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Abstract. In this work, oscillatory behaviour of the solutions of a class of nonlinear first-order
neutral delay differential equations of the form

(E1) (x(t)+ p(t)x(t − τ))′ +q(t)H(x(t −σ)) = f (t)

and

(E2) (x(t)+ p(t)x(t − τ))′ +q(t)H(x(t −σ)) = 0

are studied under various ranges of p(t) . Sufficient conditions are obtained for existence of
bounded positive solutions of (E1) .

1. Introduction

For the last decade, the study of the asymptotic and oscillatory behavior of solu-
tions of neutral differential equations is a concerned of major area of research. This
is because of the development in science and technology and the challenges that the
new classes of such equations provide in these application areas. Equations involv-
ing delay, and those involving advance and a combination of both arise in the models
on lossless transmission lines in high speed computers which are used to interconnect
switching circuits. The construction of these models using delays is complemented by
the mathematical investigation of nonlinear equations. Moreover, the delay differen-
tial equations play an important role in modelling virtually every physical, technical,
or biological process, from celestial motion, to bridge design, to interactions between
neurons. There has been many investigations into the oscillation and nonoscillation of
first order nonlinear neutral delay differential equations (See for example, [1]-[5], [7],
[9], [11]-[25]). However, the study of oscillatory behaviour of solutions of (E1) has
received much less attention, which is due to mainly to the technical difficulties arising
in its analysis.
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In [1], Ahmed et al. have studied the oscillation properties of a linear differential
equations of the form

(E3) (r(t)(x(t)+ p(t)x(t− τ))′ +q(t)x(t−σ) = 0,

for the cases p(t) � −1, −1 � p(t) < 0 and p(t) ≡ p �= ±1 and established sufficient
conditions so that every solution of (E3) is oscillates. Their method has made the
proof unnecessarily complicated and applicable to only homogeneous equations. In
an another paper [3], Ahmed et al. considered the first order nonlinear neutral delay
differential equations with variable coefficients of the form

(E4) [r(t)(a(t)x(t)+ p(t)x(t− τ))]′ +q(t) f (x(t−σ)) = 0,

and obtained some new sufficient conditions for the oscillation of all solutions of (E4)
by employing the Riccati transformation. In [9], Graef et al. considered (E4) when
a(t) = 1 = r(t) and developed some sufficient conditions for the oscillation of all so-
lutions of (E4) . In [7], Elabbasy et al. have studied first-order nonlinear neutral delay
differential equation of the form

(E5) (x(t)−q(t)x(t− τ))]′ + f (t,x(τ(t))) = 0,

and established oscillation criteria for all solutions of (E5) for q(t) �= 1.
In [5], Das and Misra have made an attempt to study the oscillation properties of

a nonlinear differential equations of type

(E6) (x(t)− px(t− τ))′ +q(t)H(x(t−σ)) = f (t),

where 0 � p < 1, f (t) > 0, and H satisfies the generalized sublinear condition∫ ±k

0

dt
H(t)

< ∞,

for every positive constant k, and established necessary and sufficient conditions so
that every solution of (E6) either oscillates or tends to zero. Their method has made
the proof unnecessarily complicated and does not allow f ≡ 0 and H to be superlinear.
Thus their result is applicable to only strictly nonhomogeneous equations. In [18],
Parhi and Rath considered (E6) for p =±1 and established sufficient conditions under
which every solution of (E6) either oscillates or tends to zero or ±∞ as t → ∞ .

Hence in this work, the author have made an attempt to establish the sufficient
condition for oscillation (every solution oscillates) of a class of nonlinear neutral delay
differential equation

(x(t)+ p(t)x(t− τ))′ +q(t)H(x(t−σ)) = f (t), (1.1)

where

τ,σ ∈ R+ = (0,+∞), p ∈C([0,∞),R), q ∈ (R+,R+), f ∈C(R,R),
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and H satisfies
H ∈C(R,R) with uH(u) > 0 f or u �= 0.

The objective of this work to establish the sufficient conditions for oscillation of solu-
tions of (1.1) under various ranges of p(t). Its associated homogenous equation

(x(t)+ p(t)x(t− τ))′ +q(t)H(x(t−σ)) = 0, (1.2)

is also considered. Unlike the work in [1], [3], [5], [7], [9] and [18] an attempt is made
here to establish sufficient conditions under which every solution or every bounded so-
lution of (1.1) and (1.2) oscillates. Of course, the impact of forcing term is considered.
keeping in view of the influence of forcing function, this work is separated for forced
and unforced equations.

By a solution of (1.1) / (1.2) we understand a function x ∈ C([−ρ ,∞),R) such
that x(t)+ p(t)x(t − τ) is once continuously differentiable and (1.1) or (1.2) is satis-
fied for t � 0, where ρ = max{τ,σ} and sup{|x(t)| : t � t0} > 0 for every t0 � 0. A
solution of (1.1) / (1.2) is said to be oscillatory if it has arbitrarily large zeros. Other-
wise, it is called nonoscillatory.

