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GLOBAL DYNAMICS OF A DELAYED

DIFFUSIVE TWO–STRAIN DISEASE MODEL

DANXIA CHEN AND ZHITING XU

(Communicated by Leonid Berezansky)

Abstract. The aim of this paper is to investigate the global dynamics of a delayed diffusive two-
strain disease model. We first study the well-posedness of the model. And then, by selecting
appropriate Lyapunov functionals, we demonstrate that the global stability of the model is fully
determined by the basic reproduction number. Furthermore, using Schauder fixed point theorem
and constructing a pair of upper-lower solutions, we show that the model admits a traveling wave
solution connecting the disease free and co-existence equilibria.

1. Introduction

In [5], the author derived a mathematical model to describe the dynamics of a
communicable disease through a vector population as follows⎧⎨⎩

Ṡ(t) = Λ− μS(t)−βS(t)I(t− τ),
İ(t) = βS(t)I(t− τ)− (μ + γ)I(t),
Ṙ(t) = γI(t)− μR(t),

(1.1)

where S(t) , I(t) and R(t) represent the sub-populations of susceptible class, infective
class and removed class at time t , respectively. Λ is the recruitment rate of the suscep-
tible population, μ is the natural death rate of the population, β is the contact rate, γ
is the recovery rate of the infective individuals, and τ � 0 is a constant representing the
length of the immunity period.

It is because that mutation of a pathogen is common and causes serious problems
in treating the resulting disease that one often needs to deal with more than one strain,
see [3, 7]. Thus, the study of disease dynamics with multiple strains is an important
research topic and has attracted sustained attention of researchers in recent decades.
Among those, in [1], by introducing another strain of the disease, the authors extended
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Cooke’s idea, and proposed a two-strain disease model with latency and saturating in-
cidence rate ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ṡ(t) = Λ− μS(t)− β1S(t)I1(t−τ1)
1+α1I1(t−τ1) − β2S(t)I2(t−τ2)

1+α2I2(t−τ2) ,

İ1(t) = β1S(t)I1(t−τ1)
1+α1I1(t−τ1) − (μ1 + γ1)I1(t),

İ2(t) = β2S(t)I2(t−τ2)
1+α2I2(t−τ2) − (μ2 + γ2)I2(t),

Ṙ(t) = γ1I1(t)+ γ2I2(t)− μR(t),

(1.2)

where I1(t) and I2(t) represent the sub-populations of infective class with strain 1 and
strain 2, respectively. As model (1.1), S(t) and R(t) still denote the population of
susceptible and removed class, respectively. Λ denotes the recruitment of individuals,
1/μ is the lift expectancy, β1 (β2 ) represents the transmission coefficient of suscepti-
ble individuals to strain 1 (strain 2), 1/γ1 (1/γ2 ) denotes the average infected period of
strain 1 (strain 2), μ1 (μ2 ) is the combination of infection induced death rate and natu-
ral death rate of strain 1 (strain 2), τi � 0, i = 1,2, is a constant representing the length
of the immunity period, and αi � 0, i = 1,2, denotes the saturation level when the in-
fection population is large. The readers are referred to [1] for the precise interpretation
of the biological implication of (1.2).

Since R is decoupled in (1.2), the authors [1] analyzed the global dynamics of the
following reduced dimensional system⎧⎪⎪⎨⎪⎪⎩

Ṡ(t) = Λ− μS(t)− β1S(t)I1(t−τ1)
1+α1I1(t−τ1) − β2S(t)I2(t−τ2)

1+α2I2(t−τ2) ,

İ1(t) = β1S(t)I1(t−τ1)
1+α1I1(t−τ1) − (μ1 + γ1)I1(t),

İ2(t) = β2S(t)I2(t−τ2)
1+α2I2(t−τ2) − (μ2 + γ2)I2(t).

(1.3)

More precisely, it was proved that if the basic reproduction number is less than one,
then disease dies out, but if the number is large than one, then one or two of the strains
become endemic.

Clearly, model (1.2) is of ODE type, which could only reflect the epidemiological
and demographic process as the time changes. We note that the spatial content of
the environment has been ignored in the model (1.2). To closely match the reality,
considering an diffusive epidemic model of PDE type is natural and reasonable [17].
Inspired from [1], we here propose the following delayed diffusive two-strain disease
model⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂S(t,x)
∂ t = dsΔS(t,x)+ Λ− μS(t,x)− β1S(t,x)I1(t−τ1,x)

1+α1I1(t−τ1,x)
− β2S(t,x)I2(t−τ2,x)

1+α2I2(t−τ2,x)
,

∂ I1(t,x)
∂ t = d1ΔI1(t,x)+ β1S(t,x)I1(t−τ1,x)

1+α1I1(t−τ1,x)
− (μ1 + γ1)I1(t,x),

∂ I2(t,x)
∂ t = d2ΔI2(t,x)+ β2S(t,x)I2(t−τ2,x)

1+α2I2(t−τ2,x)
− (μ2 + γ2)I2(t,x),

∂R(t,x)
∂ t = dRΔR(t,x)+ γ1I1(t,x)+ γ2I2(t,x)− μR(t,x),

(1.4)

in which S(t,x) , I1(t,x) , I2(t,x) and R(t,x) represent the sub-populations of suscepti-
ble class, infective class with strain 1 and strain 2, and removed class at time t > 0 and
position x ∈ Ω , respectively. ds,d1,d2,dR > 0 are the diffusion rates, Δ is the Lapla-
cian operator and Ω is a bounded domain in Rn with a smooth boundary ∂Ω . The
parameters Λ,μ ,β1,β2,γ1,γ2,μ1,μ2,α1,α2 are positive constants as in model (1.2).
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In the biological context, one of the fundamental problems is to study the stability
of the steady states, since this characterizes whether a disease will become endemic and
this is a major concern for public health offices. For the model under consideration, on
the other hand, the traveling wave describes the disease population into the susceptible
population from an initial disease-free equilibrium to the endemic equilibrium. Bio-
logically speaking, existence of an epidemic wave implies that the disease can invade
successfully and an epidemics arises [17].

For model (1.4), in the absence of the strain 2, that is, I2(t,x) ≡ 0, one gets the
following delayed diffusive epidemic model{ ∂S(t,x)

∂ t = dsΔS(t,x)+ Λ− μS(t,x)− β1S(t,x)I1(t−τ1,x)
1+α1I1(t−τ1,x)

,
∂ I1(t,x)

∂ t = d1ΔI1(t,x)+ β1S(t,x)I1(t−τ1,x)
1+α1I1(t−τ1,x) − (μ1 + γ1)I1(t,x).

(1.5)

Yang et al [24] studied the existence of the traveling waves of (1.5). Very recently, Li et
al [12] has further investigated the existence of the traveling waves and established the
critical waves and the minimal speed of the model (1.5). The main purpose of this paper
is to study the dynamical behaviors of this model. We focus on the global stability of
the equilibria as well as the existence of traveling wave solutions of the model (1.4).

