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Abstract. We consider the equation y′′ +P(z)y′ +Q(z)y = 0 (z ∈ C) , where

P(z) =
nP

∑
k=0

pkz
k−1 and Q(z) =

nQ

∑
k=0

qkz
k−2

with real coefficients pk,qj (k = 0, ...,nP ; j = 0, ...,nQ ;nP ,nQ < ∞) .
Let zk(y),k = 1,2, ... be the nontrivial zeros of a solution y(z) to that equation. Estimates

for the sums ∑ j
k=1

1
|zk(y)| ( j = 1,2, ...) are derived. Applications of the obtained estimates to the

counting function of the zeros of solutions are also discussed.

1. Introduction and statement of the main result

In the present paper, we investigate the complex zeros of solutions to the equation

y′′ +P(z)y′ +Q(z)y = 0 (z ∈ C), (1.1)

where

P(z) =
nP

∑
k=0

pkz
k−1 and Q(z) =

nQ

∑
k=0

qkz
k−2 (1.2)

with real coefficients pk,q j (k = 0, ...,nP; j = 0, ...,nQ;nP,nQ < ∞) . That is, equa-
tion (1.1) has one regular singular point at z = 0. It is possible that either p0 = 0 or
q0 = 0. If both p0 and q0 are zero, then the equation does not have a singular point. It
is well-known that the zeros of solutions of ODE play an essential role in mathematical
physics, cf. [11]. The literature devoted to the zeros of solutions of equations without
singular points is very rich. Here the main tool is the Nevanlinna theory. An excel-
lent exposition of the Nevanlinna theory and its applications to differential equations is
given in the book [13]. In connection with the recent results see the interesting papers
[1, 2, 3, 14, 15, 18]. In the above cited works mainly the asymptotic distributions of
zeros and counting functions of zeros are investigated. At the same time, bounds for
the zeros of solutions are very important in various applications. But to the best of our
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knowledge, they have been investigated considerably less than the asymptotic distribu-
tions. In the paper [7] the author has established bounds for the sums of the zeros of
solutions for the second order equations with polynomial coefficients. In the interest-
ing paper [4], some results from [7] have been extended to the equation u(m) = P(z)u ,
where P is a polynomial and m > 2. In [9] the main result from [7] is extended to the
second order ODE with non-polynomial coefficients. In the paper [10] the results of
the paper [7] have been extended to nonhomogeneous ODE. Perturbations of the zeros
of solutions to second order differential equations with polynomial coefficients were
investigated in the paper [9]. Certainly, we could not survey the whole subject here and
refer the reader to the above listed publications and references given therein. It should
be noted that, to the best of our knowledge, bounds for the sums of the complex zeros of
solutions to ODE with singular points have not been obtained in the available literature.
In the present paper we establish such bounds for solutions to equation (1.1). Some
applications of these bounds are also discussed.

It is assumed that
(1− p0)2 > 4q0. (1.3)

That is, the indicial equation

x(x−1)+ p0x+q0 = 0 (1.4)

has real different roots. Below zk( f ) are the zeros of a function f taken with the
multiplicities are enumerated in order of increasing modulus: |zk( f )| � |zk+1( f )| . If
f (0) = 0, then we enumerate the nontrivial zeros, only: zk( f ) �= 0 (k = 1,2, ...) . De-
note

η = (1− p0)/2+[(1− p0)2/4−q0]1/2, ρ = max{nP,nQ}
and

B0 =
√

e

[(
2+

1
2η + p0

)
|η |

nP

∑
j=1

|p j|+ 1
2η + p0

nQ

∑
k=1

|qk|
]

.

Now we are in a position to formulate our main result.

THEOREM 1. Under condition (1.3), the non-trivial zeros zk(y) of any solution y
of (1.1) satisfy the inequalities

j

∑
k=1

1
|zk(y)| �

√
2B1/ρ

0

[
C0 +

j

∑
k=1

1

(k+1)1/ρ

]
( j = 1,2, ...),

where

C0 := exp

[
1
2ρ

+
(

2+
1

2η + p0

)
|η |

nP

∑
j=1

|p j| (ρ − j)
jρ

+
1

2η + p0

nQ

∑
k=1

|qk| (ρ − k)
kρ

]
.

The proof of this theorem is presented in the next section.
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2. Proof of Theorem 1

Applying the method of Frobenius, cf. [12, Chapter 16, p. 399], we seek a solution
in the form

y(z) = zηv(z), (2.1)

where

v(z) =
∞

∑
k=0

vkz
k.