2. Oscillation properties of Eq. (1.1)

In this section, sufficient conditions are obtained for oscillation of solutions of the
equation (1.1) . We need the following conditions for this work in the sequel.

(A1) there exists λ > 0 such that H(u)+H(v) � λH(u+ v), f or u,v > 0;

(A2) H(uv) = H(u)H(v), f or u,v ∈ R;

(A3) H(−u) = −H(u), f or u ∈ R;

(A4) there exists F ∈C(R,R) such that F(t) changes sign with

−∞ < liminf
t→∞

F(t) < 0 < limsup
t→∞

F(t) < ∞ and F ′(t) = f (t);

(A5) F+(t) = max{F(t),0}, F−(t) = max{−F(t),0} ;

(A6) there exists F ∈C(R,R) such that F(t) changes sign with

liminf
t→∞

F(t) = −∞, limsup
t→∞

F(t) = +∞ and F ′(t) = f (t).

REMARK 1. Assumption (A2) implies that (A3) Indeed, H(1)H(1) = H(1) and
H(1) > 0 imply that H(1) = 1. Further,

H(−1)H(−1) = H(1) = 1

implies that (H(1))2 = 1. Since H(−1) < 0, we conclude that H(−1) = −1. Hence,

H(−u) = H(−1)H(−u) = −H(u).

On the other hand, H(uv) = H(u)H(v) for u > 0 and v > 0 and H(−u) = −H(u)
imply that H(xy) = H(x)H(y) for every x,y ∈ R.
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REMARK 2. We may note that if x(t) is a solution of (1.1) , then y(t) = −x(t) is
also a solution of (1.1) provided that H satisfies (A2) or (A3).

THEOREM 1. Let p(t) � 0, t ∈ R+ . If (A2) and (A6) hold, then every solution
of the equation (1.1) is oscillatory.

Proof. Suppose for contrary that x(t) is a nonoscillatory solution of equation
(1.1). Then there exists t0 � ρ such that x(t) > 0 or x(t) < 0, for t � t0. Assume that
x(t) > 0 for t � t0. Setting

z(t) = x(t)+ p(t)x(t− τ), (2.1)

and

w(t) = z(t)−F(t), (2.2)

it follows from (1.1) that

w′(t) = −q(t)H(x(t−σ)) � 0 (2.3)

for t � t1 > t0 + σ . Consequently, w(t) is nonincreasing on [t2,∞), t2 > t1. Hence we
have w(t) < 0 or w(t) > 0 for t � t2. Since z(t) > 0, then w(t) < 0, for t � t2 implies
that liminf

t→∞
F(t) � 0, for t � t2, a contradiction to (A6) . Hence, w(t) > 0 for t � t2,

then lim
t→∞

w(t) exists.Writing

z(t) = w(t)+F(t),

we notice that

0 � liminf
t→∞

z(t) = liminf
t→∞

(w(t)+F(t))

� limsup
t→∞

w(t)+ liminf
t→∞

F(t)

= lim
t→∞

w(t)+ liminf
t→∞

F(t)

= −∞,

a contradiction due to (A6) .
If x(t) < 0, for t � t0, then we set y(t) = −x(t), for t � t0 in (1.1) and we find

(y(t)+ p(t)y(t− τ))′ +q(t)H(y(t−σ)) = f̃ (t), (2.4)

where f̃ (t) = − f (t) due to (A2). Let F̃(t) = −F(t). Then

−∞ < liminf
t→∞

F̃(t) < 0 < limsup
t→∞

F̃(t) < ∞

and F̃ ′(t) = f̃ (t) hold. Hence proceeding as above, we find a contradiction to (A6).
This completes the proof of the theorem.
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THEOREM 2. Let 0 � p(t) � p < ∞, t ∈ R+ . Assume that (A1), (A2), (A4) and
(A5) hold. Furthermore, assume that

(A7)
∫ ∞
T Q(t)H(F+(t −σ))dt = ∞, T > 0

and
(A8)

∫ ∞
T Q(t)H(F−(t −σ))dt = ∞, T > 0

hold, then conclusion of the Theorem 1 is true, where for t > τ ,

Q(t) = min{q(t),q(t− τ)}.

Proof. On the contrary, we proceed as in the proof of the Theorem 1 to obtain that
w(t) is monotonic on [t2,∞). Since z(t) > 0, then w(t) < 0, for t � t2 implies that
F(t) > 0, for t � t2, a contradiction to (A4). Hence, w(t) > 0 for t � t2. Ultimately,
z(t) > F(t) and hence z(t) > max{0,F(t)} = F+(t), for t � t2. Note that lim

t→∞
w(t)

exists. Due to (2.2), (1.1) becomes

0 = w′(t)+q(t)H(x(t−σ))+H(p)[w′(t − τ)+q(t− τ)H(x(t− τ −σ))]

for t � t2 and because of (A1) and (A2) , we find that

0 � w′(t)+H(p)w′(t− τ)+Q(t)[H(x(t−σ))+H(p x(t− τ −σ))]
� w′(t)+H(p)w′(t− τ)+ λQ(t)H(z(t−σ))

� w′(t)+H(p)w′(t− τ)+ λQ(t)H(F+(t −σ)), (2.5)

for t � t3 > t2 + σ . Integrating (2.5) from t3 to t(> t3) , we obtain

λ
∫ t

t3
Q(s)H(F+(t−σ))ds � −[w(s)+H(p)w(s− τ)]tt3 < ∞, as t → ∞,

a contradiction to (A7).
If x(t) < 0, for t � t0, then we set y(t) = −x(t) to obtain y(t) > 0 for t � t0 and

hence using equation (2.4), we obtain a contradiction due to (A8). This completes the
proof of the theorem.

