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Abstract. In this paper, the author presents some generalizations of a measure theoretic hybrid
fixed point theorem of Dhage for the monotone nondecreasing mappings in a partially ordered
metric space and then applies to a nonlinear functional integral equation for proving the exis-
tence as well as local ultimate attractivity of the comparable solutions defined on a unbounded
interval of real line. An algorithm is constructed and it is shown that the sequence of succes-
sive approximations of the considered integral equation converges monotonically to the solution
under weak partial Lipschitz and partial compactness type conditions.

1. Introduction

It is well-known that the measure theoretic hybridfixed point theorems of Dhage in
a partially ordered metric space are very much useful in nonlinear analysis for proving
the existence as well other numerical and qualitative aspects of the solutions of nonlin-
ear differential and integral equations. See for example, Dhage [5, 6, 7, 8, 9], Dhage
and Dhage [10, 11, 12, 13], Dhage et.al. [15, 14] and the references therein. The pur-
pose of the present paper is to obtain some generalizations of above mentioned fixed
point theorem of Dhage [5, 6] in a partially ordered metric space and discuss some of
their applications to nonlinear functional integral equations. Before going to the main
results, we give some notations, definitions and auxiliary facts which are needed in the
subsequent development of the paper.

Unless otherwise mentioned, we assume that (E,�,d) is a partially ordered com-
plete metric space. Two elements x and y in E are said to be comparable if either the
relation x � y or y � x holds. A non-empty subset C of E is called a chain or totally
ordered if all the elements of C are comparable. It is known that E is regular if {xn}
is a nondecreasing (resp. nonincreasing) sequence in E such that xn → x∗ as n → ∞ ,
then xn � x∗ (resp. xn � x∗ ) for all n ∈ N . If C is a chain in E , then C′ denotes the set
of all limit points of C in E . The symbol C stands for the closure of C in E defined
by C =C∪ C′ . Then C is called a closed chain in E . Thus, C is the intersection of all
closed chains containing C . Clearly, inf C, sup C ∈C provided inf C and sup C exist.
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The supC is an element z ∈ E such that for every ε > 0 there exists a c ∈C such that
d(c,z) < ε and x � z for all x ∈C . Similarly, inf C is defined in the same way. A few
details of a partially ordered sets and chains appear in Hekillä and Lakshmikantham
[17], Dhage [5] and the references therein.

In what follows, we denote by Pcl(E) , Pbd(E) , Prcp(E) , Pch(E) , Pbd,ch(E) ,
Prcp,ch(E) the family of all nonempty and closed, bounded, relatively compact, chains,
bounded chains and relatively compact chains of E respectively. The following concept
of a partially measure of noncompactness of sets in E has been introduced in Dhage
[7, 8] on the lines of usual classical theory. See Banas and Goebel [1], Banas and Dhage
[2], Dhage [3, 4] and the references therein.

DEFINITION 1.1. A mapping μ p : Pbd,ch(E) → R+ = [0,∞) is said to be a
partial measure of noncompactness in E if it satisfies the following conditions:

1o /0 	= (μ p)−1({0})⊂ Prcp,ch(E) ,

2o μ p(C) = μ p(C) ,

3o μ p is nondecreasing, i.e., if C1 ⊂C2 ⇒ μ p(C1) � μ p(C2) , and

4o if {Cn} is a sequence of closed chains from Pbd,ch(E) such that Cn+1 ⊂Cn,(n =
1,2, ...) and if lim

n→∞
μ p(Cn) = 0, then the set C∞ =

⋂∞
n=1Cn is nonempty.

The family of sets described in condition 1o is said to be the kernel of the partial
measure of noncompactness μ p and is defined as

ker μ p =
{
C ∈ Pbd,ch(E)

∣∣μ p(C) = 0
}
.

Clearly, ker μ p ⊂ Prcp,ch(E) . Observe that the intersection set C∞ from condition 4o

is a member of the family ker μ p . In fact, since μ p(C∞) � μ p(Cn) for any n , we
infer that μ p(C∞) = 0. This yields that C∞ ∈ ker μ p . This simple observation will be
essential in our further investigations.

If (E,�,‖ · ‖) is a partially ordered Banach space, then the partially measure μ p

of noncompactness in E is called sublinear if it satisfies

5o μ p(C1 +C2) � μ p(C1)+ μ p(C2) for all C1,C2 ∈ Pbd,ch(E) , and

6o μ p(λC) = |λ |μ p(C) for λ ∈ R .

Now we state our basic hybrid fixed point theorem for its further generalizations.
We need the following definitions in what follows.

DEFINITION 1.2. A mapping T : E → E is called monotone nondecreasing if
it preserves the order relation � , that is, if x � y implies T x � T y for all x,y ∈ E .
Similarly, T : E → E is called monotone nonincreasing if it preserves the inverse
order relation � , that is, if x � y implies T x � T y for all x,y ∈ E . A monotone
mapping T is one which is either monotone nondecreasing or monotone nonincreasing
on E into itself.
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DEFINITION 1.3. (Dhage [5, 6]) A mapping T : E → E is called partially con-
tinuous at a point a ∈ E if for ε > 0 there exists a δ > 0 such that d(T x,T a) < ε
whenever x is comparable to a and d(x,a) < δ . T called partially continuous on E
if it is partially continuous at every point of it.

It is clear that if T is partially continuous on E , then it is continuous on every
chain C contained in E .

DEFINITION 1.4. (Dhage [5, 6]) A non-empty subset S of the partially ordered
Banach space E is called partially bounded if every chain C in S is bounded. An
operator T on a partially normed linear space E is said to be partially bounded if
T (C) is bounded for every chain C in E . The operator T is uniformly partially
bounded if all chains T (C) in E are bounded by a unique constant.

DEFINITION 1.5. (Dhage [5]) A non-empty subset S of E is called a partially
compact if every chain C in S is compact. An operator T on a partially ordered
metric space E into itself is called partially compact if T (C) is a relatively compact
subset of E for all totally ordered sets or chains C in E . T is called uniformly
partially compact if T is uniformly bounded and partially compact. T is called
partially totally bounded if for any totally ordered and bounded subset C of E , T (C)
is a relatively compact subset of E . If T is partially continuous and partially totally
bounded, then it is called partially completely continuous on E .