This paper is organized as follows. In section 2, we study the well-posedness
for system (2.1)-(2.3). In section 3, by means of appropriate Lyapunov functionals and
LaSalle’s invariance principle, we investigate the global dynamics of the four equilibria,
respectively. In section 4, we construct a pair of upper-lower solutions and employ the
Schauder fixed point theorem to prove the existence of traveling wave solutions for
system (2.1). Finally, a brief discussion is given in section 5.

2. The well-posedness

For simplicity, let

S =
μ
Λ

S, I i =
μ
Λ

Ii, R =
μ
Λ

R, α i =
αi

μ
Λ, β i =

βi

μ
Λ, Iτi = I(t − τi,x), i = 1,2.

Then, dropping the bars on S, Ii,R , we obtain⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂S
∂ t = dsΔS+ μ(1−S)−β1S f1(Iτ1)−β2S f2(Iτ2),
∂ I1
∂ t = d1ΔI1 + β1S f1(Iτ1)− (μ1 + γ1)I1,
∂ I2
∂ t = d2ΔI2 + β2S f2(Iτ2)− (μ2 + γ2)I2,
∂R
∂ t = dRΔR+ γ1I1 + γ2I2− μR,

(2.1)

where fi(x) = x
1+αix

. Accompanied with (2.1), we consider the initial conditions

S(t,x) = ϕ1(t,x), I1(t,x) = ϕ2(t,x), I2(t,x) = ϕ3(t,x), R(t,x) = ϕ4(t,x), (2.2)

for all (t,x) ∈ [−τ,0]×Ω , and the Neumann boundary conditions

∂S
∂n

=
∂ I1
∂n

=
∂ I2
∂n

=
∂R
∂n

= 0, (2.3)
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for all (t,x) ∈ (0,+∞)× ∂Ω , where τ := max{τ1,τ2} , ϕi(t,x) ( i = 1,2,3,4) are non-
negative and Hölder continuous in [−τ,∞)×Ω , and ∂/∂n denotes the outward normal
derivative on ∂Ω . The Neumann boundary conditions (2.3) imply that the two diseases
do not move across the boundary ∂Ω .

Define two threshold values as Ri =
βi

μi+γi
, i = 1,2. The basic reproduction num-

ber of (2.1) is given by R0 = max{R1,R2} .
By a direct computation, we get the following conclusion.

LEMMA 2.1. (1) System (2.1) always has a disease-free equilibrium
E0 = (1,0,0,0) .

(2) If R1 > 1 and R2 � 1 , then system (2.1) has the single-infection equilibrium
E1 = (S, I 1,0,R) , where

S =
1

R1
(1+ α1 I 1), I 1 =

μ
α1μ + β1

(R1−1), R =
γ1

μ
I 1.

(3) If R2 > 1 and R1 � 1 , then system (2.1) has the single-infection equilibrium
E2 = (Ŝ,0, Î2, R̂) , where

Ŝ =
1

R2
(1+ α2Î2), Î2 =

μ
α2μ + β2

(R2−1), R̂ =
γ2

μ
Î2.

(4) If R0 := min{R1S∗,R2S∗} > 1 , then system (2.1) has the co-existence equi-
librium (all components are positive) E∗ = (S∗, I∗1 , I∗2 ,R∗) , where

S∗ =
α1α2μ + α1(μ2 + γ2)+ α2(μ1 + γ1)

α1α2μ + α1β2 + α2β1
, R∗ =

1
μ

(γ1I
∗
1 + γ2I

∗
2 ),

and I∗i = 1
αi

(RiS∗ −1) , i = 1,2 .

Here, it is easy to see that the co-existence equilibrium is biologically meaningful if
and only if RiS∗ > 1, i = 1,2.

Next, we consider the positive invariance and uniform boundedness of solutions
for the initial-boundary-value problem of system (2.1)-(2.3).

Let X := C(Ω,R4) be the Banach space with the supremum norm ‖ ·‖X . Clearly,
any vector in R4 can be regarded as an element in X . For u = (u1,u2,u3,u4) , v =
(v1,v2,v3,v4) ∈ X , we write u � v (u � v) provided ui(x) � vi(x) (ui(x) � vi(x)) , i =
1,2,3,4, x ∈ Ω . For τ := max{τ1,τ2} , define C =C([−τ,0],X) with the norm ‖φ‖ =
maxθ∈[−τ,0] ‖φ‖X for φ ∈ C . Then C is a Banach space. Define X+ := C(Ω,R4

+) and
C+ = C([−τ,0],X+) . Then both (X,X+) and (C,C+) are strongly ordered Banach
spaces. As usual, we identify an element ϕ ∈ C as a function from [−τ,0]×Rn into
R4 by ϕ(s,x) = ϕ(s)(x) . Given a function u : [−τ,b) → X for b > 0, define ut ∈ C

by ut(s) = u(t + s) , s ∈ [−τ,0] . Let D = (ds,d1,d2,dR)T . It follows from [6, Theorem
1.5] that X− realization of DΔ generates an analytic semi-group T (t) on X .

For any ϕ = (ϕ1,ϕ2,ϕ3,ϕ4) ∈ C+ and x ∈ Ω , we define F = (F1,F2,F3,F4) :
C+ → X by

F1(ϕ)(x) : = μ(1−ϕ1(0,x))−β1ϕ1(0,x) f1(ϕ2(−τ,x))
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−β2ϕ1(0,x) f2(ϕ3(−τ,x)),
F2(ϕ)(x) : = β1ϕ1(0,x) f1(ϕ2(−τ,x))− (μ1 + γ1)ϕ2(0,x),
F3(ϕ)(x) : = β2ϕ1(0,x) f2(ϕ3(−τ,x))− (μ2 + γ2)ϕ3(0,x),
F4(ϕ)(x) : = γ1ϕ2(0,x)+ γ2ϕ3(0,x)− μϕ4(0,x).

Then F is Lipschitz continuous in any bounded subset of C+ . Rewriting (2.1)-(2.3) as
the following abstract functional differential equation{ du

dt
= Au+F(ut), t � 0, ut ∈ C,

u0 = ϕ ∈ C+,

where u = (S, I1, I2,R) , Au := (dsΔS,d1ΔI1,d2ΔI2,dRΔR)T and ϕ = (ϕ1,ϕ2,ϕ3,ϕ4) .
Define

[0,M]C :=
{

ϕ ∈ C : 0 � ϕ(θ ,x) � M, ∀θ ∈ [−τ,0], x ∈ Ω
}

with 0 := (0,0,0,0) , and

M :=
(
1,

β1

α1(μ1 + γ1)
,

β2

α2(μ2 + γ2)
,
1
μ

( γ1β1

α1(μ1 + γ1)
+

γ2β2

α2(μ2 + γ2)

))
.