THEOREM 3. Let −1 � p(t) � 0, t ∈ R+. Suppose that (A2), (A4) and (A5)
hold. If any one of the following conditions:

(A9)
∫ ∞
T q(t)H(F+(t−σ))dt = ∞, T > 0,

(A10)
∫ ∞
T q(t)H(F−(t−σ))dt = ∞, T > 0,

(A11)
∫ ∞
T q(t)H(F+(t + τ −σ))dt = ∞, T > 0,

and
(A12)

∫ ∞
T q(t)H(F−(t + τ −σ))dt = ∞, T > 0,

holds, then conclusion of the Theorem 1 is true.

Proof. On the contrary, we proceed as in the proof of the Theorem 1 to obtain that
w(t) is monotonic on [t2,∞). If w(t) < 0 for t � t2 , then z(t) < F(t) is a contradiction
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due to (A4) when z(t) > 0. Ultimately, z(t) < 0 and z(t) < F(t) for t � t3 > t2. Using
the fact z(t) < 0 for t � t3, it follows that

x(t) < −p(t)x(t− τ) � x(t− τ) � x(t −2τ) � x(t −3τ) � ... � x(t3),

that is, x(t) is bounded on [t3,∞). Consequently, lim
t→∞

w(t) exists. Clearly,

−z(t) > −F(t) implies that −z(t) > max{0,−F(t)} = F−(t).

Therefore, for t � t3

−x(t− τ) � p(t)x(t− τ) � z(t) < −F−(t)

gives rise to x(t−σ) > F−(t + τ −σ), t � t4 > t3 and hence (2.3) reduced to

w′(t)+q(t)H(F−(t + τ −σ)) � 0,

for t � t4. Integrating the last inequality from t4 to t(> t4) , we obtain∫ t

t4
q(s)H(F−(s+ τ −σ))ds � −[w(s)]tt4 < ∞, as t → ∞,

which contradicts (A12). Hence w(t) > 0, for t � t2. We note that z(t) > F(t) and
z(t) < 0 is not possible due to (A4). Therefore z(t) > 0 and z(t) � x(t), for t � t3 > t2.
In this case, lim

t→∞
w(t) exists. Because, it happens that z(t) > F+(t) for t � t3, then

(2.3) can be viewed as

w′(t)+q(t)H(F+(t−σ)) � 0.

Integrating the last inequality from t3 to t(> t3) , we obtain∫ t

t3
q(s)H(F+(s−σ))ds � −[w(s)]tt3 < ∞, as t → ∞,

a contradiction to (A9). The case x(t) < 0, for t � t0 is similar. Hence, the theorem is
proved.

THEOREM 4. Let −∞ < −p � p(t) � −1, t ∈ R+ and p > 0. If all conditions of
Theorem 3 are satisfied, then every bounded solution of (1.1) oscillates.

Proof. The proof of the theorem can be followed from the proof of the Theorem 3.
Hence the details are omitted.

REMARK 3. In Theorem 2-4, H could be linear, sublinear or superlinear.

THEOREM 5. Let −∞ < −p � p(t) � −1, t ∈ R+, p > 0 and τ � σ . Assume
that (A2), (A4), (A5), (A9) and (A12) hold. Furthermore, assume that

(A13)
H(u)
uβ � H(v)

vβ , u � v, β > 1,
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(A14)
∫ ∞
T

q(t)H(F+(t+τ−σ))
[F+(t+τ−σ)]β

dt = ∞, T > 0,

and
(A15)

∫ ∞
T

q(t)H(F−(t+τ−σ))
[F−(t+τ−σ)]β

dt = ∞, T > 0,

hold. Then conclusion of the Theorem 1 is true.

Proof. The proof of the theorem follows from the proof of Theorem 3 except the
case when w(t) < 0, z(t) < 0, for t � t3. Since z(t) � p(t)x(t− τ), then

w(t) = z(t)−F(t) � p(t)x(t− τ)−F(t), t � t3

implies that w(t)− p(t)x(t − τ) � −F(t), for t � t3. Clearly, w(t)− p(t)x(t− τ) < 0
is not possible due to (A4) and the fact that w(t)− p(t)x(t− τ) = x(t)−F(t) � −F(t)
if and only if x(t) > 0, for t � t3. Ultimately, w(t)− p(t)x(t− τ) > 0 and hence

w(t)− p(t)x(t− τ) � max{0,−F(t)} = F−(t),

that is,

w(t) � p(t)x(t− τ)+F−(t) � −px(t− τ)+F−(t) > −px(t− τ) (2.6)

for t � t4 > t3. Since w(t) is decreasing and τ � σ , then it follows that

−w(t) � −w(t + τ −σ) < px(t−σ), t � t4.

