 0 and let Ωi =
{u ∈ X | ‖u‖ < Hi} for i = 1,2 . If the operator T : P∩ (

Ω2 \Ω1
) → P(P) is compact

and convex valued and is completely continuous such that either

1) ‖w‖ � ‖u‖ for u ∈ P∩∂Ω1,w ∈ T (u) and ‖w‖ � ‖u‖ for u ∈ P∩∂Ω2,w ∈ T (u) ,
or
2) ‖w‖ � ‖u‖ for u ∈ P∩∂Ω1,w ∈ T (u) and ‖w‖ � ‖u‖ for u ∈ P∩∂Ω2,w ∈ T (u) ,

then T has a fixed point.

We will also need to define a special Banach space as in [9]. Let

C1
0 [0,1] = {u | u ∈C1[0,1], u(0) = u′(0) = 0}.

We will associate the following norm with this space: ‖ u ‖= sup{| u′(t) |, t ∈ [0,1]}.
That this is a Banach space can be easily seen by integration and the completeness

of C[0,1]. In order to prove our theorem we will need an understanding of compactness
in this Banach space. Here is an extension of the Ascoli theorem for C1

0 [0,1].

THEOREM 3. Suppose T ⊂C1
0 [0,1] is closed and has the following properties:

1) sup f∈T ‖ f ′ ‖0< ∞ , where by ‖ f ′ ‖0 we mean the supremum norm on C[0,1];
2) for all ε > 0, and for all t ∈ [0,1], there exists δ = δ (t,ε) such that

for any y ∈ [0,1] with | t− y |< δ we have | f ′(t)− f ′(y) |< ε

(i.e. { f ′ | f ∈ T} is equicontinuous.)

Then T is compact in C1
0 [0,1].

Proof.
a) Note that for all f ∈ T,

| f (t) |=
∣∣∣∣∫ t

0
f ′(x)dx

∣∣∣∣ �
∫ t

0
| f ′(x) | dx � Y < ∞,

where Y = sup f∈T ‖ f ′ ‖0, so T is uniformly bounded in C[0,1].
b) Let ε > 0 and t ∈ [0,1]. The existence of f ′(t) guarantees the existence of

δt such that | y− t |< δt implies∣∣∣∣ f (y)− f (t)
y− t

∣∣∣∣ < Y +1 or | f (y)− f (t) |< (Y +1) | y− t | .

Now choose δ = min{δt ,
ε

Y+1} and if y ∈ [0,1] with | t− y |< δ , then

| f (y)− f (t) |< (Y +1)
ε

Y +1
= ε.

Thus T is equicontinuous in C[0,1].
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c) Thus we have by the Ascoli theorem that both T and { f ′ | f ∈ T} are precom-
pact in C[0,1].

d) Let { fn}, n = 1,2,3 · ·· be a sequence in T. Note that the closures in C[0,1] of
{ fn} and { f ′n} are compact in C[0,1]. Thus by taking subsequences of subsequences
one can find a subsequence which we will relabel { fm} for which there are two func-
tions f and g in C[0,1] such that fm → g and f ′m → f uniformly.

We need to show that g′ = f .
Note that for all m , fm(t) =

∫ t
0 f ′m(x)dx � Y. Thus by the bounded convergence

theorem we know that∫ t

0
f ′m(x)dx →

∫ t

0
f (x)dx, for all t ∈ [0,1].

Since fm → g it follows that g′ = f as desired. The closure of T in C1
0 [0,1] guarantees

that g ∈ T.
Therefore every sequence in T has a convergent subsequence which implies that

T is compact in C1
0 [0,1]. �

2. Basic Lemmas

The proofs of the lemmas below are virtually the same as those found in [9] ex-
cept that u′′′′(t) is only almost everywhere equal to y(t) in lemma 1, u′′′′(t) is only
almost everywhere equal to 1 in lemma 3, u ∈ AC3([0,1],R) , y(t) ∈ L[0,1], and all in-
tegrals are understood to be Lebesgue integrals so expressions such as

∫ 1
s y(ν)dν will,

of course, be interpreted as Q(s) =
∫
[s,1] y for some function Q.

Thus, we will not repeat many of the details here.

LEMMA 1. Let y(t) ∈ L[0,1] . The solution to the problem⎧⎪⎨⎪⎩
u′′′′(t) = y(t) a.e. on (0,1),
u(0) = u′(0) = u′′(1) = u′′′(1) = 0,

u ∈ AC3([0,1],R),
(2)

is given by

u(t) =
∫ t

0

(∫ τ

0

{∫ 1

r

[∫ 1

s
y(ν)dν

]
ds

}
dr

)
dτ.