THEOREM 2.1. For any given initial data ϕ = (ϕ1,ϕ2,ϕ3,ϕ4) ∈ [0,M]C , there
exists a unique non-negative solution u(t,x;ϕ) of (2.1)-(2.3) defined on [0,∞) and
ut ∈ [0,M]C for t � 0 .

Proof. For any ϕ = (ϕ1,ϕ2,ϕ3,ϕ4) ∈ [0,M]C and any κ � 0, we have

ϕ(0,x)+ κF(ϕ)(x)

=

⎛⎜⎜⎜⎜⎝
ϕ1(0,x)+ κ(μ(1−ϕ1(0,x))−β1ϕ1(0,x) f1(ϕ2(−τ,x))
−β2ϕ1(0,x) f2(ϕ3(−τ,x)))
ϕ2(0,x)+ κ(β1ϕ1(0,x) f1(ϕ2(−τ,x))− (μ1 + γ1)ϕ2(0,x))
ϕ3(0,x)+ κ(β2ϕ1(0,x) f2(ϕ3(−τ,x))− (μ2 + γ2)ϕ3(0,x))
ϕ4(0,x)+ κ(γ1ϕ2(0,x)+ γ2ϕ3(0,x)− μϕ4(0,x))

⎞⎟⎟⎟⎟⎠ .

Note that fi(x) (i = 1,2) is increasing in x > 0, and for any sufficiently small κ > 0,

ϕ(0,x)+ κF(ϕ)(x) �

⎛⎜⎜⎝
(
1−κ(μ + β1 + β2))ϕ1(0,x)

(1−κ(μ1 + γ1))ϕ2(0,x)
(1−κ(μ2 + γ2))ϕ3(0,x)
(1−κμ)ϕ4(0,x)

⎞⎟⎟⎠ � 0.

On the other hand, note that, for any sufficiently small κ > 0, the functions u1 +
κ(μ(1− u1)−β1u1 f (u2)−β2u1 f2(u3)) is increasing in u1 > 0 for any fixed u2 > 0
and u3 > 0; u2 + κ(β1u1 f1(u2)− (μ1 + γ1)u2) is increasing in u2 for any fixed u1 >
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0, u3 + κ(β2u1 f2(u3)− (μ2 + γ2)u3) is increasing in u3 for any fixed u1 > 0, and
u4 + κ(γ1u2 + γ2u3− μu4) is increasing in u4 for any fixed u2 > 0 and u3 > 0. Then

ϕ(0,x)+ κF(ϕ)(x) �

⎛⎜⎜⎜⎜⎝
1

β1
α1(μ1+γ1)

+ κ
(

β 2
1

α1(β1+μ1+γ1)
− β1

α1

)
β2

α2(μ2+γ2)
+ κ

(
β 2

2
α2(β2+μ2+γ2)

− β2
α2

)
ϕ4(0,x)

⎞⎟⎟⎟⎟⎠ � M.

Thus, ϕ(0)+ κF(ϕ) ∈ [0,M]C . This implies that

lim
κ→0+

1
κ

dist
(
ϕ(0)+ κF(ϕ), [0,M]C

)
= 0, ∀ϕ ∈ [0,M]C.

Let K = [0,M]C,S(t,x) = T (t − x) and B(t,ϕ) = F(ϕ) . Then it follows from [16,
Corollary 4], that (2.1) -(2.3) admit a unique non-continuable mild solution u(t,ϕ) ∈
[0,M]C for t ∈ [0,∞) . Furthermore, since the semigroup T (t) is analytic, the mild
solution u(t,ϕ) of (2.1)-(2.3) is classic for t � τ (see [21, Corollary 2.2.5]). �

3. Global Stability of the equilibria

In this section, we consider the global stability of the equilibria. Generally speak-
ing, it is difficult for us to obtain the global properties of the diffusive model with non-
linear functional responses. Recently, there has been some works on the global asymp-
totic stability of the constant equilibria of reaction-diffusion models by constructing
Lyapunov functionals and using LaSalle’s invariant principle, see [10, 15, 23, 28], for
example. Here, motivated by the works of [1], we investigate the global dynamics of
system (2.1)-(2.3). Such Lyapunov functional takes advantages of the properties of the
function

g(x) := x−1− lnx, x ∈ (0,+∞),

with g(x) � 0 for all x ∈ (0,+∞) and min0<x<+∞ g(x) = g(1) = 0.
Noting that R(t,x) does not appear in the first three equations of (2.1), we first

consider the following subsystem⎧⎪⎨⎪⎩
∂S
∂ t = dsΔS+ μ(1−S)−β1S f1(Iτ1)−β2S f2(Iτ2),
∂ I1
∂ t = d1ΔI1 + β1S f1(Iτ1)− (μ1 + γ1)I1,
∂ I2
∂ t = d2ΔI2 + β2S f2(Iτ2)− (μ2 + γ2)I2,

(3.1)

with the initial conditions

S(t,x) = ϕ1(t,x), I1(t,x) = ϕ2(t,x), I2(t,x) = ϕ3(t,x), ∀(t,x) ∈ [−τ,0]×Ω, (3.2)

and the Neumann boundary conditions

∂S
∂n

=
∂ I1
∂n

=
∂ I2
∂n

= 0, t > 0, x ∈ ∂Ω, (3.3)
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where ϕi(t,x) � 0 and ϕi(t,x) �= 0 for any (t,x) ∈ [−τ,0]×Ω . It follows from the
maximum principle [25] that S(t,x) > 0, I1(t,x) > 0 and I2(t,x) > 0 for any (t,x) ∈
[0,∞)×Ω .

THEOREM 3.1. If R0 � 1 , then E0(1,0,0) of system (3.1)-(3.3) is globally at-
tractive.

Proof. We consider the following Lyapunov functional

L(t) =
∫

Ω
(L1(t,x)+L2(t,x))dx,

where L1(t,x) = g(S(t,x)) , and

L2(t,x) = I1(t,x)+ I2(t,x)+ β1

∫ t

t−τ1

I1(θ ,x)dθ + β2

∫ t

t−τ2

I2(θ ,x)dθ .

Obviously, L(t) is non-negative in R
+ and attains zero at E0 . Next, we calculate the

time derivative of L(t) along the solution of system (3.1)-(3.3).
Note that

∂L1

∂ t
=

1
S
(S−1)dsΔS− μ

S
(S−1)2− (S−1)(β1 f1(Iτ1)+ β2 f2(Iτ2)), (3.4)

and

∂L2

∂ t
= d1ΔI1 +d2ΔI2 + β1S f1(Iτ1)+ β2S f2(Iτ2)

+ β1I1
(
1− 1

R1

)
+ β2I2

(
1− 1

R2

)−β1Iτ1 −β2Iτ2 . (3.5)

Consequently, by (3.4) and (3.5), we obtain

dL(t)
dt

=
∫

Ω

(1
S
(S−1)dsΔS+d1ΔI1 +d2Δ I2− μ

S
(S−1)2 +C1(t,x)

)
dx,

where

C1(t,x) = −α1β1 f1(Iτ1)Iτ1 −α2β2 f2(Iτ2)Iτ2 + β1I1
(
1− 1

R1

)
+ β2I2

(
1− 1

R2

)
,

which follows that C1(t,x) � 0 for R0 � 1.
By the Divergence Theorem and (3.3), we get∫

Ω
ΔSdx = 0,

∫
Ω

ΔI1dx = 0,

∫
Ω

ΔI2dx = 0, (3.6)

and ∫
Ω

ΔS
S

dx =
∫

Ω

‖∇S‖2

S2 dx. (3.7)
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It is easy to see that

dL(t)
dt

= −ds

∫
Ω

1
S2 ||∇S||2dx− μ

∫
Ω

1
S
(S−1)2dx+

∫
Ω

C1(t,x)dx.