Therefore,

H(x(t−σ))
[−w(t)]β

� H(x(t−σ))
pβ xβ (t−σ)

, t � t4. (2.7)

Consequently,

− d
dt

[−w(t)]1−β = −(1−β ) [−w(t)]−β [−w(′t)
]

= (β −1) [−w(t)]−β q(t)H(x(t−σ))

� (β −1)q(t)
H(x(t−σ))
pβxβ (t−σ)

, t � t4

due to (2.3) and (2.7). We may note from (2.6) that 0 > w(t) > −px(t− τ)+F−(t)
implies that x(t−σ) > p−1F−(t + τ −σ) and hence

− d
dt

[−w(t)]1−β � (β −1) q(t)
H(p−1F−(t + τ −σ))
pβ [p−1F−(t + τ −σ)]β

, (2.8)

for t � t4 due to (A13). Integrating (2.8) from t4 to t(> t4) , we get

(β −1)H(p−1)
∫ t

t4
q(s)

H(F−(s+ τ −σ))
[F−(s+ τ −σ)]β

ds � −
[
−w(s)1−β

]t

t4
< ∞, as t → ∞,

due to (A2) , a contradiction to (A14).
The case x(t) < 0 for t � t0 can similarly be dealt with. Hence the theorem is

proved.
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REMARK 4. It seems that the solution in Theorem 4 is bounded which makes
equation (1.1) oscillatory. However, Theorem 5 holds for any solution. The conditions
(A9) - (A12) and (A14), (A15) are not comparable and hence Theorem 4 and Theorem
5 are different.

EXAMPLE 1. Consider

(x(t)+ x(t− π
2

))′ + x(t− π
2

) = sin t. (2.9)

Here p(t) = 1, Q(t) ≡ 1, f (t) = sin t. If we set F(t) = − cos t, then F ′(t) = f (t),

F+(t) =

{
− cos t, 2nπ + π

2 � t � 2nπ + 3π
2

0, otherwise,

and

F−(t) =

{
cos t, 2nπ + 3π

2 � t � 2nπ + 5π
2

0, otherwise.

Therefore

F+(t − π
2

) =

{
− sin t, 2nπ + π � t � 2nπ +2 π
0, otherwise,

and

F−(t − π
2

) =

{
sin t, 2nπ +2 π � t � 2nπ +3 π
0, otherwise.

For n = 0,1,2..., we get∫ ∞

π
2

Q(t)F+(t − π
2

)dt =
∞

∑
n=0

∫ 2nπ+2 π

2nπ+π
[− sin t]dt

=
∞

∑
n=0

[cos t]2nπ+2 π
2nπ+π = +∞.

Clearly, (A1), (A2), (A4), (A5), and (A8) are satisfied. Hence, by Theorem 2, every
solution of (2.9) is oscillatory. Thus, in particular, x(t) = sin t is an oscillatory solution
of the equation (2.9).

EXAMPLE 2. Consider

(x(t)− x(t−π))′+ x(t− π
2

) = cos t. (2.10)

Here p(t) = −1, q(t) ≡ 1, f (t) = cos t. If we set F(t) = sin t, then F ′(t) = f (t),

F+(t) =

{
sin t, 2nπ � t � 2nπ + π
0, otherwise,
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and

F−(t) =

{
− sin t, 2nπ + π � t � 2nπ +2π
0, otherwise.

Therefore

F+(t− π
2

) =

{
− cos t, 2nπ + π

2 � t � 2nπ + 3π
2

0, otherwise,

and

F−(t − π
2

) =

{
cos t, 2nπ + 3π

2 � t � 2nπ + 5π
2

0, otherwise.

Also

F+(t +
π
2

) =

{
cos t, 2nπ − π

2 � t � 2nπ + π
2

0, otherwise,

and

F−(t +
π
2

) =

{
− cos t, 2nπ + π

2 � t � 2nπ + 3π
2

0, otherwise.

For n = 0,1,2..., we get∫ ∞

π
2

q(t)F+(t− π
2

)dt =
∞

∑
n=0

∫ 2nπ+ 3π
2

2nπ+ π
2

[− cos t]dt

= −
∞

∑
n=0

[sin t]2nπ+ 3π
2

2nπ+ π
2

= +∞.

and ∫ ∞

π
2

q(t)F+(t +
π
2

)dt =
∞

∑
n=0

∫ 2nπ+ π
2

2nπ− π
2

[ cos t]dt

=
∞

∑
n=0

[sin t]2nπ+ π
2

2nπ− π
2

= +∞.