Moreover if y � 0 a.e., then

u � 0, u′ � 0, u′′ � 0, and u′′′ � 0, on [0,1].

Proof. That u is in the form above is simply a matter of repeated integration. Note
that

u′′′(1) =
∫ 1

t
y(ν)dν +u′′′(t)
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and since u′′′(1) = 0 we have that

u′′′(t) = −
∫ 1

t
y(ν)dν � 0 for t ∈ [0,1]. �

LEMMA 2. If y(t) ∈ L[0,1] , y � 0 a.e., then the solution to problem (2) above
satisfies:

u′(t) � t ‖ u′ ‖0, t ∈ [0,1].

LEMMA 3. The boundary value problem⎧⎪⎪⎨⎪⎪⎩
u′′′′(t) = 1 a.e. on (0,1),

u(0) = u′(0) = u′′(1) = u′′′(1) = 0,

u ∈ AC3([0,1],R),

(3)

has a solution

w0(t) =
t2

4
− t3

6
+

t4

24
.

Moreover w0(t) � 1
8 t , w′

0(t) � 1
2 t for t ∈ [0,1].

3. Proof of Theorem 1.

The proof follows that in [9], but must be altered in order to handle the set valued
case.

Define G : [0,1]×R×R→ P([0,∞)) by:

G(t,u, p) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F(t,u, p)+M, (t,u, p) ∈ [0,1]× [0,∞)× [0,∞),
F(t,u,0)+M, (t,u, p) ∈ [0,1]× [0,∞)× (−∞,0],
F(t,0, p)+M, (t,u, p) ∈ [0,1]× (−∞,0]× [0,∞),
F(t,0,0)+M, (t,u, p) ∈ [0,1]× (−∞,0]× (−∞,0],

where by F(t,u, p)+M, we mean {y+M | y ∈ F(t,u, p)} etc.
Clearly G is compact and convex valued because F is and F + M is merely a

translation. Also if | (u, p) |< r, then clearly | (0, p) |< r , | (u,0) |< r, and 0 =| (0,0) |<
r. Since

∫ 1
0 Mdt = M we see that G is integrably bounded because whenever | (u, p) |<

r, then for almost all t, | γ |� hr(t)+M for any γ ∈ G(t,u, p).
By considering a collection of cases one can also show that G is upper semicon-

tinuous. This is accomplished by proving the result for (t,u, p) on each coordinate axis
and then in each quadrant. Since each case is proven similarly I will only show the
argument for the case where u < 0 and p = 0.

First let t be such that F(t,u, p) is upper semicontinuous in (u, p) and let V be an
open subset such that G(t,u,0) = F(t,0,0)+M ⊂V. Construct an open ball, Br(u,0),
of radius r about (u,0). Choose r so that it satisfies the following properties:
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1) r <| u | ;
2) the ball of radius r about (0,0), Br(0,0), will have the property that: for each
(a,b) ∈ Br(0,0)∩ ([0,∞) x [0,∞)), F(t,a,b)+M ⊂V. This is possible because of the
upper semicontinuity of F and the fact that a translation of an open set is an open set.

The lower half of Br(u,0) , namely, {(x,y) ∈ Br(u,0) | y � 0} is mapped to
F(t,0,0) + M ⊂ V. If (x∗, p∗) lies in the upper portion, {(x,y) ∈ Br(u,0) | y > 0},
then it will map to F(t,0, p∗)+ M for some 0 < p∗ < r. Since (0, p∗) ∈ Br(0,0)∩
([0,∞) x [0,∞)) we have from property 2) above that F(t,0, p∗)+M ⊂V.

Thus we have found an open neighborhood of (u, p) which maps into V which is
what we need to prove that G is upper semicontinuous.

The other cases are similar.
Now let z(t) = λMw0(t) where w0(t) has been defined above.