Hence, R0 � 1 ensures dL(t)
dt � 0 on R+ . And also, for R0 = 1, dL(t)

dt = 0 if and only if

S = 1, I1 = 0, I2 = 0. The largest compact invariant set in {(S, I1, I2)∈R3
+ : dL(t)

dt = 0} is
the singleton E0 . By LaSalle’s invariant principle [11, Theorem 4.3.4], E0 is globally
attractive when R0 � 1. �

Next, we show that the single-infective equilibria E1(S, I 1,0) and E2(Ŝ,0, Î2) are
globally attractive.

THEOREM 3.2. If E1(S, I 1,0) exists (i.e., R1 > 1 ), but E2(Ŝ,0, Î2) does not exist
(i.e., R2 � 1 ), then E1 of system (3.1)-(3.3) is globally attractive.

Proof. We construct the following Lyapunov functional

V (t) =
1

β1 f1( I 1)

∫
Ω

(
VS +

I 1

S
VI1 + β1 f1( I 1)V I1 +

1

S
I2 + β2

∫ t

t−τ2

I2(θ ,x)dθ
)
dx,

where

VS = g
( S

S

)
, VI1 = g

( I1
I 1

)
, VI1 =

∫ t

t−τ1

g
( 1

I 1
I1(s,x)

)
ds.

By the properties of the function g(x) , it is easy to see that the Lyapunov functional V
is non-negative and attains to zero at E1 . That is to say, V is positive define. Next, we
show that dV (t)

dt � 0 along the solution of system (3.1)-(3.3).
For the simplicity of notation, let

u =
S

S
, v =

I1
I 1

, w =
Iτ1

I 1
, F1(w) =

f1( I 1w)
f1( I 1)

=
f1(Iτ1)

f1( I 1)
.

A short calculation gives

∂VS

∂ t
=

( 1

S
− 1

S

)
dsΔS− μ

SS
(S− S)2

+ β1 f1( I 1)
(
1− 1

u
−uF1(w)+F1(w)

)
−uβ2

(
1− 1

u

)
f2(Iτ2),

∂VI1

∂ t
=

( 1

I 1
− 1

I1

)
d1ΔI1 +

1

I 1
β1S f1( I 1)

(
uF1(w)− v− u

v
F1(w)+1

)
,

and

∂VI1

∂ t
= g(v)−g(w) = v−w+ lnw− lnv.
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Thus,

dV(t)
dt

=
1

β1 f1( I 1)

∫
Ω

(( 1

S1
− 1

S

)
dsΔS+

I 1

S

( 1

I 1
− 1

I1

)
d1ΔI1 +

1

S
d2ΔI2

)
dx

+
∫

Ω

(
− μ

β1 f1( I 1)
(S− S))2

SS
−g

(1
u

)
−g

(uF1(w)
v

))
dx

+
∫

Ω
(F1(w)−w+ lnw− lnF1(w)+C2(t,x))dx,

where

C2(t,x) = −β2

β1
u
(
1− 1

u

) f2(Iτ2)

f1( I 1)
+

1

β1S f1( I 1)
(β2S f2(Iτ2)− (μ2 + γ2)I2)

+
β2

β1 f1( I 1)
(I2− Iτ2).

Recall that (3.6) and (3.7), we see the first integration of the above is non-positive. By
the same arguments as the proof of [1, Theorem 4.2], we get

F1(w)−w+ lnw− lnF1(w) < 0 for all w > 0 except at w = 1 where it vanishes,

and C2(t,x) � 0 for (t,x) ∈ (0,+∞)×Ω . Hence, dV (t)
dt � 0 on R

+ with equality

holding only at E1 . The largest compact invariant set in {(S, I1, I2) ∈ R3
+ : dV (t)

dt = 0}
is the singleton E1 . Hence, it follows from LaSalle’s invariant principle [11, Theorem
4.3.4] that E1 is globally attractive. �

By symmetry, we can prove the following theorem parallel to Theorem 3.2 in a
similar fashion.

THEOREM 3.3. If E2(Ŝ,0, Î2) exists (i.e. R2 > 1 ), but E1(S, I 1,0) does not exist
(i.e. R1 � 1 ), then E2(Ŝ,0, Î2) of system (3.1)-(3.3) is globally attractive.

Proof. Define the following Lyapunov functional

V (t) =
1

β2 f2(Î2)

∫
Ω

(
VS +

Î2
Ŝ

VI2 + β2 f2(Î2)V̂I2 +
1

Ŝ
I1 + β1

∫ t

t−τ1

I1(θ ,x)dθ
)
dx,

where

VS = g
(S

Ŝ

)
, VI2 = g

( I2
Î2

)
, V̂I2 =

∫ t

t−τ2

g
( 1

Î2
I2(s,x)

)
ds.

The rest of the proof is similar to that of Theorem 3.2, so we omit it here. �
In the following, we study the global stability of E∗(S∗, I∗1 , I∗2 ) .

THEOREM 3.4. If E∗(S∗, I∗1 , I∗2 ) exists (i.e., R0 > 1 ), then E∗(S∗, I∗1 , I∗2 ) of system
(3.1)-(3.3) is globally attractive.
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Proof. We construct the following Lyapunov functional

W (t) =
1

β1 f1(I∗1 )

∫
Ω

(
WS +

I∗1
S∗

WI1 +
I∗2
S∗

WI2 + β1 f1(I∗1 )W ∗
I1 + β2 f2(I∗2 )W ∗

I2

)
dx,

where

WS = g
( S

S∗
)
, WIi = g

( Ii
I∗i

)
, W ∗

Ii =
∫ t

t−τi

g
( 1

I∗i
Ii(s,x)

)
ds, i = 1,2.