Besides, v0 �= 0 and vk can be found by the undefined coefficients method. Since the
origin is the unique regular singular point, the Taylor series of v absolutely converges
for all z ∈ C , [12, p. 399]. So v(z) is an entire function. Substitute (2.1) into (1.1) and
delete by zη . Then we obtain the equation

v′′ +
2η
z

v′ +
η(η −1)

z2 v+P(z)
(

η
z

v+ v′
)

+Q(z)v = 0.

Put P1(z) = P(z)− p0/z and Q1(z) = Q(z)−q0/z2 . Then

v′′ +
2η
z

v′ +
η(η −1)

z2 v+
(

P1(z)+
p0

z

)
(

η
z

v+ v′)+
(

Q1(z)+q0
η
z2

)
v = 0.

Due to the indicial equation we obtain

v′′ +(2η + p0)
v′

z
+P1(z)v′ +(

P1(z)η
z

+Q1(z))v = 0,

or

v′′ + ξ
v′

z
+P1(z)v′ +F(z)

v
z

= 0, (2.2)

where F(z) = P1(z)η +Q1(z)z is a polynomial, and

ξ := 2η + p0 = 1+[(1− p0)2 −4q0]1/2 > 1.

Furthermore, for a fixed t ∈ [0,2π) with z = reit we can write

d2v(z)
dr2 + ξ

dv(z)
rdr

+ eitP1(z)
dv(z)
dr

+ eit F(z)v(z)
r

= 0.

Take into account that

exp [−ξ
∫ r

s

dr1

r1
] = (s/r)ξ .

Then for a z0 = r0eit ∈ C with c1 = dv(z0)
dr we arrive at the equation

dv(z)
dr

+ c1(r0/r)ξ +
∫ r

r0
(s/r)ξ P1(seit)

dv(seit)
ds

ds+
∫ r

r0
(s/r)ξ F(seit)v(seit)

ds
s

= 0.
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Hence, letting r0 → 0, we get

dv(z)
dr

+
∫ r

0
(s/r)ξ P1(seit )

dv(seit)
ds

ds+
∫ r

0
(s/r)ξ F(seit)v(seit )

ds
s

= 0. (2.3)

Integrating this equation, we obtain

v(z)− c0 + J1(z)+ J2(z) = 0 (c0 = v(0)), (2.4)

where

J1(z) :=
∫ r

0

∫ τ

0
(s/τ)ξ P1(seit)

dv(seit)
ds

ds dτ,

and

J2(z) :=
∫ r

0

∫ τ

0
(s/τ)ξ F(seit)v(seit )

ds
s

dτ.

Let

J3(τ) :=
∫ τ

0
sξ P1(seit )

dv(seit)
ds

ds.

Integrating by parts, we can write

J3(τ) = τξ P1(τeit )v(τeit)−
∫ τ

0
(sξ P1(seit))′v(seit )ds.

Take into account that

|P1(z)| � P̂1(r) :=
nP

∑
k=1

|pk|rk−1, |zQ1(z)| � Q̂1(r) :=
nQ

∑
k=1

|qk|rk−1,

and |(sξ P1(seit))′| � (sξ P̂1(s))′,s � 0. Put Mf (r) = sup|z|�r | f (z)| for a function f (z) .
Then with w(τ) = Mv(τ) we have∣∣∣∣

∫ τ

0
(sξ P1(seit))′v(seit)ds

∣∣∣∣ � w(τ)P̂1(τ)τξ (τ > 0)

and, consequently, |J3(τ)| � 2w(τ)P̂1(τ)τξ . Therefore,

|J1(z)| = |
∫ r

0
J3(τ)τ−ξ dτ| � 2

∫ r

0
P̂1(τ)w(τ)dτ. (2.5)

Furthermore, |F(z)| � P̂1(r)|η |+ Q̂1(r)r and

|J2(z)| �
∫ r

0
w(τ)(P̂1(τ)|η |+ Q̂1(τ)τ)τ−ξ

∫ τ

0
sξ−1ds dτ

� 1
ξ

∫ r

0
w(τ)(P̂1(τ)|η |+ Q̂1(τ))dτ.

Thus, due to (2.4) and (2.5),

w(r) � |c0|+
∫ r

0
w(τ)[(2+

1
ξ

)P̂1(τ)|η |+ 1
ξ

Q̂1(τ)τ]dτ.
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Now the Gronwall lemma implies

w(r) � |c0|exp
[∫ r

0
[(2+

1
ξ

)P̂1(τ)|η |+ 1
ξ

Q̂1(τ)τ]dτ
]
.