DEFINITION 1.6. (Dhage [5]) The order relation � and the metric d on a non-
empty set E are said to be compatible if {xn} is a monotone, that is, monotone non-
decreasing or monotone nondecreasing sequence in E and if a subsequence {xnk} of
{xn} converges to x∗ implies that the original sequence {xn} converges to x∗ . Simi-
larly, given a partially ordered normed linear space (E,�,‖ · ‖) , the order relation �
and the norm ‖ · ‖ are said to be compatible if � and the metric d defined through the
norm ‖ · ‖ are compatible. A subset S of E is called Janhavi if the order relation �
and the metric d or the norm ‖ · ‖ are compatible in it. In particular, if S = E , then E
is called a Janhavi metric or Janhavi Banach space.

Clearly, the set R of real numbers with usual order relation � and the norm de-
fined by the absolute value function has this property. Similarly, the finite dimensional
Euclidean space R

n with usual componentwise order relation and the standard norm
possesses the compatibility property and so is a Janhavi Banach space.

To state the measure theoretic hybrid fixed point theorems, we need the following
notion of a D -function which is useful in the generalizations of well-known Lipschitz
condition for a mapping in metric spaces.

DEFINITION 1.7. (Dhage [5]) A mapping ψ : R+ → R+ is called a dominating
function or, in short, D -function if it is an upper semi-continuous and monotonic
nondecreasing function satisfying ψ(r) = 0 ⇐⇒ r = 0.
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REMARK 1.1. We mention there do exist D -functions in the mathematical liter-
ature and commonly used D -functions in the fixed point theory and applications are
ψ1(r) = k r, k > 0, ψ2(r) = Lr

K+r , L > 0, K > 0, ψ3(r) = arctanr, ψ4(r) = log(1+ r)
and ψ5(r) = er −1. The first three of these D -functions have been widely used in the
existence theory of nonlinear differential and integral equations.

REMARK 1.2. If φ ,ψ : R+ → R+ are two D -functions, then i) φ + ψ , ii) λ φ ,
λ > 0, and iii) φ ◦ψ are also D -functions on R+ . The class of D -functions on R+ is
denoted by D .

The following hybrid fixed point result is a slight improvement of the applicable
hybrid fixed point theorems proved in Dhage [6, 7, 8] and Dhage and Dhage [10] in a
partially ordered metric space.

THEOREM 1.1. Let S be a non-empty closed subset of a regular partially ordered
complete metric space (E,�,d) such that the order relation � and the metric d are
compatible in every compact chain C of S . Let T : S→ S be a nondecreasing, partially
bounded and partially continuous mapping satisfying the inequality

μ p(T (C)) � ψ(μ p(C)) (1.1)

for all bounded chains C in S , where ψ : R+ → R+ is a D -function such that ψ(r) <
r for r > 0 . Suppose that there exists and element x0 ∈ S such that x0 � T x0 or
x0 � T x0 . Then T has at least one fixed point x∗ in S and the sequence {T nx0} of
successive iterations converges monotonically to x∗ .

We remark that Theorem 1.1 includes the fixed point theorems of Dhage [5, 6, 7,
8], Dhage et.al [15], Ran and Reurings [20] and Nieto an Lopez [19] in a partially or-
dered metric space as the special cases and has some interesting applications to nonlin-
ear differential and integral equations. See Dhage [9], Dhage and Dhage [10, 11, 12, 13]
and the references therein.

REMARK 1.3. The regularity of the partially ordered metric space E in above
Theorem 1.1, may be replaced with a stronger continuity condition than partial conti-
nuity of the mappings T on E . Again, the compatibility of every chain w.r.t. the order
relation � and the metric d holds if every partially compact subset of E possesses the
compatibility property w.r.t. � and d . Furthermore, fixed point set FT of comparable
elements of the mapping T in S is a member of ker μ p .

2. Hybrid Fixed Point Theory

The following measure theoretic hybrid fixed point theorem is a generalization of
Theorem 1.1 under weaker upper semi-continuity of the D -function ψ on R+ .

THEOREM 2.1. Let S be a non-empty closed subset of a regular partially ordered
complete metric space (E,�,d) such that the order relation � and the metric d are
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compatible in every compact chain C of S . Let T : S→ S be a nondecreasing, partially
bounded and partially continuous mapping satisfying the inequality

μ p(T (C)) � ψ(μ p(C)) (2.1)

for all bounded chains C in S , where ψ : R+ → R+ is a nondecreasing function such
that limn→∞ ψn(t) = 0 for each t ∈ R+ . Suppose that there exists an element x0 ∈ S
such that x0 � T x0 or x0 � T x0 . Then T has at least one fixed point x∗ in S and
the sequence {T nx0} of successive iterations converges monotonically to x∗ .

Proof. The proof is similar to that given in Dhage [7, 8], but for the sake of com-
pleteness we give the details of it. Define a sequence {xn} of points in S by

xn+1 = T xn, n = 0,1,2, . . . . (2.2)

Suppose that x0 � T x0 . Since T is nondecreasing, we have that

x0 � x1 � x2 � ·· · � xn � ·· · . (2.3)

Denote
Cn =

{
xn,xn+1, . . .

}
for n = 0,1,2, . . . . By construction, each Cn is a bounded chain in S and

Cn = T (Cn−1), n = 0,1,2, . . . .

Moreover,
C0 ⊃C1 ⊃ ·· · ⊃Cn ⊃ ·· · ,

and so
C0 ⊃C1 ⊃ ·· · ⊃Cn ⊃ ·· · . (2.4)

Therefore, by nondecreasing nature of μ p we obtain

μ p(Cn) = μ p(Cn)

= μ p(T (Cn−1))

� ψ(μ p(Cn−1))

� ψ2(μ p(Cn−2))
...

� ψn(μ p(C0)). (2.5)

Taking the limit superior as n → ∞ in the above equality (2.5), we obtain that

lim
n→∞

μ p(Cn) = lim
n→∞

μ p(Cn) � limsup
n→∞

ψn(μ p(C0)) = lim
n→∞

ψn(μ p(C0)) = 0. (2.6)
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Hence, by condition (4o ) of μ p ,

C∞ =
∞⋂

n=1

Cn 	= /0 and C∞ ∈ Prcp,ch(E).

From (2.5) it follows that for every ε > 0 there exists an n0 ∈ N such that

μ p(Cn) < ε ∀ n � n0.