Obviously, W (t) is non-negative in R+ and attains zero at E∗ . Following the approach
in Theorem 3.2 with the following modification on function F1 as

u =
S
S∗

, vi =
Ii
I∗i

, wi =
Iτi

I∗i
, Fi(wi) =

fi(I∗i wi)
fi(I∗i )

=
fi(Iτi)
fi(I∗i )

, i = 1,2,

we can find the derivative of W (t) along the solution of (3.1), and obtain

dW (t)
dt

=− 1
β1 f1(I∗1 )

(∫
Ω

(( 1
S∗

− 1
S

)
dsΔS+

I∗1
S∗

( 1
I∗1

− 1
I1

)
d1ΔI1

+
I∗2
S∗

( 1
I∗2

− 1
I2

)
d2ΔI2

)
dx− μ

S∗

∫
Ω

1
S
(S−S∗)2dx

)
+

∫
Ω

(
2− 1

u
+F1(w1)− u

v1
F1(w1)−w1 + lnw1 − lnv1

)
dx

+
β2 f2(I∗2 )
β1 f1(I∗1 )

∫
Ω

(
2− 1

u
+F2(w2)− u

v2
F2(w2)−w2 + lnw2 − lnv2

)
dx.

Recall that (3.6) and (3.7), we get the first term of the above is non-negative, and

dW (t)
dt

�
∫

Ω

(
2− 1

u
+F1(w1)− u

v1
F1(w1)−w1 + lnw1 − lnv1

)
dx

+
β2 f2(I∗2 )
β1 f1(I∗1 )

∫
Ω

(
2− 1

u
+F2(w2)− u

v2
F2(w2)−w2 + lnw2 − lnv2

)
dx

=
∫

Ω

(
−g

(1
u

)
−g

( u
v1

F1(w1)
)

+(F1(w1)−w1 + lnw1 − lnF1(w1))
)
dx

+
β2 f2(I∗2 )
β1 f1(I∗1 )

∫
Ω

(
−g

(1
u

)
−g

( u
v2

F2(w2)
)

+(F2(w2)−w2 + lnw2− lnF2(w2))
)
dx.

Similarly, we can see that dW (t)
dt � 0 in R+ with the equality holding only at E∗ . The

largest compact invariant set in {(S∗, I∗1 , I∗2) ∈ R3
+ : dW(t)

dt = 0} is the singleton E∗ .
Hence, it follows from LaSalle’s invariant principle [11, Theorem 4.3.4] that the co-
endemic equilibrium E∗ is globally attractive. �

In what follows, we study the fourth equation of system (2.1). The equation reads
as
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∂R(t,x)
∂ t

= dRΔR(t,x)+ γ1I1(t,x)+ γ2I2(t,x)− μR(t,x). (3.8)

Then we have the following result.

LEMMA 3.1. (i) If R0 � 1 , then lim
t→∞

R(t,x) = 0 ;

(ii) If R1 > 1 but R2 � 1 , then lim
t→∞

R(t,x) = R;

(iii) If R2 > 1 but R1 � 1 , then lim
t→∞

R(t,x) = R̂ ;

(iv) If R0 > 1 , then lim
t→∞

R(t,x) = R∗ .

Proof. Using the Green’s function Γ associated with dRΔ and the Neumann bound-
ary condition and integrating (3.8) yields

R(t,x) = e−μt
∫

Ω
Γ(dRt,x,y)ϕ4(0,y)dy

+
∫ t

0
e−μs

∫
Ω

Γ(dRs,x,y)(γ1I1(t− s,y)+ γ2I2(t− s,y))dyds. (3.9)

Due to E0(1,0,0) of system (3.1) is globally attractive by Theorem 3.1, we then have

lim
t→∞

S(t,x) = 1, lim
t→∞

I1(t,x) = 0, lim
t→∞

I2(t,x) = 0.

Hence, noting that
∫

Ω Γ(dRs,x,y)dy = 1 and using the Lebesgue dominated conver-
gence theorem to (3.9), we get lim

t→∞
R(t,x) = 0; i.e., the conclusion (i) is true. By the

same way, we can proof the remaining conclusions, and omit it here. �

Now, summing up Theorems 3.1-4 and Lemma 3.1, we can obtain the following
conclusion.

THEOREM 3.5. (i) If R0 � 1 , then E0(1,0,0,0) of system (2.1)-(2.3) is globally
attractive;

(ii) If R1 > 1 but R2 � 1 , then E1(S, I 1,0,R) of system (2.1)-(2.3) is globally
attractive;

(iii) If R2 > 1 but R1 � 1 , then E2(Ŝ,0, Î2, R̂) of system (2.1)-(2.3) is globally
attractive;

(iv) If R0 > 1 , then E∗(S∗, I∗1 , I∗2 ,R∗) of system (2.1)-(2.3) is globally attractive.

4. Existence of traveling wave solutions

According to the stable analysis of system (3.1)-(3.3) at the equilibrium E0 , E1 ,
E2 , and E∗ , let Ω = Rn , we will first establish the existence of traveling waves to
system (3.1) connecting the equilibria E0 and E∗ . More precisely, we look for a special
translation invariant solution of the form (S(x ·e+ct), I1(x ·e+ct), I2(x ·e+ct)) of (3.1),
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where c > 0 is the wave speed and e is a unit vector in Rn . Without loss generality, we
consider n = 1. Letting x+ ct by t , then S(t), I1(t), I2(t) satisfy the following system⎧⎪⎪⎨⎪⎪⎩

cS′(t) = dsS
′′(t)+ μ(1−S(t))−β1S(t) f1(I1(t − cτ1))

−β2S(t) f2(I2(t − cτ2)),
cI′1(t) = d1I

′′
1 (t)+ β1S(t) f1(I1(t− cτ1))− (μ1 + γ1)I1(t),

cI′2(t) = d2I
′′
2 (t)+ β2S(t) f2(I2(t− cτ2))− (μ2 + γ2)I2(t),

(4.1)

and the boundary condition

S(−∞) = 1, S(+∞) = S∗, Ii(−∞) = 0, Ii(+∞) = I∗i , i = 1,2. (4.2)

The characteristic equations associated with the linearized equations of the second and
third equation of (4.1) at E0(1,0,0) are

Δi(λ ,c) = diλ 2− cλ + βie
−λ cτi − (μi + γi) = 0, i = 1,2.

It is easy to show the following lemma [22, lemma 3.1], see also, [12, lemma 2.1]
or [18, lemma 4.4].

LEMMA 4.1. Assume that Ri > 1 . Then there exist c∗i > 0 and λ ∗
i > 0 such that

∂Δi(λ ,c)
∂λ

∣∣∣
(λ ∗

i ,c∗i )
= 0, Δi(λ ∗

i ,c∗i ) = 0, i = 1,2.

Furthermore, Δi(λ ,c) also satisfies
(i) if c < c∗i , then Δi(λ ,c) > 0 for any λ � 0 .
(ii) if c > c∗i , then Δi(λ ,c) = 0 has two different positive solutions λi1(c) < λi2(c)

with

Δi(λ ,c)
{

> 0, λ ∈ (0,λi1(c))∪ (λi2(c),+∞),
< 0, λ ∈ (λi1(c),λi2(c)).

