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INEQUALITIES FOR ZEROS OF SOLUTIONS TO

SECOND ORDER ODE WITH ONE SINGULAR POINT

MICHAEL GIL’

Abstract. We consider the equation y′′ +P(z)y′ +Q(z)y = 0 (z ∈ C) , where

P(z) =
nP

∑
k=0

pkz
k−1 and Q(z) =

nQ

∑
k=0

qkz
k−2

with real coefficients pk,qj (k = 0, ...,nP ; j = 0, ...,nQ ;nP ,nQ < ∞) .
Let zk(y),k = 1,2, ... be the nontrivial zeros of a solution y(z) to that equation. Estimates

for the sums ∑ j
k=1

1
|zk(y)| ( j = 1,2, ...) are derived. Applications of the obtained estimates to the

counting function of the zeros of solutions are also discussed.
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