This shows that Cn0 and consequently C0 is a compact chain in E. Hence, {xn}
has a convergent subsequence. Further since the order relation � and the metric d
are compatible in the compact chain in S , the original sequence {xn} = {T nx0} is
convergent and converges monotonically to a point, say x∗ ∈ C0 . Since the ordered
metric space E is regular, we have that xn � x∗ . Finally, from the partial continuity of
T , we get

T x∗ = T
(

lim
n→∞

xn

)
= lim

n→∞
T xn = lim

n→∞
xn+1 = x∗.

Similarly, if x0 � T x0 , it is proved that T has a fixed point S . This completes
the proof. �

COROLLARY 2.1. Let S be a non-empty and closed subset of a regular partially
ordered complete metric space (E,�,d) such that the order relation � and the metric
d are compatible in every compact chain C of S . Let T : S → S be a monotone non-
decreasing, partially continuous and partially compact mapping. Suppose that there
exists an element x0 ∈ S such that x0 � T x0 or x0 � T x0 . Then T has at least
one fixed point x∗ in S and the sequence {T nx0} of successive iterations converges
monotonically to x∗ .

Proof. Let C be arbitrary bounded chain in S . Then from partial compactness of
T it follows that T (C) is a relatively compact chain in S . As a result, we have that
μ p(T (C)) = 0 � ψ(μ p(C)) , where ψ : R+ → R+ is a nondecreasing function such
that limn→∞ ψn(t) = 0 for each t ∈ R+ . Now the desired conclusion follows by an
application of Theorem 2.1.

COROLLARY 2.2. Let S be a non-empty closed subset of a regular partially or-
dered complete metric space (E,�,d) such that � and d are compatible in every
compact chain C of S . Let T : S → S be a nondecreasing, partially bounded and
partially continuous mapping satisfying the inequality

d(T x,T y) � ψ(d(x,y)) (2.7)

for all x,y ∈ S , x � y, where ψ : R+ → R+ is a nondecreasing function such that
limn→∞ ψn(t) = 0 for each t ∈ R+ . Suppose that there exists an element x0 ∈ S such
that x0 � T x0 or x0 � T x0 . Then T has at least one fixed point x∗ in S and the
sequence {T nx0} of successive iterations converges monotonically to x∗ .
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Proof. Let μ p : Pbd,ch(E) → R+ be a set-function defined by

μ p(C) = diam(C) (2.8)

where, diam(C) = sup{d(x,y) : x,y ∈ C} is the diameter of the chain C in E . It
is easily verified that μ p is a partially measure of noncompactness in E . Since the
function ψ is nondecreasing, in view of the inequality (2.7), we obtain

sup
x,y∈C

d(T x,T y) � sup
x,y∈C

ψ(d(x,y)) � ψ
(

sup
x,y∈C

d(x,y)
)
.

This implies that
μ p(T (C)) � ψ(μ p(C)).

Now the required result follows by a direct application Theorem 2.1. This com-
pletes the proof. �

Note that we do not assume the upper semi-continuity of the function ψ in above
measure theoretic hybrid fixed point theorems for nonlinear set-contractions in ordered
metric spaces. However, if ψ is upper semi-continuous, then the following result fol-
lows immediately.

LEMMA 2.1. (Dhage [3]) If ψ : R+ → R+ is a D -function, then lim
n→∞

ψn(t) = 0

for all t ∈ R+ if and only if ψ(t) < t for each t > 0 .

THEOREM 2.2. Let S be a non-empty closed subset of a regular partially ordered
metric space (E,�,d) such that � and d are compatible in every compact chain C
of S . Let T : S → S be a nondecreasing, partially bounded and partially continuous
mapping satisfying the inequality

μ p(T (C)) � μ p(C)−φ(μ p(C)) (2.9)

for all bounded chains C in S , where φ : R+ → R+ is a nonincreasing lower semi-
continuous function such that φ(0) = 0 and φ(t) > 0 for t > 0 . Suppose that there
exists an element x0 ∈ S such that x0 � T x0 or x0 � T x0 . Then T has at least
one fixed point x∗ in S and the sequence {T nx0} of successive iterations converges
monotonically to x∗ .

Proof. Define a function ψ : R+ → R+ by ψ(t) = t − φ(t) . Then the inequality
(2.9) takes the form (1.1). We show that ψ is a D -function satisfying ψ(t) < t for
t > 0. Clearly, ψ(0) = 0. Since φ is lower semi-continuous, the function −φ is an
upper semi-continuous on R+ . Next, we show that ψ is nondecreasing on R+ . Let
t1,t2 ∈ R+ be arbitrary with t1 � t2 . Then, we have ψ(t1) = t1 −φ(t1) � t2 −φ(t2) =
ψ(t2) , and so, ψ is nondecreasing on R+ . Finally, if t > 0, then φ(t) > 0 and by
construction, ψ(t) = t−φ(t) < t . Now the desired conclusion follows by an application
of Theorem 2.1.
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REMARK 2.1. The regularity of the partially ordered metric space E in above
Theorems 2.1 and 2.2 may be replaced with a stronger continuity condition than partial
continuity of the mappings T on S . Furthermore, the fixed point set FT of compara-
ble elements of the mapping T in S is a member of ker μ p . This simple observation
is used for proving the attractivity aspect of the comparable solutions of the nonlinear
integral equation considered in the following section.

EXAMPLE 2.1. Let E = R and define the usual standard order relation � and the
metric d in R defined by x � y if and only if y− x � 0 and d(x,y) = |x− y| . Then
(R,�,d) is a regular partially ordered metric space in which � and d are compatible.
Take a subset S of R defined by S = {0, 1

2n : n ∈ N0}. Clearly, S is a non-empty,
partially bounded and closed subset of R. Let ψ : R+ → R+ be defined by ψ(r) = 3r

4 .
Clearly, ψ is nondecreasing function satisfying limn→∞ ψn(t) = 0 for each t ∈ R+ .

Let T : S → S be a mapping defined by T x =
x
2
. The T is partially continuous and

satisfies the condition (2.1) on S . Let C be any chain in S and define a partial measure
of noncompactness in R by μ p(C) = diam(C) = δ . By definition of the μ p , we obtain

μ p(T (C)) =
δ
2

� ψ(μ p(C)).

Moreover, there is an element x0 = 1 ∈ S such that x0 � T x0 . Thus all the con-
ditions of Theorem 2.1 are satisfied and T has a fixed point. Here, T has only one
fixed point x∗ = 0 in S and the sequence {T n(x0)} of successive iterations converges
monotonically to x∗ = 0.

Finally we state a couple of hybrid fixed point theorems concerning the sum of two
operators in a partially ordered complete normed linear space and the sum-product of
three operators in a partially ordered complete normed linear algebra which are useful
in the applications to perturbed nonlinear differential or integral equations.