4.1. Construction of the upper-lower solutions

In this subsection, we assume that R0 > 1 and R0 > 1. In addition, we fix c >
c∗ := max{c∗1,c∗2} and always denote λi1(c) by λi1 , i = 1,2. Now, by the ideas [2, 12,
19, 20, 22, 27], we define six continuous functions as follows, for t ∈ R ,

S(t) = 1, S(t) = max
{

1− 1
σ

eσt ,
μα1α2

μα1α2 + α1β2 + α2β1

}
,

Ii(t) = min
{

eλi1t ,
1
αi

(Ri −1)
}
, Ii(t) = max

{
eλi1t

(
1−Mie

εit),0
}

, i = 1,2,

where σ ,Mi,εi ( i = 1,2) are positive constants to determine in the following lemmas.

LEMMA 4.2. The functions S(t) and I1(t) satisfy the inequality

d1I
′′
1(t)− cI

′
1(t)+ β1S(t) f1(I1(t− cτ1))− (μ1 + γ1)I1(t) � 0, (4.3)

for all t �= t1 := 1
λ11

ln
( 1

α1
(R1−1)

)
.
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Proof. When t < t1 , I1(t) = eλ11t . Note that S(t) = 1 and I1(t) � eλ11t for all
t ∈ R . Then

d1I
′′
1(t)− cI

′
1(t)+ β1S(t) f1(I1(t− cτ1))− (μ1 + γ1)I1(t)

� d1I
′′
1(t)− cI

′
1(t)+ β1S(t)I1(t − cτ1)− (μ1 + γ1)I1(t)

� eλ11t
(
d1λ 2

11− cλ11 + β1e
−λ11cτ1 − (μ1 + γ1))

= 0.

When t � t1 , I1(t) = 1
α1

(R1 −1) . It follows from the fact I1(t) � 1
α1

(R1 −1) for all
t ∈ R that

d1I
′′
1(t)− cI

′
1(t)+ β1S(t) f1(I1(t− cτ1))− (μ1 + γ1)I1(t)

� d1I
′′
1(t)− cI

′
1(t)+ β1 f1(I1(t− cτ1))− (μ1 + γ1)I1(t)

= 0.

This completes the proof. �
Similarly, we can get the following lemma.

LEMMA 4.3. The functions S(t) and I2(t) satisfy the inequality

d2I
′′
2(t)− cI

′
2(t)+ β2S(t) f2(I2(t− cτ2))− (μ2 + γ2)I2(t) � 0, (4.4)

for all t �= t2 := 1
λ21

ln
( 1

α2
(R2−1)

)
.

LEMMA 4.4. The functions S(t) , I1(t) and I2(t) satisfy the following inequality

dsS
′′(t)− cS

′(t)+ μ(1−S(t))−β1S(t) f1(I1(t − cτ1))−β2S(t) f2(I2(t− cτ2)) � 0.
(4.5)

The proof is trivial and we omit it.

LEMMA 4.5. Let σ ∈ (0,min{λ11,λ21}) be sufficiently small. Then the functions
S(t) , I1(t) and I2(t) satisfy the inequality

dsS
′′(t)− cS′(t)+ μ(1−S(t))−β1S(t) f1(I1(t − cτ1))−β2S(t) f2(I2(t− cτ2)) � 0,

(4.6)
for all t �= t3 := 1

σ ln σ(α1β2+α2β1)
μα1α2+α1β2+α2β1

< 0 .

Proof. If t � t3 , then S(t) = μα1α2
μα1α2+α1β2+α2β1

. Hence,

dsS
′′(t)− cS′(t)+ μ(1−S(t))−β1S(t) f1(I1(t − cτ1))−β2S(t) f2(I2(t− cτ2))

� dsS
′′(t)− cS′(t)+ μ(1−S(t))− β1

α1
S(t)− β2

α2
S(t)
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= μ(1−S(t))− β1

α1
S(t)− β2

α2
S(t)

= 0.

If t < t3 , then S(t) = 1− 1
σ eσt . Note that the function fi(x) � x (i = 1,2) for all

x � 0 and Ii(t) � eλi1t , i = 1,2, for all t ∈ R . One gets

dsS
′′(t)− cS′(t)+ μ(1−S(t))−β1S(t) f1(I1(t − cτ1))−β2S(t) f2(I2(t− cτ2))

� dsS
′′(t)− cS′(t)+ μ(1−S(t))−β1S(t)I1(t− cτ1)−β2S(t)I2(t− cτ2)

�
(
−dsσ + c+

μ
σ

)
eσt −β1e

λ11(t−cτ1) −β2e
λ21(t−cτ2)

�
(
−dsσ + c+

μ
σ
−β1e

−λ11cτ1 −β2e
−λ21cτ2

)
eσt .

Then, for sufficiently small σ > 0,

−dsσ + c+
μ
σ
−β1e

−λ11cτ1 −β2e
−λ21cτ2 > 0,

which gives that (4.6) holds for t < t3 , which completes the proof. �

LEMMA 4.6. Let 0 < ε1 < min{σ ,λ11,λ12−λ11} . Then, for M1 > 1 sufficiently
large, the functions S(t) and I1(t) satisfy the inequality

d1I
′′
1(t)− cI′1(t)+ β1S(t) f1(I1(t− cτ1))− (μ1 + γ1)I1(t) � 0, (4.7)

for all t �= t4 := 1
ε1

ln 1
M1

.

Proof. For t � t4 , then the inequality (4.7) holds immediately since I(t) = 0 on
[t4,∞) . For t < t4 , then I1(t) = eλ11t

(
1−M1eε1t

)
. In view of the fact f1(x)� x(1−α1x)

for all x � 0, and

eλ11t
(
1−M1e

ε1t
)

� I1(t) � eλ11t , 1− 1
σ

eσt � S(t) � 1, ∀t ∈ R,

we get

d1I
′′
1(t)− cI′1(t)+ β1S(t) f1(I1(t − cτ1))− (μ1 + γ1)I1(t)
� d1I

′′
1(t)− cI′1(t)+ β1S(t)I1(t − cτ1)(1−α1I1(t − cτ1))− (μ1 + γ1)I1(t)

� −M1Δ1(λ11 + ε1,c)e(λ11+ε1)t −β1α1e
2λ11t − β1

σ
e(λ11+σ)t

= e(λ11+ε1)t
(
−M1Δ1(λ11 + ε1,c)−β1α1e

(λ11−ε1)t − β1

σ
e(σ−ε1)t

)
.

Note that e(σ−ε1)t < 1 and e(λ11−ε1)t < 1 since σ −ε1 > 0, λ11−ε1 > 0, and t < t4 < 0.
Therefore

−M1Δ1(λ11 + ε1,c)−β1α1e
(λ11−ε1)t − β1

σ
e(σ−ε1)t
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> −M1Δ1(λ11 + ε1,c)−β1α1 − β1

σ
.