Clearly, (A2), (A4), (A5), (A10) and (A12) are hold true. Hence, by Theorem 3,
every solution of (2.10) is oscillatory. Thus, in particular, x(t) = sin t is an oscillatory
solution of the equation (2.10).

EXAMPLE 3. Consider

(x(t)−2x(t−π))′ + x(t− π
2

) = −2sin t. (2.11)

Here p(t) =−2, q(t)≡ 1, f (t) =−2sin t. If we set F(t) = 2cos t, then F ′(t) = f (t),

F−(t) =

{
−2cos t, 2nπ + π

2 � t � 2nπ + 3π
2

0, otherwise.
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and

F+(t) =

{
2cos t, 2nπ + 3π

2 � t � 2nπ + 5π
2

0, otherwise,

Clearly, all the assumptions of Theorem 3 are satisfied. Hence, by Theorem 4, every
bounded solution of (2.11) is oscillatory. Thus, in particular, x(t)= cos t is an bounded
oscillatory solution of the equation (2.11).

EXAMPLE 4. Consider

(x(t)+ p(t)x(t−π))′+q(t)x3(t− π
2

) = cos t, (2.12)

where p(t) = − 3
2 , q(t) = 5

2 , H(x) = x3 and f (t) = cos t. If we set F(t) = sin t, then
F ′(t) = f (t). Clearly all the assumptions of the Theorem 5 are hold true for β = 2.
Hence by Theorem 5, every solution of the equation (2.12) oscillates.

3. Oscillation properties of Eq. (1.2)

This section deals with the oscillatory behaviour of solutions of equation (1.2).

THEOREM 6. Let 0 � p(t) � p < ∞, t ∈ R+ and τ � σ . Assume that (A1) and
(A2) hold. Furthermore, assume that

(A16) H is sublinear and
±c∫
0

dt
H(t) < ∞, c > 0

and

(A17)
∞∫
0

Q(t)dt = ∞

hold, where Q(t) is defined as in Theorem 2. Then every solution of the equation (1.2)
is oscillatory.

Proof. Let x(t) be nonoscillatory solution of equation (1.2) such that x(t) > 0 for
t � t0. Setting as in (2.1) then (1.2) can be written as

z′(t) = −q(t)H(x(t−σ)) � 0 (3.1)

for t � t1 > t0 +σ . Consequently, z(t) is nonincreasing on [t2,∞), t2 > t1. Since z(t) >
0 for t2 > t1. Due to (3.1), (1.2) becomes

0 = z′(t)+q(t)H(x(t−σ))+H(p)[z′(t− τ)+q(t− τ)H(x(t− τ −σ))]

for t � t3 = max{t2,τ + σ} and because of (A1) and (A2) , we find that

0 � z′(t)+H(p)z′(t − τ)+Q(t)[H(x(t−σ))+H(p x(t− τ −σ))]
� z′(t)+H(p)z′(t − τ)+ λQ(t)H(z(t−σ)).
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Consequently, there exists t4 > t3 such that

z′(t)
H(z(t −σ))

+H(p)
z′(t − τ)

H(z(t−σ))
+ λQ(t) < 0, (3.2)

Because of z(t) is non-increasing on [t4,∞) and τ � σ , the inequalities in (3.2) be-
come

z′(t)
H(z(t))

+H(p)
z′(t− τ)

H(z(t− τ))
+ λQ(t) < 0.

Note that lim
t→∞

z(t) exists. Integrating the last inequality from t4 to t , we get

t∫
t4

z′(s)
H(z(s))

ds+H(p)
t∫

t4

z′(s− τ)
H(z(s− τ))

ds+ λ
t∫

t4

Q(s)ds < 0,

that is

λ
t∫

t4

Q(s)ds < −

⎡⎢⎣ z(t)∫
z(t4)

dy
H(y)

+H(p)

z(t−τ)∫
z(t4−τ)

dy
H(y)

⎤⎥⎦ < ∞, as t → ∞,

due to (A16), a contradiction to (A17).
If x(t) < 0, for t � t0, then we set y(t) = −x(t), for t � t0 in (1.1) and we find

(y(t)+ p(t)y(t− τ))′ +q(t)H(y(t−σ)) = 0,

then proceeding as above, we find a same contradiction. This completes the proof of
the theorem.

THEOREM 7. Let −∞ < −p � p(t) � −1, t ∈ R+, p > 0 and τ > σ . Assume
that (A2) hold. If

(A18) H is superlinear and
±∞∫
0

dt
H(t) < ∞

and

(A19)
∞∫
0

q(t)dt = ∞

hold, then also conclusion of the Theorem 6 is true.

Proof. On the contrary, we proceed as in the proof of the Theorem 6 to obtain z(t)
is monotonic on [t2,∞) . We claim that z(t) < 0, for t � t2 . If not, let z(t) � 0, for
t � t2 > t1 . Consequently,

x(t) � −p(t)x(t− τ) � x(t− τ) � x(t −2τ) � x(t−3τ) � ... � x(t2),

implies that, x(t) is bounded from below by m > 0 for t � t2 . Integrating (3.1) from
t2 to t(> t2) , we obtain

z(t)− z(t2)+
t∫

t2

q(s)H(x(s−σ))ds = 0,
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that is,

z(t)− z(t2)+H(m)
t∫

t2

q(s)ds < 0.