THEOREM 2.3. Let S be a non-empty closed subset of a regular partially ordered
complete normed linear space (E,�,‖·‖) such that the order relation � and the norm
‖ · ‖ are compatible in every compact chain C of S . Let A ,B : S → E be two
nondecreasing mappings satisfying the following conditions:

(a) A is partially bounded and partially continuous mapping satisfying ‖A x−
A y‖ � ψ(‖x− y‖) for all x,y ∈ S , x � y, where ψ : R+ → R+ is a nonde-
creasing function such that limn→∞ ψn(t) = 0 for each t ∈ R+ ,

(b) B is partially completely continuous, and

(c) A x+Bx ∈ S for all x ∈ S .

Suppose that there exists an element x0 ∈ S such that x0 � A x0 +Bx0 or x0 � A x0 +
Bx0 . Then the operator equation A x+Bx = x has at least one solution x∗ in S and
the sequence {xn} of successive iterations defined by xn = A xn−1 +Bxn−1 converges
monotonically to x∗ .
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Next, let (E,�,‖ · ‖) be a partially ordered normed linear algebra. Denote

E+ =
{
x ∈ E | x � θ , where θ is the zero element of E

}
and

K = {E+ ⊂ E | uv ∈ E+ for all u,v ∈ E+}. (2.10)

The elements of the set K are called the positive vectors in E . The following
lemma follows immediately from the definition of the set K which is often times
used in the hybrid fixed point theory in Banach algebras and applications to nonlinear
differential and integral equations.

LEMMA 2.2. (Dhage [3]) If u1,u2,v1,v2 ∈K are such that u1 � v1 and u2 � v2 ,
then u1u2 � v1v2 .

As an application of Lemma 2.2, we obtain the following interesting hybrid fixed
point theorem in a partially ordered Banach algebra which is useful in the theory of
nonlinear quadratic differential and integral equations.

THEOREM 2.4. Let S be a non-empty closed subset of a regular partially ordered
complete normed linear algebra (E,�,‖ · ‖) such that the order relation � and the
norm ‖ · ‖ are compatible in every compact chain C of S . Let A ,C : S → K and
B : S → E be three nondecreasing mappings satisfying the following conditions:

(a) A and C are partially bounded and there exist D -functions ψ1 and ψ2 such
that ‖A x−A y‖ � ψ1(‖x− y‖) and ‖C x−C y‖ � ψ2(‖x− y‖) for all x,y ∈ S ,
x � y,

(b) B is partially completely continuous, and

(c) A xBx+C x ∈ S for all x ∈ S , and

(d) Mψ1(r)+ ψ2(r) < r for r > 0 , where M = sup
{‖B(C)‖ : C is a chain in S

}
.

Suppose that there exists an element x0 ∈ S such that x0 � A x0Bx0 + C x0 or x0 �
A x0Bx0 +C x0 . Then the operator equation A xBx+C x = x has at least one solution
x∗ in S and the sequence {xn} of successive iterations defined by xn = A xn−1Bxn−1 +
C xn−1 converges monotonically to x∗ .

COROLLARY 2.3. Let S be a non-empty, closed subset of a regular partially or-
dered complete normed linear algebra (E,�,‖ · ‖) such that the order relation � and
the norm ‖ · ‖ are compatible in every compact chain C of S . Let A ,B : S → K be
two nondecreasing mappings satisfying the following conditions:

(a) A is partially bounded and there exists a D -function ψ1 such that ‖A x−
A y‖ � ψ1(‖x− y‖) for all x,y ∈ S , x � y,

(b) B is partially completely continuous, and
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(c) A xBx ∈ S for all x ∈ S , and

(d) Mψ1(r) < r for r > 0 , where M = sup
{‖B(C)‖ : C is a chain in S

}
.

Suppose that there exists an element x0 ∈ S such that x0 �A x0Bx0 or x0 �A x0Bx0 .
Then the operator equation A xBx = x has at least one positive solution x∗ in S and
the sequence {xn} of successive iterations defined by xn = A xn−1Bxn−1 converges
monotonically to x∗ .

The proofs of Theorems 2.3 and 2.4 are similar to that given in Dhage [7, 8] and
now the desired result follows by an application of Theorem 2.1. Hence we omit the
details. Furthermore, Corollary 2.3 is used in Dhage and Dhage [12, 13] in the study of
nonlinear quadratic differential equations for proving the existence and approximation
theorems under mixed partial Lipschitz and partial compactness type conditions.

REMARK 2.2. We note that the partial boundedness of the mappings in all hybrid
fixed point theorems of this section may be replaced with the partial boundedness of
their domain S which is a slightly stronger condition and follows if S is a bounded
subset of E . This simple fact is often times used in applications of the hybrid fixed
point theorems to nonlinear hybrid equations.

We mention that the common existence principle hidden or involved in all clas-
sical or measure theoretic hybrid fixed point theorems of this section in a partially
ordered metric or Banach space is called “Dhage iteration principle” in the subject
of mathematical analysis and it may be described as “the sequence of successive ap-
proximations of a nonlinear equation beginning with a lower or an upper solution
as its first or initial approximation converges monotonically to the solution.” The
aforesaid convergence principle is interesting and very much useful tool in the theory of
nonlinear differential and integral equations for proving the existence as well as approx-
imation of the solutions under some mixed hybrid conditions of nonlinearities and it is
known as “Dhage iteration method” for nonlinear equations. See Dhage [5, 6, 7, 8, 9],
Dhage and Dhage [10, 11], Dhage et al. [14, 15] and the references therein for details.

In the following section we apply the measure theoretic hybrid fixed point theorem
to nonlinear functional integral equations for proving the existence and algorithms for
the local attractivity of comparable solutions.