LEMMA 4. Problem (1) has a positive solution u if u+ z = ũ is a solution of⎧⎪⎨⎪⎩
ũ′′′′ ∈ λG(t, ũ− z, ũ′ − z′), for almost all t ∈ (0,1),
ũ(0) = ũ′(0) = ũ′′(1) = ũ′′′(1) = 0,

ũ′(t) > z′(t) for t ∈ (0,1).
(4)

Proof. Since lemma 3 shows that w′′′′
0 (t) = 1 we have that z′′′′ = λM. Since

z(0) = z′(0) = z′′(1) = z′′′(1) = 0 we know that u(0) = u′(0) = u′′(1) = u′′′(1) = 0.
Thus u satisfies the boundary conditions for problem (1). Also we know that

since z′ is nonnegative on [0,1] and ũ′(t) > z′(t) , then u′ > 0 on (0,1) which means
that u = ũ− z is increasing and thus positive on (0,1] .

Now we have for almost all t ∈ (0,1) :

ũ′′′′ = u′′′′ + z′′′′ = u′′′′ + λM ∈ λG(t, ũ− z, ũ′ − z′).

Since ũ− z and ũ′ − z′ are positive,

λG(t, ũ− z, ũ′ − z′) = λF(t, ũ− z, ũ′ − z′)+ λM = λF(t,u,u′)+ λM.

Thus we have that u′′′′ = λF(t,u,u′) for almost all t ∈ (0,1) and u is a positive solution
of problem (1). �

Now let us consider the following cone, K, in C1
0 [0,1] ,

K = {u | u ∈C1
0 [0,1] , u(t) � 0,u′(t) � 0, and u′(t) �‖ u ‖ t for all t ∈ [0,1]} .

For v ∈ K define Av by

Av = {w ∈ AC3 | w is a solution to problem (2) with y(t) = f (t),
where f (t) ∈ G(t,v− z,v′ − z′) and f ∈ L[0,1]}.

Note that a fixed point of A would satisfy the first two requirements of a solution to
problem (4). That such integrable selections, f , exist is guaranteed by theorem 6.45 in
[11]. Thus by lemma 1 Av 
= ∅.
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Let us consider w ∈ Av with its associated integrable selection f .
Note that property 3) of theorem 1 and the definition of G guarantee that f � 0

a.e. Thus we can apply lemma 2 to show that w′(t) � t ‖ w ‖ for all t ∈ [0,1] and
therefore AK ⊂ K.

Now let λ ∈ (0,Λ) where Λ < min{ 4
M1

, 1
M } where M1 =

∫ 1
0 (h2

√
2(t)+M)dt. Let

Ω1 = {u ∈C1
0 [0,1],‖ u ‖< 2}.

Note that since u(t)=
∫ t
0 u′(x)dx, for u∈Ω1 we have that both | u(t) | and | u′(t) |

are less than 2 for all t and thus | (u(t),u′(t)) |< 2
√

2 for all t.
Choose u ∈ K∩∂Ω1 and w ∈ Au with its integrable selection f . Then we have:

w′(t) = λ
∫ t

0

(∫ 1

r

[∫ 1

s
f (x)dx

]
ds

)
dr

� λ
∫ t

0

(∫ 1

r

[∫ 1

s
(h2

√
2(x)+M)dx

]
ds

)
dr

� M1λ
∫ 1

0

(∫ 1

r
ds

)
dr =

λM1

2
< 2

since λ < 4
M1

. Thus we know that supw∈Au ‖ w ‖�‖ u ‖ for u ∈ K ∩∂Ω1.
Choose N > 0 so that

Nα
2

[β 2

2
(β −α)− β

2
(β 2−α2)+

1
6
(β 3−α3)

]
� 1.

Note that the quantity inside the brackets is positive for 0 < α < β < 1.
Choose R > 2 such that 1− λM

2R
� 1

2 and such that if h � 1
2 R α , then y

h � N for
all y ∈ G(t,x,h) with t ∈ F1 and x ∈ (−∞,+∞).

This is possible because of property (2) in the statement of theorem 1.
Now let Ω2 = {u ∈C1

0 [0,1],‖ u ‖< R} and let u ∈ K ∩∂Ω2. Using lemma 3 we
find that

z′(s) = λMw′
0(s) � λM

1
2
s � 1

2
λM

u′(s)
‖ u ‖ =

λM

2R
u′(s).

Thus following [9], we can see that for s ∈ [α,β ],

u′(s)− z′(s) � (1− λM

2R
)u′(s) � 1

2
u′(s) � 1

2
‖ u ‖ s � 1

2
Rα

since s � α and ‖ u ‖= R.
Suppose s ∈ F1. Then for all y ∈ G(s,u(s)− z(s),u′(s)− z′(s)) we have

y � N(u′(s)− z′(s)) � N
Rα
2

,

where we are letting h = u′(s)− z′(s).
Since F1 is of full measure in [α,β ] the previous statement holds almost every-

where in this interval.
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Let w ∈ Au. Then

w′(1) = λ
∫ 1

0

[∫ 1

r

(∫ 1

s
f (x)dx

)
ds

]
dr,

where f (x) is an integrable nonnegative selection of G(x,u(x)− z(x),u′(x)− z′(x)) as
before.