We thus have proved

LEMMA 1. Any solution y of (1.1) can be defined by

y(z) = zηv(z), (2.6)

where v(z) is an entire function satisfying equation (2.2) and the inequality

Mv(r) � |v(0)|exp [
∫ r

0
[(2+

1
ξ

)P̂1(τ)|η |+ 1
ξ

Q̂1(τ)]dτ.

Furthermore, put

W0(r) :=
∫ r

0
[(2+

1
ξ

)P̂1(τ)|η |+ 1
ξ

Q̂1(τ)τ]dτ

= |η |(2+
1
ξ

)
nP

∑
k=1

|pk| r
k

k
+

1
ξ

nQ

∑
k=1

|qk| r
k

k
.

Recall the Young inequality ab � at/t +bs/s (a,b > 0; 1/s+1/t = 1; t > 1) . By that
inequality, with s = ρ/k , we have

rk � 1
t

+
rks

s
= 1− k

ρ
+ rρ k

ρ
.

Thus,

W0(r) � |η |(2+
1
ξ

)
nP

∑
k=1

|pk|(1/k−1/ρ + rρ/ρ)+
1
ξ

nQ

∑
k=1

|qk|(1/k−1/ρ + rρ/ρ)

= W1 +B1r
ρ ,

where

W1 := |η |(2+
1
ξ

)
nP

∑
k=1

|pk|(1/k−1/ρ)+
1
ξ

nQ

∑
k=1

|qk|(1/k−1/ρ)

and

B1 := |η |(2+
1
ξ

)
1
ρ

nP

∑
k=1

|pk|+ 1
ρξ

nQ

∑
k=1

|qk|.

Consequently, we arrive at

COROLLARY 1. A solution v of equation (2.2) satisfies the inequality

Mv(r) � |v(0)|eW1exp[B1r
ρ ]. (2.7)
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We need the following result proved in [10].

LEMMA 2. Let f (z) be an entire function satisfying f (0) = 1 and

Mf (r) � Df exp
[
Bf r

ρ f
]

(Df ,Bf = const > 0; ρ f � 1,r > 0). (2.8)

Then its zeros satisfy the inequalities

j

∑
k=1

1
|zk( f )| �

√
2(
√

eB f ρ f )1/ρ f

[
Df e

1/(2ρ f ) +
j

∑
k=1

1

(k+1)1/ρ f

]
( j = 1,2, ...).

Proof of Theorem 1: Due to Corollary 1 and the previous lemma we have

j

∑
k=1

1
|zk(v)| �

√
2(
√

eB1ρ)1/ρ

[
eW1+1/(2ρ) +

j

∑
k=1

1

(k+1)1/ρ

]
( j = 1,2, ...).

But
√

eB1ρ =
√

e

[
|η |(2+

1
ξ

)
nP

∑
k=1

|pk|+ 1
ξ

nQ

∑
k=1

|qk|
]

= B0

and

W1 +1/(2ρ) = (2+
1
ξ

)|η |
nP

∑
k=1

|pk|(1/k−1/ρ)+
1
ξ

nQ

∑
k=1

|qk|(1/k−1/ρ)+1/(2ρ)

= ln C0.

Now (2.6) implies the required result. �

3. Applications of Theorem 1

Again y(z) is a solution of (1.1). Since the nontrivial zeros of y(z) satisfy the
inequality |zk(y)| � |zk+1(y)| , Theorem 1 implies

j
|z j(y)| � β (B0,ρ)

[
C0 +

j

∑
k=1

1

(k+1)1/ρ

]
( j = 1,2, ...),

where β (B0,ρ) =
√

2B1/ρ
0 .

Take into account that

j

∑
k=1

(k+1)−1/ρ �
∫ j+1

1

dx

x1/ρ =
(1+ j)1−1/ρ −1

1−1/ρ
(ρ > 1) (3.1)

and denote by ν( f ,a) (a > 0) the counting function of the nontrivial zeros of f in the
disc |z| � a . We thus get
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COROLLARY 2. Let condition (1.3) hold. Then with ρ > 1 and the notation

θ j(B0,ρ) :=
j

β (B0,ρ)
(
C0 + (1+ j)1−1/ρ−1

1−1/ρ

) ,

the inequality |z j(y)| � θ j(B0,ρ) holds and thus ν(B0,a) � j for any positive a �
θ j(B0,ρ) ( j = 1,2, ...) .