3. Nonlinear Functional Integral Equations

Consider the following nonlinear hybrid functional integral equation (in short
HFIE),

x(t) = f (t,x(t))+
∫ t

0
g(t,s,x(s))ds (3.1)

for all t,s ∈ R+ , t � s , where f : R+ ×R → R and g : R+×R+×R → R are contin-
uous functions.
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DEFINITION 3.1. By a solution of HFIE (3.1) we mean a function x ∈C(R+,R)
that satisfies the equation (3.1) on R+ , where C(R+,R) is the space of continuous real-
valued functions defined on R+ . We say that solutions of the equation HFIE (3.1) are
locally ultimately attractive if there exists a closed ball B[x0,r0] in the space C(R+,R)
for some x0 ∈ C(R+,R) such that, for arbitrary solutions x = x(t) and y = y(t) of
equation HFIE (3.1) belonging to B[x0,r0] , we have

lim
t→∞

(x(t)− y(t)) = 0. (3.2)

In case the limit (3.2) is uniform with respect to the set B[x0,r0] , i.e., for each ε > 0
there exists T > 0 such that

|x(t)− y(t)|� ε (3.3)

for all solutions x,y ∈ B[x0,r0] of the HFIE (3.1) and for t � T , we will then say that
solutions of equation (3.1) are uniformly locally ultimately attractive on R

+ .

The HFIE (3.1) has already been discussed in Dhage [7] for global existence and
attractivity results of comparable solutions under a growth condition on the nonlinearity
f in terms of a special D -function ψ2 given in Remark 1.2. In the following we prove
the local existence and attractivity of comparable solutions under full generality of D -
function ψ on f .

We place the HFIE (3.1) in the space E = BC(R+,R) of continuous and bounded
real-valued functions defined on R+ . Define a norm ‖ · ‖ and the order relation � in
E by

‖x‖ = sup{|x(t)| : t � 0}. (3.4)

and
x � y ⇐⇒ x(t) � y(t) ∀ t ∈ R+. (3.5)

Clearly, E is a partially ordered Banach space with respect to the above norm ‖ ·‖
and the order relation � . The following lemma follows immediately by an application
of Arzelá-Ascoli theorem.

LEMMA 3.1. Let
(
BC(R+,R),�,‖ ·‖) be a partially ordered Banach space with

the norm ‖ · ‖ and the order relation � defined by (3.4) and (3.5) respectively. Then,
every partially compact subset S of BC(R+,R) is Janhavi, i.e., ‖ · ‖ and � are com-
patible in in every compact chain C of S .

Proof. Let S be a partially compact subset of BC(R+,R) and let {xn} be a mono-
tone nondecreasing sequence of points in S . Then we have

x1(t) � x2(t) � · · · � xn(t) � · · · (∗)
for each t ∈ R+ .

Suppose that a subsequence {xnk} of {xn} is convergent and converges to a point
x in S . Then the subsequence {xnk(t)} of the monotone real sequence {xn(t)} is
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convergent. By monotone characterization, the original sequence {xn(t)} is convergent
and converges to a point x(t) in R for each t ∈ R+ . This shows that the sequence
{xn(t)} converges point-wise in S . To show the convergence is uniform, it is enough to
show that the sequence {xn(t)} is equicontinuous. Since S is partially compact, every
chain or totally ordered set and consequently {xn} is an equicontinuous sequence by
Arzelá-Ascoli theorem. Hence {xn} is convergent and converges uniformly to x . As a
result ‖ · ‖ and � are compatible in S and so S is a Janhavi set in E . This completes
the proof. �

We will employ a handy tool of the partial ball measure of noncompactness in the
partially ordered Banach space BC(R+,R) which relates the ultimate attractivity of the
considered integral equation. Let us fix a bounded chain A of E and a positive real
number T . For any x ∈ A and ε � 0, denote by ωT (x,ε) , the modulus of continuity
of x on the interval [0,T ] defined by

ωT (x,ε) = sup{|x(t)− x(s)| : t,s ∈ [0,T ], |t − s|� ε}.
Moreover, let

ωT (A,ε) = sup{ωT (x,ε) : x ∈ A},
ωT

0 (A) = lim
ε−→0

ωT (A,ε),

ω0(A) = lim
T−→∞

ωT
0 (A).

By A(t) we mean a set in R defined by A(t) = {x(t)|x ∈ A} which is again a
China in R for each t ∈ R

+ . We denote

diam(A(t)) = sup{|x(t)− y(t)| : x,y ∈ A}
and

δT
c (A) = sup

t�T
diam(A(t)).

Next, we let
δc(A) = lim

T→∞
δT

c (A) = limsup
t−→∞

diam(A(t)).

Finally, we define a function μ p on Pbd(E) by the formula

μ p(A) = ω0(A)+ δc(A). (3.6)

It has been shown as in Banas and Goebel [1] that μ p is a sublinear partially
measure of noncompactness in E . From the definition of the measure μ p , it is clear
that the thickness of the bundle of functions from A(t) tends to zero as t tends to ∞ .
This particular characteristic of μ p has been utilized in formulating the main existence
and attractiivity result for the integral equation (3.1) on R+ .

Let Ψ be the class of all D -functions ψ on R+ into itself satisfying the limit
condition that limn→∞ ψn(t) = 0 for each t ∈ R+ .

We consider the following set of hypotheses in what follows.
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(H1 ) There exists a function ψ ∈ Ψ such that

0 � f (t,x)− f (t,y) � ψ(x− y),

for all t ∈ R+ and x,y ∈ R with x � y . Moreover, ψ is superadditive, i.e.,
ψ(t + s) � ψ(t)+ ψ(s) for all t,s ∈ R+ .

(H2 ) The function t �→ f (t,0) is a member of BC(R+,R) with F0 = supt�0 | f (t,0)| .
(H3 ) The function x �→ g(t,s,x) are nondecreasing in R for all t,s ∈ R+ with t � s .

(H4 ) There exist continuous functions a,b : R+ → R+ such that

|g(t,s,x)| � a(t)b(s)

for all t,s ∈ R+ such that t � s and x ∈ R . Moreover,

lim
t→∞

a(t)
∫ t

0
b(s)ds = 0,

and V = supt�0 a(t)
∫ t

0
b(s)ds.

(H5 ) There exists a lower solution u ∈ E of the HFIE (3.1), i.e., it satisfies the integral
inequality

u(t) � f (t,u(t))+
∫ t

0
g(t,s,u(s))ds, t ∈ R+.

(H6 ) There exists a positive solution r0 of the inequality

ψ(r)+F0 +V � r.

REMARK 3.1. Notice that the hypothesis (H6 ) makes sense because ψ(r) < r ,
r > 0 in view of Lemma 2.1.

THEOREM 3.1. Assume that the hypotheses (H1 ) through (H6 ) hold. Then the
functional integral equation (3.1) has at least one solution x∗ in the space BC(R+,R)
and the sequence {xn} of successive approximations defined by

xn(t) = f (t,xn−1(t))+
∫ t

0
g(t,s,xn−1((s)))ds, t ∈ R+, (3.7)

for each n∈ N with x0 = u, converges monotonically to x∗ . Moreover, the comparable
solutions of the HFIE (3.1) are uniformly locally ultimately attractive on R+ .

