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GLOBAL DYNAMICS OF A DELAYED

DIFFUSIVE TWO–STRAIN DISEASE MODEL
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Abstract. The aim of this paper is to investigate the global dynamics of a delayed diffusive two-
strain disease model. We first study the well-posedness of the model. And then, by selecting
appropriate Lyapunov functionals, we demonstrate that the global stability of the model is fully
determined by the basic reproduction number. Furthermore, using Schauder fixed point theorem
and constructing a pair of upper-lower solutions, we show that the model admits a traveling wave
solution connecting the disease free and co-existence equilibria.
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