Therefore,

z(t) < z(t2)−H(m)
t∫

t2

q(s)ds →−∞ as t → ∞,

a contradiction to the fact that z(t) > 0 on [t2,∞) . So our claim holds. From (2.1) , it
follows that z(t + τ −σ) > p(t + τ −σ)x(t−σ) . Hence, (3.1) becomes

z′(t)+
q(t)

H(−p)
H(z(t + τ −σ)) � 0, (3.3)

due to (A2) . Because z is decreasing on [t2,∞) , then

z′(t)+
q(t)

H(−p)
H(z(t)) � 0.

Integrating the last inequality from t2 to t(> t1) , we get

t∫
t2

z′(s)
H(z(s))

ds+
1

H(−p)

t∫
t2

q(s)ds � 0,

that is,
t∫

t2

q(s)ds � −H(−p)
∫ z(t)

z(t2)

dy
H(y)

< ∞, as t → ∞,

due to (A18), a contradiction to (A19). The case x(t) < 0 is similar. Hence the theorem
is proved.

THEOREM 8. Let −∞ < −p � p(t) � −1, t ∈ R+ and p > 0 . Assume that (A2)
and (A19) hold. Then every bounded solutions of (1.2) are oscillatory.

Proof. Proceeding as in the proof of Theorem 7, we have that z(t) < 0, for t � t2 .
Hence the inequality (3.3) holds. Because z is decreasing, there exist t3 > t2 and k > 0
such that z(t) � −k , for t � t3 . Therefore, the inequality (3.3) can be viewed as

z′(t)+
H(−k)
H(−p)

q(t) < 0, (3.4)

for t � t3 . Integrating (3.4) from t3 to t(> t3) , we obtain

H(−k)
H(−p)

t∫
t3

q(s)ds < − [z(s)]tt3
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Since x(t) is bounded, then z(t) is bounded and hence for t → ∞ the last inequality
becomes

H(−k)
H(−p)

∞∫
t3

q(s)ds < ∞,

a contradiction to (A19) . the case x(t) < 0 is similar dealt with. Hence the proof of the
theorem is completed.

REMARK 5. Theorem 8 and Theorem 7 are different in their own rights, espe-
cially due to H . We note that Theorem 7 is restricted to superlinear H but in Theorem
8, H could be linear, sublinear or superlinear.

THEOREM 9. Let −1 <−p � p(t) � 0, t ∈R+, p > 0 and τ > σ . If (A1) , (A16)
and (A19) hold, then also conclusion of the Theorem 6 is true.

Proof. Proceeding as in Theorem 6, we may note that z(t) is monotonic on [t2,∞) .
Hence there exists t3 > t2 such that z(t) > 0 or z(t) < 0. Let z(t) > 0 for t3 > t2 . From
(2.1) , it follows that z(t) � x(t) on [t3,∞) . Consequently, (3.1) becomes

z′(t)+q(t)H(z(t−σ)) < 0,

that is,

z′(t)
H(z(t))

+q(t) < 0,

Note that lim
t→∞

z(t) exists. Integrating the last inequality from t3 to t , we get

t∫
t3

q(s)ds < −
z(t)∫

z(t3)

dy
H(y)

< ∞, as t → ∞,

due to (A16), a contradiction to (A19). Hence z(t) < 0, for t3 > t2. Proceedings as
above proof of the Theorem 3, we obtain x(t) is bounded on [t3,∞) . The rest of the
theorem follows from the Theorem 8. This completes the proof of the theorem.

4. Existence of positive solution

In this section, necessary conditions are obtained to show that equation (1.1) ad-
mits a positive bounded solution.

THEOREM 10. Let H be Lipschitzian on the interval of the form [a,b], 0 < a <
b < ∞. Suppose that f (t) satisfies (A4) . If p(t) is bounded and∫ ∞

0
q(t)dt < ∞,

then the equation (1.1) admits a positive bounded solution.
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Proof. The proof of the theorem is divided accordingly with respect to different
ranges of p(t).

(i) Let 0 � p(t) � p1 < 1. It is possible to find t1 > 0 such that∫ ∞

t1
q(s)ds <

1− p1

5K
,

where K = max{K1,H(1)}, K1 is the Lipschitz constant on [ 1−p1
10 ,1]. Let F be such

that − 1−p1
10 � F(t) � 1−p1

10 for t � t2. For t3 > max{t1,t2}, we set Y = BC([t3,∞),R),
the space of real valued bounded continuous functions on [t3,∞). Clearly, Y is a Banach
space with respect to supremum norm defined by

||y|| = sup{|y(t)| : t � t3}.
Let’s define

S =
{

u ∈Y :
1− p1

10
� u(t) � 1, t � t3

}
.