Proof. Set E = BC(R+,R) . Then, in view of Lemma 3.1, every partially compact
subset S of E possesses the compatibility property with respect to the norm ‖ · ‖ and
the order relation � in E . Hence in view of Remark 1.2, every compact chain C
possesses the compatibility property w. r. t. � and ‖ · ‖ and so is Janhavi in E .
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Define the operator Q defined on the space E by the formula

Qx(t) = f (t,x((t))))+
∫ t

0
g(t,s,x(s))ds, t ∈ R+. (3.8)

Observe that in view of our assumptions, for any function x ∈ E the function Qx
is continuous on R+ . As a result, Q defines a mapping Q : E → E . Now, for x0 =
u ∈ E , we define an open ball B(x0,r) in E , where r = ‖x0‖+ r0 and r0 is a positive
real number given in hypothesis (H6 ). We show that Q satisfies all the conditions of
Theorem 2.3 on S = B(x0,r) . This will be achieved in a series of following steps:

Step I: Q is a nondecreasing operator on S .

Let x,y ∈ S be such that x � y . Then by hypotheses (H1 ) and (H3 ), we obtain

Qx(t) = f (t,x(t))+
∫ t

0
g(t,s,x(s))ds � f (t,y(t))+

∫ t

0
g(t,s,y(s))ds = Qy(t)

for all t ∈ R+ . This shows that Q is a nondecreasing operator on S .

Step II: Q maps a closed and partially bounded set S into itself.

Let X be a chain in S and let x ∈ X . Since the function v : R+ → R defined by

v(t) = a(t)
∫ t

0
b(s)ds (3.9)

is continuous and in view of hypothesis (H4 ), the number V = supt�0 v(t) exists. More-
over if x � 0, then for arbitrarily fixed t ∈ R+ we obtain:

|Qx(t)| � | f (t,x(t))|+
∫ t

0
|g(t,s,x(s))|ds

� | f (t,x(t))− f (t,0)|+ | f (t,0)|+a(t)
∫ t

0
b(s)ds

� ψ(|x(t)|)+F0 + V (3.10)

Similarly, if x � 0, then it can be shown that |Qx(t)| � ψ(|x(t)|)+F0 + V for all
t ∈ R+ . Taking the supremum over t , we obtain ||Qx|| � ψ(‖x‖)+F0 +V � r0 for all
x ∈ X with ‖x‖ � r0 . This means that the operator Q transforms any chain X into a
bounded chain in E . Moreover, we have

‖x0−Qx‖ � ‖x0‖+‖Qx‖� ‖x0‖+ ψ(‖x‖)+F0+V � ‖x0‖+ r0

for all x ∈ X , ‖x‖ � r0 . More precisely, we infer that the operator Q transforms every
bounded chain X in B(x0,r) into the chain Q(X) contained in the ball B(x0,r) , where
r = ‖x0‖+ r0 . As a result, Q defines a mapping Q : Pch(B(x0,r)) → Pch(B(x0,r))
and so Q maps a closed and partially bounded set S = B(x0,r) into itself. Moreover,
Q is a partially bounded operator on S in view of Remark 2.2. Furthermore, in view of
Lemma 3.1, every compact chain in S possesses the compatibility property with respect
to the norm ‖ · ‖ and the order relation � in E .
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Step III: Q is a partially continuous operator on S .

Now we show that the operator Q is partially continuous on S . To do this, let X
be a chain in S and let us fix arbitrarily ε > 0 and take x,y ∈ X such that x � y and
||x− y||� ε . Then we get:

|Qx(t)−Qy(t)|� ∣∣ f (t,x(t))− f (t,y(t))
∣∣+ ∣∣∣∣

∫ t

0
g(t,s,x(s))ds−

∫ t

0
g(t,s,y(s))ds

∣∣∣∣
� ψ(|x(t)− y(t)|)+2a(t)

∫ t

0
b(s)ds

� ψ(‖x− y‖)+2v(t)
< ε +2v(t).

Hence, in virtue of hypothesis (H4 ) we infer that there exists T > 0 such that
v(t) � ε

2 for t � T . Thus, for t � T we derive that

|Qx(t)−Qy(t)|< 2ε . (3.11)

Further, let us assume that t ∈ [0,T ] . Then, evaluating similarly as above we get:

|Qx(t)−Qy(t)| � ψ(|x(t)− y(t)|)+
∫ t

0
|g(t,s,x(s)−g(t,s,y(s)|ds

< ε +T ωT
r (g,ε) , (3.12)

where we have denoted

ωT
r (g,ε) = sup

{|g(t,s,x)−g(t,s,y)| : t,s ∈ [0,T ], x,y ∈ [−r,r], |x− y|� ε
}

.

From the uniform continuity of the function g(t,s,x) on the set [0,T ]× [0,T ]×
[−r,r] we derive that ωT

r (g,ε) → 0 as ε → 0. Now, linking (3.11), (3.12) and the
above established facts we conclude that the operator Q maps partially continuously
the closed ball B(x0,r) into itself.

Step IV: Q is a nonlinear D -set-contraction w.r.t. characteristic value ω0 .

Further on let us take a bounded chain X in S with bound r0 > 0, i.e., the chain
X belonging to the ball B(x0,r) . Next, fix arbitrarily T > 0 and ε > 0. Let us choose
x ∈ X and t1, t2 ∈ [0,T ] with |t2 − t1| � ε . Without loss of generality we may assume
that x(t1) � x(t2) . Then, by our assumptions, we get:

|Qx(t1)−Qx(t2)| �
∣∣ f (t1,x(t1))− f (t2,x(t2))

∣∣
+
∣∣∣∣
∫ t1

0
g(t1,s,x(s))−

∫ t2

0
g(t2,s,x(s))ds

∣∣∣∣
�
∣∣ f (t1,x(t1))− f (t2,x(t2))

∣∣
+
∣∣∣∣
∫ t1

0
g(t1,s,x(s))−

∫ t2

0
g(t2,s,x(s))ds

∣∣∣∣
+
∣∣∣∣
∫ t1

0
g(t1,s,x(s))−

∫ t2

0
g(t2,s,x(s))ds

∣∣∣∣
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�
∣∣ f (t1,x(t1))− f (t2,x(t2))

∣∣
+
∫ t1

0
|g(t1,s,x(s))−g(t2,s,x(s))|ds+

∣∣∣∣
∫ t1

t2
|g(t1,s,x(s))|ds

∣∣∣∣
�
∣∣ f (t1,x(t1))− f (t2,x(t2))

∣∣
+
∫ T

0
|g(t1,s,x(s))−g(t2,s,x(s))|ds+Gr

T |t1− t2|, (3.13)

where
Gr

T = sup{|g(t,s,x)| : t ∈ [0,T ], s ∈ [0,T ], x ∈ [−r,r]}
which does exist in view of continuity of the function g on compact [0,T ]× [0,T ]×
[−r,r] .