Consequently, we need only to choose

M1 � max
{

1,− σβ1α1 + β1

σΔ1(λ11 + ε1,c)

}
,

then (4.7) holds. �
Similar to the proof of Lemma 4.6, we can get

LEMMA 4.7. Let 0 < ε2 < min{σ ,λ21,λ22−λ21} . Then, for M2 > 1 sufficiently
large, the functions S(t) and I2(t) satisfy the inequality

d2I
′′
2(t)− cI′2(t)+ β2S(t) f2(I2(t− cτ2))− (μ2 + γ2)I2(t) � 0, (4.8)

for all t �= t5 := 1
ε2

ln 1
M2

.

4.2. The verification of Schauder fixed point theorem

In this subsection, we shall use the usual Banach space B :=C(R,R3) of bounded
continuous functions endowed with the maximum norm

‖Φ‖ = sup
t∈R

(|φ1(t)|+ |φ2(t)|+ |φ3(t)|) for Φ = (φ1,φ2,φ3) ∈ B,

see [14, 26]. Next, for any c > c∗ , we construct the profile set as follows

Γc =
{
(S, I1, I2) ∈ B : (S, I1, I2)(t) � (S, I1, I2)(t) � (S, I1, I2)(t)

}
.

Clearly, Γc is a bounded nonempty closed convex subset of B .
Define ρ11 < 0 < ρ12 satisfying dsρ2 − cρ − γ = 0, ρ21 < 0 < ρ22 satisfying

d1ρ2 − cρ − γ = 0 and ρ31 < 0 < ρ32 satisfying d2ρ2 − cρ − γ = 0, where γ >
max{μ1 + γ1,μ2 + γ2} is a constant such that

γ S(t)+ μ(1−S(t))−β1S(t) f1(I1(t − cτ1))−β2S(t) f2(I2(t− cτ2))

is monotone increasing in S > 0. For (S, I1, I2) ∈ Γc , we denote

H1(S, I1, I2)(t) = γ S(t)+ μ(1−S(t))−β1S(t) f1(I1(t− cτ1))
−β2S(t) f2(I2(t− cτ2)),

H2(S, I1, I2)(t) = γ I1(t)+ β1S(t) f1(I1(t− cτ1))− (μ1 + γ1)I1(t),
H3(S, I1, I2)(t) = γI2(t)+ β2S(t) f2(I2(t− cτ2))− (μ2 + γ2)I2(t).

By the definition of γ , we see that H1 is monotone increasing in S and monotone de-
creasing in I1 and I2 ; H2 is monotone increasing in both S and I1 ; and H3 is monotone
increasing in both S and I2 .
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Then we define an operator F = (F1,F2,F3) : Γc → B as follows

F1(S, I1, I2)(t) =
1

Λ1

(∫ t

−∞
eρ11(t−s) +

∫ +∞

t
eρ12(t−s)

)
H1(S, I1, I2)(s)ds,

F2(S, I1, I2)(t) =
1

Λ2

(∫ t

−∞
eρ21(t−s) +

∫ +∞

t
eρ22(t−s)

)
H2(S, I1, I2)(s)ds,

F3(S, I1, I2)(t) =
1

Λ3

(∫ t

−∞
eρ31(t−s) +

∫ +∞

t
eρ32(t−s)

)
H3(S, I1, I2)(s)ds,

where Λ1 := ds(ρ12−ρ11), Λ2 := d1(ρ22−ρ21), Λ3 := d2(ρ32−ρ31) .

LEMMA 4.8. The map F : Γc → Γc .

Proof. For (S, I1, I2) ∈ Γc , we only need to prove that for all t ∈ R ,

S(t) � F1(S, I1, I2)(t) � 1, I1(t) � F2(S, I1, I2)(t) � I1(t),

I2(t) � F3(S, I1, I2)(t) � I2(t).

Here, we only prove the first inequality of the above holds since the proofs of the others
are similar to that of the first one of the above. Indeed, according to the monotonicity
of H1 with respect to S , I1 and I2 , we have

F1(S, I1, I2)(t) � F1(S, I1, I2)(t) � F1(S, I1, I2)(t), t ∈ R.

Thus it is sufficient to verify

S(t) � F1(S, I1, I2)(t) � F1(S, I1, I2)(t) � 1. (4.9)

For t �= t3 , by (4.6), we have

F1(S, I1, I2)(t) =
1

Λ1

(∫ t

−∞
eρ11(t−s) +

∫ +∞

t
eρ12(t−s)

)
H1(S, I1, I2)(s)ds,

� 1
Λ1

(∫ t

−∞
eρ11(t−s) +

∫ +∞

t
eρ12(t−s)

)
(γS(s)+ cS′(s)−dsS

′′(s))ds.

When t > t3 , since S′(t3−) � 0 and ρ12 > 0 > ρ11 , it follows that

F1(S, I1, I2)(t) � 1
Λ1

(∫ t3

−∞
+

∫ t

t3

)
eρ11(t−s)(γS(s)+ cS′(s)−dsS

′′(s))ds

+
1

Λ1

∫ +∞

t
eρ12(t−s)(γS(s)+ cS′(s)−dsS

′′(s))ds

=
1

Λ1
(

γ
ρ12

− γ
ρ11

)S(t)− ds

Λ1
eρ11(t−t3)S′(t3−)

= S(t)− ds

Λ1
eρ11(t−t3)S′(t3−)

� S(t).
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Similarly, when t < t3 , we also have F1(S, I1, I2)(t) � S(t) . By the continuity of both
S(t) and F1(S, I1, I2)(t) , we obtain F1(S, I1, I2)(t) � S(t) for all t ∈ R .

On the other hand, for any t ∈ R , it follows from (4.5) that

F1(S, I1, I2)(t) =
1

Λ1

(∫ t

−∞
eρ11(t−s) +

∫ +∞

t
eρ12(t−s)

)
H1(S, I1, I2)(s)ds,

� 1
Λ1

(∫ t

−∞
eρ11(t−s) +

∫ +∞

t
eρ12(t−s)

)(
γS(s)+ cS

′(s)−dsS
′′(s)

)
ds

=
1

Λ1

(∫ t

−∞
eρ11(t−s) +

∫ +∞

t
eρ12(t−s)

)
(γS(s))ds

= 1.

This completes the proof of (4.9). �

LEMMA 4.9. The map F : Γc → Γc is complete continuous with respect to || · ||
in B .

Proof. We first show that the operator F1 is continuous. Note that, for any Φ1 =
(S1, I11, I21),Φ2 = (S2, I12, I22) ∈ B , it is easy to see that there exists L > 0 such that,
for all t ∈ R ,

|H1(S1, I11, I21)(t)−H1(S2, I12, I22)(t)| � L(|I11(t − cτ1)− I12(t− cτ1)|
+ |I21(t− cτ2)− I22(t − cτ2)|+ |S1(t)−S2(t)|)

� L‖Φ1−Φ2‖.
Then

|F1(S1, I11, I21)(t)−F1(S2, I12, I22)(t)|
� L

Λ1

(∫ t

−∞
eρ11(t−s) +

∫ +∞

t
eρ12(t−s)

)
‖Φ1−Φ2‖

� L
γ
‖Φ1−Φ2‖.