The just obtained results asserts that in the disc |z|< θ1(B0,ρ) , y does not have nontriv-
ial zeros. Furthermore, put ϑ1 = β (B0,ρ)(C0 +2−1/ρ) and ϑk = β (B0,ρ)(k+1)−1/ρ

(k = 2,3, ...) . Then Theorem 1 and [6, Lemma 1.2.1] yield

COROLLARY 3. Let ψ(t) (0 � t < ∞) be a continuous convex scalar-valued func-
tion, such that ψ(0) = 0 and condition (1.3) hold. Then

j

∑
k=1

ψ(|zk(y)|−1) �
j

∑
k=1

ψ(ϑk) ( j = 1,2, ...).

In particular, for any p � 1 and j = 2,3, ... , we have

j

∑
k=1

1
|zk(y)|p �

j

∑
k=1

ϑ p
k and therefore

∞

∑
k=1

1
|zk(y)|p < ∞, provided p > ρ .

Acknowledgements. I am very grateful to the referee of this article for his (her)
really helpful remarks.

RE F ER EN C ES

[1] N. ANGHEL, Stieltjes-Calogero-Gil relations associated to entire functions of finite order, J. of
Mathem. Phys., 51, no. 5 (2010) 251–262.

[2] B. BELAIDI, Oscillation of fast growing solutions of linear differential equations in the unit disc, Acta
Univ. Sapientiae Mathematica, 2, no. 1 (2010), 25–38.

[3] T. B. CAO AND H. X. YI, On the complex oscillation theory of linear differential equations with
analytic coefficients in the unit disc, Acta Math. Sci., 28A (6) (2008), 1046–1057.

[4] T. B. CAO, LIU KAI AND XU HONG-YAN, Bounds for the sums of zeros of solutions of u(m) = P(z)u
where P is a polynomial. Electron. J. Qual. Theory Differ. Equ. no. 60, (2011), 10 pp.

[5] YU L. DALECKII AND M.G. KREIN, Stability of Solutions of Differential Equations in Banach Space,
Amer. Math. Soc., Providence, R. I. 1971.

[6] M.I. GIL’, Localization and Perturbation of Zeros of Entire Functions, CRC Press, Taylor and Francis
Group, New York, 2010.

[7] M.I. GIL’, Bounds for zeros of solutions of second order differential equations with polynomial coef-
ficients, Results Math., 59 (2011), 115–124.

[8] M.I. GIL’, Perturbation of zeros of solutions to second order differential equations with polynomial
coefficients, Acta Matematica Scientia, 32 (3), (2012), 1083–1092.

[9] M.I. GIL’, Sums of zeros of solutions to second order ODE with non-polynomial coefficients, Electron.
J. Diff. Equ., Vol. 2012 (2012), no. 107, 1–8.

[10] M.I. GIL’, Sums of zeros of solutions to non-homogeneous ODE with polynomial coefficients, J. Math.
Anal. Appl. 421, no. 2, (2015), 1917–1924.



76 MICHAEL GIL’

[11] E. HILLE, Lectures on Ordinary Differntial Equations, Addison Wesley Publiching Company, On-
tario, 1969.

[12] E.L. INCE, Ordinary Differential Equations, Dover Publ., New York, 1978.
[13] I. LAINE, Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter Berlin, 1993
[14] Z. LATREUCH, B. BELAIDI AND A. EL FARISSI, Complex oscillation of differential polynomials in

the unit disc, Periodica Mathematica Hungarica, 66 (1), (2013), 45–60.
[15] G.M. MUMINOV, On the zeros of solutions of the differential equation ω (2m) + p(z)ω = 0 . Demonstr.

Math., 35, no. 1 (2002), 41–48.
[16] F. PENG AND Z. X. CHEN, On the growth of solutions of some second-order differential equations, J.

Ineq. Appl., 2011 (2011), 1–9.
[17] J. TU AND Z. X. CHEN, Zeros of solutions of certain second order linear differential equation, J.

Math. Anal. Appl. 332, no. 1 (2007), 279–291.
[18] J. F. XU AND H. X. YI, Solutions of higher order linear differential equations in an angle, Appl.

Math. Letters, 22, no. 4 (2009), 484–489.

(Received July 31, 2015)

(Revised November 30, 2015)

Michael Gil’
Department of Mathematics

Ben Gurion University of the Negev
P.0. Box 653, Beer-Sheva 84105

Israel
e-mail: gilmi@bezeqint.net

Differential Equations & Applications
www.ele-math.com
dea@ele-math.com