Now, from (3.13), we obtain

|Qx(t2)−Qx(t1)| �
∣∣ f (t1,x(t1))− f (t2,x(t1))

∣∣+ ψ(|x(t1)− x(t2)|)

+
∫ T

0
|g(t1,s,x(s))−g(t2,s,x(s)|ds+Gr

T |t1− t2|

� ψ(ωT (x,ε))+ ωT
r ( f ,ε)+

∫ T

0
ωT

r (g,ε)ds+Gr
T ωT ε, (3.14)

where we have denoted

ωT
r ( f ,ε) = sup{| f (t2,x)− f (t1,x)| : t1,t2 ∈ [0,T ], |t2 − t1| � ε, x ∈ [−r,r]} ,

and

ωT
r (g,ε) = sup

{|g(t2,s,x)−g(t1,s,x)| : t1,t2,s ∈ [0,T ], |t2 − t1| � ε, x ∈ [−r,r]
}
.

From the above estimate we derive the following one:

ωT (Q(X),ε) � ψ
(
ωT (x,ε))+ ωT

r ( f ,ε)+
∫ T

0
ωT

r (g,ε)ds+Gr
T ε. (3.15)

Observe that ωT
r ( f ,ε) → 0 and ωT

r (g,ε) → 0 as ε → 0, which is a simple con-
sequence of the uniform continuity of the functions f and g on the sets [0,T ]× [−r,r]
and [0,T ]× [0,T ]× [−r,r] respectively. Thus, linking the established facts with the
estimate (3.15) we get ωT

0 (Q(X)) � ψ
(
ωT

0 (X)
)
. Consequently, we obtain

ω0(Q(X)) � ψ (ω0(X)) . (3.16)

Step V: Q is a nonlinear D -set-contraction w.r.t. characteristic value δc .

Now, taking into account our assumptions, for arbitrarily fixed t ∈ R+ and for
x,y ∈ X with x � y , we deduce the following estimate (cf. the estimate (3.5)):

|(Qx)(t)− (Qy)(t)| � | f (t,x(t))− f (t,y(t))|+2

(
a(t)

∫ t

0
b(s)ds

)
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� ψ(|x(t)− y(t)|)+2v(t).

From the above inequality it follows that

diam (QX(t)) � ψ(diam (X(t)))+ v(t)

for each t ∈ R+ . Therefore, taking limit superior over t → ∞ , we obtain

δc(QX) = limsup
t→∞

diam (Q(X(t))) � limsup
t→∞

ψ(diam (X(t))) = ψ(δc(X)). (3.17)

Step VI: Q is a partially nonlinear D -set-contraction on S.

Further, using the measure of noncompactness μ p defined by the formula (3.2)
and keeping in mind the estimates (3.16) and (3.17), we obtain

μ p(QX) = ω0(QX)+ δc(QX) � ψ(ω0(X)+ δc(X)) = ψ(μ p(X))

for all chains X in S . Hence, the operator Q is a partially nonlinear D -set-contraction
on S Again, by hypothesis (H5 ), there exists an element u ∈ S such that u � Qu , that
is, u is a lower solution of the HFIE (3.1) defined on R+ .

Thus Q satisfies all the conditions of Theorem 2.1 on S . Hence we apply it to
the operator equation Qx = x and deduce that the operator Q has a fixed point x∗ in
S . Obviously x∗ is a solution of the functional integral equation (3.1) and the sequence
{xn} of successive approximations defined by (3.7) converges monotonically to x∗ .
Moreover, taking into account that the image of every chain X under the operator Q is
again a chain Q(X) contained in the ball B(x0,r) we infer that the set F (Q) of all
fixed points of Q is contained in B(x0,r) . If the set F (Q) contains all comparable
solutions of the equation (3.1), then we conclude from Remark 1.2 that the set F (Q)
belongs to the family ker μ p

c . Now, taking into account the description of sets belonging
to ker μ p

c (given in section 2) we deduce that all comparable solutions of the equation
(3.1) are uniformly locally ultimately attractive on R+ . This completes the proof. �

REMARK 3.2. The conclusion of Theorem 3.1 also remains true if we replace the
hypothesis (H5 ) with the following one.

(H ′
5 ) There exists an upper solution v ∈ E of the HFIE (3.1), i.e., it satisfies the func-

tional integral inequality

v(t) � f (t,v(t))+
∫ t

0
g(t,s,v(s))ds,

for all t ∈ R+ .

REMARK 3.3. The superadditivity of the function ψ given in the hypothesis (H3 )
of Theorem 3.1 may be relaxed if we define the partial measure μ p

c of noncompactness
in the partially ordered Banach space (BC(R+,R),�,‖ · ‖) by the formula

μ p
c (X) = max

{
ω0(X) , δc(X)

}
(3.18)

for any bounded chain X in BC(R+,R) .
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REMARK 3.4. If we consider the partial measure of noncompactness μ p
c given

by (3.18) for the application in Theorem 3.1, then the inequality in hypothesis (H1 )
may be replaced with the inequality,

0 � f (t,x)− f (t,y) � L(x− y)
K +(x− y)

for all t ∈ J and x,y ∈ R with x � y , where L > 0 and K > 0 are constants satisfying
L � K . Here, the growth or D -function ψ is defined by ψ(r) = Lr

K+r .

In the following we give a numerical example to illustrate the abstract theory de-
veloped in this paper.

EXAMPLE 3.1. Consider the linearly perturbed nonlinear hybrid integral equa-
tion,

x(t) = f1(t,x(t))+
∫ t

0

1
5(t2 +1)

g1(s,x(s))ds (3.19)

for all t ∈ R+ , where f1,g1 : R+ ×R → R are continuous functions defined by

f1(t,x) =

⎧⎪⎨
⎪⎩

1
5
, if x � 0,

1
5 + log

(
1+

x
5

)
, if x > 0.

and

g1(t,x) =

⎧⎨
⎩

1, if x � 0,

1+
x

x+1
, if x > 0.