Clearly, S is a closed and convex subspace of Y. Let T : S → S be defined by

Tx(t) =

⎧⎪⎨⎪⎩
Tx(t3 + ρ), t ∈ [t3,t3 + ρ ]

−p(t)x(t− τ)+ 1+4p1
5 +F(t)+

∫ ∞
t q(s)H(x(s−σ))ds, t � t3 + ρ .

For every x ∈ S,

Tx(t) � 1− p1

10
+

1+4p1

5
+H(1)

[∫ ∞

t
q(s)ds

]
<

1− p1

10
+

1+4p1

5
+

1− p1

5
=

1+ p1

2
< 1

and

Tx(t) � −p(t)x(t− τ)+
1+4p1

5
+F(t) � −p1 +

1+4p1

5
− 1− p1

10
=

1− p1

10

implies that Tx ∈ S. Now, for y1,y2 ∈ S

|Ty1(t)−Ty2(t)| � |p(t)||y1(t− τ)− y2(t− τ)|
+K1

∫ ∞

t
q(s)|y1(s−σ)− y2(s−σ)|ds

� p1||y1− y2||+K1||y1 − y2||
[∫ ∞

t
q(s)ds

]
<

(
p1 +

1− p1

5

)
||y1 − y2||

implies that
||Ty1−Ty2|| � μ ||y1− y2||,



Differ. Equ. Appl. 8, No. 1 (2016), 33–51. 47

that is, T is a contraction mapping, where μ = 1+4p1
5 < 1. Since S is complete and T

is a contraction on S, then by the Banach’s fixed point theorem T has a unique fixed

point on
[

1−p1
10 ,1

]
. Hence Tx = x and

x(t) =

⎧⎪⎨⎪⎩
x(t3 + ρ), t ∈ [t3,t3 + ρ ]

−p(t)x(t− τ)+ 1+4p1
5 +F(t)+

∫ ∞
t q(s)H(x(s−σ))ds t � t3 + ρ

is a bounded positive solution of the equation (1.1) on
[

1−p1
10 ,1

]
.

(ii) Let 1 < p2 � p(t) � p3 < ∞ and p2
2 > p3. It is possible to find a t1 > 0 such

that ∫ ∞

t1
q(t)dt <

p2−1
2K

,

where K = max{K1,K2}, K1 is the Lipschitz constant of H on [α,β ] and K2 = H(β )
such that

α =
2γ(p2

2− p3)− p3(p2 + p2
2−2)

2p2
2p3

β =
p2−1+ γ

p2
, γ >

p3(p2 + p2
2−2)

2(p2
2− p3)

> 0.

Let F(t) be such that − 1
2(p2 − 1) � F(t) � 1

2 (p2 − 1), for t � t2 > t1. Let Y =
BC([t2,∞),R) be the space of real valued bounded continuous functions on [t2,∞).
Clearly, Y is a Banach space with respect to supremum norm defined by

||y|| = sup{|y(t)| : t � t2}.
Define

S = {u ∈Y : α � u(t) � β , t � t2} .

It is easy to verify that S is a closed convex subspace of Y. Let T : S → S be such that

Tx(t) =

⎧⎪⎨⎪⎩
Tx(t2 + ρ), t ∈ [t2,t2 + ρ ]

− x(t+τ)
p(t+τ) + F(t+τ)

p(t+τ) + γ
p(t+τ) + 1

p(t+τ)

[∫ ∞
t+τ q(s)H(x(s−σ))ds

]
, t � t2 + ρ .

For every x ∈ S,

Tx(t) � H(β )
p(t + τ)

[∫ ∞

t+τ
q(s)ds

]
+

p2−1
2p(t + τ)

+
γ

p(t + τ)

� 1
p2

[
2(p2−1)

2
+ γ

]
= β

and

Tx(t) � − x(t + τ)
p(t + τ)

+
F(t + τ)
p(t + τ)

+
γ

p(t + τ)
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> − β
p2

− p2−1
2 p2

+
γ
p3

= − p2−1+ γ
p2

2 − p2−1
2p2

+
γ
p3

=
2γ(p2

2− p3)− p3(p2−2+ p2
2)

2p2
2p3

= α

implies that Tx ∈ S. For y1,y2 ∈ S

|Ty1(t)−Ty2(t)| � 1
|p(t + τ)| |y1(t + τ)− y2(t + τ)|

+
H(β )

|p(t + τ)|
[∫ ∞

t+τ
q(s)|y1(s−σ)− y2(s−σ)|ds

]
� 1

p2
||y1− y2||+ H(β )

p2
||y1 − y2||

[∫ ∞

t+τ
q(s)ds

]
<

(
1
p2

+
p2 −1
2p2

)
||y1 − y2||,

that is,
||Ty1−Ty2|| � μ ||y1− y2||

implies that T is a contraction, where μ = p2+1
2p2

< 1. Hence by the Banach’s fixed
point theorem T has a unique fixed point x(t) in the interval [α,β ]. In fact, x(t) is the
positive bounded solution of equation (1.1).