Note that ‖ w ‖� w′(1) � 0. Thus

w′(1) � λ
∫ β

α

[∫ 1

r

(∫ 1

s
f (x)dx

)
ds

]
dr

� λ
∫ β

α

[∫ β

r

(∫ β

s
f (x)dx

)
ds

]
dr,

where all integrals are again Lebesque integrals. Note that s,x and r will all be in
[α,β ] in this integral.

Since the above argument shows that f � N Rα
2 a.e. on F1 and F1 is of full measure

in [α,β ] we therefore have that

w′(1) � λNRα
2

∫ β

α

[∫ β

r

(∫ β

s
dx

)
ds

]
dr

=
λNRα

2

[β 2

2
(β −α)− β

2
(β 2−α2)+

1
6
(β 3−α3)

]
� R =‖ u ‖ .

Thus for u ∈ K ∩∂Ω2 we have ‖ w ‖�‖ u ‖ .
Thus in order to apply theorem 2 to find a fixed point it remains to show that A is a

completely continuous operator. To do so we will use theorem 3 which is our extension
of the Ascoli theorem.

Let us first apply A to a bounded set in C1
0 [0,1],

Consider the ball of radius ε centered about 0, Bε(0)⊂C1
0 [0,1] and let v∈ Bε(0).

Since v(t)=
∫ t
0 v′(x)dx it is clear that ‖ v ‖0< ε and ‖ v′ ‖0< ε. Thus | (v,v′) |< ε

√
2.

Let w ∈ Av. Then

w′(t) = λ
∫ t

0

[∫ 1

r

(∫ 1

s
f (x)dx

)
ds

]
dr,

where f (x) ∈ G(x,v(x)− z(x),v′(x)− z′(x)) a.e. as above.
Recall that

| z |= λM | w0 |� λM
(1

4
+

1
6

+
1
24

)
=

11
24

λM.

Similarly | z′ |� 7
6 λM. Thus we find that | (v−w,v′ −w′) |� √

2ε + 13
8 λM.

Let us call this last quantity N0. By assumption 1) in theorem 1, the integral
boundedness assumption, we have that f (x) � hN0(x)+M a.e. .
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We will let N1 =
∫ 1
0 (hN0(x)+M)dx. Then it follows that:

w′(t) � λ
∫ t

0

[∫ 1

r

(∫ 1

s
hN0(x)dx

)
ds

]
dr � λN1

∫ t

0

[∫ 1

r
ds

]
dr � λN1.

Thus we have that {w′ | w ∈ Av} is uniformly bounded satisfying condition 1) of theo-
rem 3.

Now consider t,t1 ∈ [0,1] with t1 < t, then

| w′(t)−w′(t1) |= λ
∣∣∣∣∫ t

t1

[∫ 1

r

(∫ 1

s
f (x)dx

)
ds

]
dr

∣∣∣∣ � λN1 | t − t1 |

which means that the equicontinuity condition of theorem 3 is satisfied.
Thus theorem 3 implies that A(Bε(0)) has compact closure in C1

0 [0,1] which
means that A is completely continuous.

We can apply theorem 2 to show that A has a fixed point û ∈ K∩ (Ω2\Ω1) which
implies that 2 �‖ û ‖� R .

Lemma 3 implies that w′
0(t) � 1

2 t < t. Using this and the facts that û ∈ K and
λ < 1

M , it is clear that

û′(t) �‖ û ‖ t � 2t > 2λMt > 2λMw′
0(t) = 2z′(t).

Thus letting u(t) = û(t)− z(t) we find that u′(t) = û′(t)− z′(t) � 1
2 û′(t) > 0 for

t ∈ (0,1) since û′(t)
2 � z′(t).

Also

u(t) = û(t)− z(t) =
∫ t

0
(û′(x)− z′(x))dx � 1

2

∫ t

0
û′(x)dx �

∫ t

0
z′(x)dx > 0

for t ∈ (0,1) so our solution, u, to problem (1) is positive.
This could also be obtained by using lemma 4. �
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