We shall show that all the hypotheses of Theorem 3.1 are satisfied by the functions
involved in HFIE (3.19). Here, f (t,x) = f1(t,x) so that f is nondecreasing in x for
each t ∈ R+ and continuous on R+×R .

Now, we show that f1 is partially nonlinear D -contraction on R+×R . Let x,y ∈
R be arbitrary elements with 0 � x � y . Then,

0 � f1(t,x)− f1(t,y) = 0 � log

(
1+

1
5
(x− y)

)
.

Similarly, if x � y > 0, then

0 � f1(t,x)− f1(t,y) = log
(
1+

x
5

)
− log

(
1+

y
5

)
= log

(
1+ x

5

1+ y
5

)

= log

(
1+

1
5 (x− y)
1+ y

5

)

� log

(
1+

1
5
(x− y)

)
.
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Therefore, hypothesis (H3 ) is satisfied with the D -function ψ(r)= log
(
1+ 1

5 r
)
<

r for r > 0. Note that ψ is not supperadditive on R+ . Moreover, f1(t,0) = 1
5 so that

the hypotheses (H1 ) and (H2 ) are satisfied.

The function g(t,s,x) is given by g(t,s,x) =
1

5(t2 +1)
g1(s,x). Obviously g is

continuous on R+ ×R+ ×R . Next, g(t,s,x) is nondecreasing function in x for each
t,s ∈ R+ and so (H3 ) holds. Furthermore, |g1(t,x)| � 2 for all t ∈ R+ and x ∈ R .
Thus, we have

v(t) =
∫ t

0

1
5(t2 +1)

·2ds =
2t

5(t2 +1)
.

Therefore,

lim
t→∞

v(t) = lim
t→∞

2t
5(t2 +1)

= 0.

and so hypothesis (H4 ) holds.

Finally, it is easy to prove that u(t) =
t

5(t2 +1)
is a lower solution of the HFIE

(3.19) defined on R+ and hence the hypothesis (H5 ) is satisfied. Moreover, hypothesis
(H6 ) holds with r0 = 1. Thus in view of Remark 3.3, all the conditions of Theorem
3.1 are satisfied and by a direct application, we conclude that the HFIE (3.19) has a
solution x∗ in B(x0,1) and the sequence {xn} defined by

xn+1(t) = f1(t,xn(t))+
∫ t

0

1
5(t2 +1)

g1(s,xn(s))ds, t ∈ R+,

converges monotonically to x∗ , where x0 = u . Moreover, the comparable solutions of
the HFIE (3.19) are uniformly locally ultimately attractive and stable to 0 defined on
R+ .

EXAMPLE 3.2. Consider the linearly perturbed nonlinear hybrid integral equa-
tion,

x(t) =
1
3

arctanx(t)+
∫ t

0

1
5(t2 +1)

tanhx(s)ds (3.20)

for all t ∈ R+ .

Here, f (t,x) =
1
3

arctanx , and g(t,s,x) =
1

5(t2 +1)
tanhx for all t,s ∈ R+ and

x ∈ R . Then proceeding with the arguments that given in Example 3.1, it can be shown
that the functions f and g satisfy all hypotheses (H1 ) through (H4 ). Finally, it is

easy to prove that u(t) = −2
3
− t

5(t2 +1)
ds is a lower solution of the HFIE (3.20)

defined on R+ and hence the hypothesis (H5 ) is satisfied. Furthermore, hypothesis
(H6 ) holds with r0 = 1. Thus in view of Remark 3.2, all the conditions of Theorem
3.1 are satisfied and by a direct application, we conclude that the HFIE (3.20) has a
solution x∗ in B(x0,1) and the sequence {xn} defined by

xn+1(t) =
1
3

arctanxn(t)+
∫ t

0

1
5(t2 +1)

tanhxn(s)ds, t ∈ R+,
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converges monotonically to x∗ , where x0 = u . Moreover, the comparable solutions of
the HFIE (3.20) are uniformly locally ultimately attractive and stable to 0 defined on
R+ .

REMARK 3.5. In this paper, we have considered a very simple nonlinear func-
tional integral equation for proving the existence as well as algorithm for the local
attractive comparable solutions. However, a similar study may also be made for the
more general nonlinear functional integral equation of the type, viz.,

x(t) = F

(
t, f (t,x(t)),

∫ t

0
g(t,s,x(s))ds

)
, t ∈ R+, (3.21)

where F : R+ ×R×R → R is a continuous function. The HFIE (3.21) is studied in
Dhage and Lakshmikantam [16] via classical measure theoretic fixed point theorem of
Dhage [4] for attractivity of solutions under a strong Lipschitz condition. Therefore,
the obtained existence and approximation results would be under weaker conditions.

4. Notes and Comments

Finally, while concluding this paper we mention that local or global existence and
attractivity results for the HFIE (3.1) can also be obtained under some mixed stronger
hypotheses of usual Lipschitz and compactness type conditions using the classical mea-
sure of noncompatness. See Banas and Dhage [2] and the references therein. But nev-
ertheless, we do not get the algorithm or constructive method for approximating the
solutions of the integral equation (3.1) on R+ . The novelty of the present approach lies
in the fact that we get an algorithm for the local existence and attractive comparable
solutions of the HFIE (3.1) under a condition involving general D -function ψ on f .
Again, if the hypothesis (H5 ) holds, then in view of hypotheses (H1 ), (H2 ) and (H4 ),
the HFIE (3.1) has another lower solution u1 such that u1(t) � u(t) for all t ∈ R+ .
Now, by Theorem 3.1, the sequences {Qnu1} and {Qnu} converge respectively to the
comparable solutions x∗1 and x∗ satisfying the inequality x∗1(t) � x∗(t) for all t ∈ R+ ,
where the operator Q is defined by (3.8). Therefore the HFIE (3.1) has more than one
comparable solutions and so the conclusion of Theorem 3.1 is meaningful. A similar
conclusion also remains true for the HFIE (3.1) if the hypothesis (H5 ) in Theorem 3.1
is replaced with (H ′

5 ). Furthermore we conjecture that similar results are also true for
the HFIE (3.21) or its generalizations under some suitable hybrid conditions. Again the
partial measure of noncompactness may have numerous applications to other related
areas of nonlinear analysis which are yet to be investigated. Some of the results along
these lines is our future plan and will be reported elsewhere.
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