(iii) Let −1 < −p4 � p(t) � 0, p4 > 0. Then there exist t1,t2 > 0 such that∫ ∞

t1
q(t)dt <

1− p4

10H(1)
, t � t1

and − 1−p4
20 � F(t) < 1−p4

20 , for t � t2. For t3 > max{t1,t2}, we let Y = BC([t3,∞),R),
be the space of all real valued bounded continuous functions defined on [t3,∞). Clearly,
Y is a Banach space with respect to supremum norm defined by

||y|| = sup{|y(t)| : t � t3}.

Let L = {y ∈Y : y(t) � 0, t � t3} . Then, Y is a partially ordered Banach pace (see for
e.g [6],p.30). For u,v ∈ Y, we define u � v if and only if u− v ∈ L. Let

S =
{

x ∈Y :
1− p4

20
� x(t) � 1, t � t3

}
.

If x0(t) = 1−p4
20 , then x0 ∈ S and x0 = glb S. Further, if Φ ⊂ S∗ ⊂ S, then

S∗ =
{

x ∈ Y : l1 � x(t) � l2,
1− p4

20
� l1, l2 � 1

}
.
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Let v0(t) = l′2, t � t3, where l′2 = sup{l2 : 1−p4
20 � l2 � 1}. Then v0 ∈ S and v0 = lub S∗.

For t4 = t3 + ρ , define T : S → S by

Tx(t) =

⎧⎪⎨⎪⎩
Tx(t4), t ∈ [t3,t4]

−p(t)x(t− τ)+ 1−p4
10 +F(t)+

∫ ∞
t q(s)H(x(s−σ))ds, t � t4.

For every x ∈ S,

Tx(t) � p4 +H(1)
[∫ ∞

t
q(s)ds

]
+

1− p4

20
+

1− p4

10
<

1+3p4

4
< 1

and

Tx(t) � 1− p4

10
+F(t) >

1− p4

10
− 1− p4

20
=

1− p4

20

implies that Tx ∈ S. Now, for x1,x2 ∈ S, it is easy to verify that x1 � x2 implies that
Tx1 � Tx2. Hence by Knaster-Tarski fixed point theorem (see for e.g [8], Theorem
1.7.3), T has a unique fixed point x(t) in the interval [ 1−p4

20 ,1]. In fact, x(t) is a positive
bounded solution of the equation (1.1) .

In the other ranges of p(t), the above procedure is same except the procedure of
(iii). Hence without details, the necessary informations are given below :

(iv) Let −∞ < −p5 � p(t) � −p6 < −1, p5, p6 > 0. Choose t1 > 0 sufficiently
large such that ∫ ∞

t1
q(t)dt <

p6 −1
2K

, −1
2
(p6−1) � F(t) � 1

2
(p6 −1),

where K = max{K1,K2}, K1 is the Lipschitz constant of H on [α,β ] and K2 = H(β )
such that

α =
γ p6− p5(p6−1)

p5p6
, β =

1
2

+
γ

p6 −1
,

for

γ >
p5(p6 −1)

p6
> 0.

We set
S = {x ∈Y : α � x(t) � β , t � t0}

and

Tx(t)=

⎧⎪⎨⎪⎩
Tx(t2 + ρ), t ∈ [t2,t2 + ρ ]

− x(t+τ)
p(t+τ) + F(t+τ)

p(t+τ) − γ
p(t+τ) + 1

p(t+τ)

[∫ ∞
t+τ q(s)H(x(s−σ))ds

]
, t � t2 + ρ .

Therefore T is a contraction with a contraction constant 1+p6
2p6

.
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(v) Let p(t)≡+1. Let 0 < p7 < 1 be such that p7 �= 1
2 . Choose t0 > 0 sufficiently

large such that ∫ ∞

t1
q(t)dt <

1−2p7

20K
and − 1−2p7

40
� F(t) � 1−2p7

20
,

where K = max{K1,H(p7)}, K1 is the Lipschitz constant of H on
[

1−42p7
40 , p7

]
. We

set

S =
{

x ∈Y :
7−42p7

40
� x(t) � p7, t � t0

}
and

Tx(t) =

⎧⎪⎨⎪⎩
Tx(t0 + ρ), t ∈ [t0,t0 + ρ ]

−x(t− τ)+ 2−p7
10 +F(t)+

∫ ∞
t q(s)H(x(s−σ))ds, t � t4.

Therefore T is a contraction with a contraction constant 21−2p7
20 .

(vi) When p(t) ≡ −1 for all t . Let −1 < p7 < 0 be such that p7 �= − 1
2 . If we

take
∫ ∞
t1

q(t)dt < 1+2p7
10K and replace −p7 in the place of p7 , in the earlier settings in

(v), then we have T is a contraction with a contraction constant 11+2 p7
10

This completes the proof of the theorem.

5. Summary

It is worth observation that both unforced and forced equations (1.1) and (1.2) are
studied keeping in view of assumptions (A1) - (A19). The results concerning equations
(1.1) and (1.2) are completely oscillatory due to the analysis corporated here. Of
course the forcing term can be considered to (1.1) .
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