Then, F1 : Γc → Γc is continuous with respect to the norm ‖ · ‖ .
Next, we prove that F1 is compact. Let

M1 = sup
(S,I1,I2)∈Γc,∀t∈R

|H1(S(t), I1(t), I2(t))|.

For any given Δt > 0 and (S, I1, I2)∈ Γc , keeping in mind that ρ11 < 0 < ρ12 , it follows
from the definition of F1 that

|F1(S, I1, I2)(t + Δt)−F1(S, I1, I2)(t)|

=
1

Λ1

∣∣∣(∫ t+Δt

−∞
eρ11(t+Δt−s) −

∫ t

−∞
eρ11(t−s)

)
H1(S, I1, I2)(s)ds
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+
(∫ ∞

t+Δt
eρ12(t+Δt−s)−

∫ ∞

t
eρ12(t−s)

)
H1(S, I1, I2)(s)ds

∣∣∣
� 1

Λ1

(
|eρ11Δt −1|

∫ t

−∞
eρ11(t−s)|H1(S, I1, I2)(s)|ds

+
∫ t+Δt

t
eρ11(t+Δt−s)|H1(S, I1, I2)(s)|ds

+(eρ12Δt −1)
∫ ∞

t
eρ12(t−s)|H1(S, I1, I2)(s)|ds

+
∫ t+Δt

t
eρ12(t−s)|H1(S, I1, I2)(s)|ds

)
� M1

Λ1

(
eρ11t(1− eρ11Δt)

∫ t

−∞
e−ρ11sds+ eρ11(t+Δt)

∫ t+Δt

t
e−ρ11sds

+ eρ12t(eρ12Δt −1)
∫ ∞

t+Δt
e−ρ12sds+ eρ12t

∫ t+Δt

t
e−ρ12sds

)
=

M1

Λ1

( 2
ρ11

(eρ11Δt −1)+
2

ρ12
(1− e−ρ12Δt)

)
� 4M1

Λ1
Δt.

Here, we use the inequality ex � 1 + x for x ∈ R . It follows that {F1(S, I1.I2)(t) :
(S, I1.I2) ∈ Γc} is a family of equicontinuous functions.

Similarly, one also can show {Fi(S, I1, I2)(t) : (S, I1, I2) ∈ Γc} , i = 2,3, is a family
of equicontinuous functions. Thus, {F(S, I1, I2)(t) : (S, I1, I2)∈ Γc} represents a family
of equicontinuous functions. Then the Arzelà-Ascoli theorem implies that F takes the
bounded convex subset of Γc into a compact subset of Γc . The proof is completed. �

Now we are in a position to state and show our main results as follows.

THEOREM 4.1. Assume that R0 > 1 and R0 > 1 . Then for every c > c∗ , model
(4.1) admits a nontrivial traveling wave solution

(
S(x+ ct), I1(x+ ct), I2(x+ ct)

)
sat-

isfying the asymptotic boundary condition (4.2), and

lim
t→−∞

e−λ11t I1(t) = 1, lim
t→−∞

e−λ21t I2(t) = 1.

Proof. By Lemmas 4.8 and 4.9 and using Schauder fixed point theorem, we can
conclude that there exists a pair of (S(t), I1(t), I2(t)) ∈ Γc , which is a fixed point of the
operator F , consequently, (S, I1, I2) is a solution of (4.1). Also, in view of Lemmas
4.2-4.7, it is easy to see that S(−∞) = 1, I1(−∞) = 0, I2(−∞) = 0. Moreover, we see
that lim

t→−∞
e−λ11t I1(t) = 1, lim

t→−∞
e−λ21t I2(t) = 1.

On the other hand, for any t ∈ R , observing that (S(t), I1(t), I2(t)) ∈ Γc , we then
get S(t) > 0, I1(t) � 0 and I2(t) � 0. Further, we claim that I1(t) > 0 for any t ∈ R .
Indeed, if there exists t0 ∈ R such that I1(t0) = 0, then there exist constants a,b ∈ R

such that a < 1
ε1

ln 1
M1

� b and t0 ∈ (a,b) . It implies I1(t) attains its minimum in (a,b)
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for any t ∈ [a,b] . From the second equation of (4.1), I1 satisfies

−d1I
′′
1 (t)+ cI′1(t)+ (μ1 + γ1)I1(t) � 0, t ∈ [a,b].

By the elliptic strong maximum principle (see, [25, Lemma 2.1.2]), it follows that
I1(t) ≡ 0 for t ∈ [a,b] . On the other hand, by Lemma 4.6, we have I1(t) > 0 for
t ∈ [a, 1

ε1
ln 1

M1
) . This is a contradiction. Similarly, we can proof that I2(t) > 0 for any

t ∈ R .
We next show that S′(t)

S(t) , I′1(t)
I1(t) and I′2(t)

I2(t)
are bounded for any t ∈ R by similar

arguments as those in [8, Theorem 4.2(ii)]. Indeed, system (4.1) can be rewritten as

−
⎛⎝ ds

d1

d2

⎞⎠⎛⎝ S
I1
I2

⎞⎠′′

+ c

⎛⎝ S
I1
I2

⎞⎠′

+

⎛⎝q11(t) 0 0
q21(t) −(μ1 + γ1) 0
q31(t) 0 −(μ2 + γ2)

⎞⎠⎛⎝ S
I1
I2

⎞⎠ = 0,

where
q11(t) =

μ
S(t)

− μ −β1 f1(I1(t − cτ1))−β2 f2(I2(t− cτ2))

and
q21(t) = β1 f1(I1(t− cτ1)), q31(t) = β2 f2(I2(t − cτ2)).

Note that (S(t), I1(t), I2(t)) ∈ Γc , we see the functions qi1(t) , i = 1,2,3, is bounded.
Apply Harnack inequality (see [4, Theorem 1.1]), it follows that there exists C > 0 such
that for any t ∈ R ,

max
[t−1,t+1]

S(ξ ) � C min
[t−1,t+1]

S(ξ ), max
[t−1,t+1]

Ii(ξ ) � C min
[t−1,t+1]

Ii(ξ ), i = 1,2.

Therefore, there exists C > 0 such that∣∣∣S′(t)
S(t)

∣∣∣+ ∣∣∣ I′1(t)
I1(t)

∣∣∣+ ∣∣∣ I′2(t)
I2(t)

∣∣∣ � C, t ∈ R. (4.10)

Next, motivated by [8, 9, 12], we use the Laypunov method to show S(+∞) = S∗ ,
I1(+∞) = I∗1 , I2(+∞) = I∗2 . To this end, we consider the following Lyapunov functional

V (t) =c(VS(t)+VI1(t)+VI2(t))+ (μ1 + γ1)I∗1V1(t)+ (μ2 + γ2)I∗2V2(t)

+dsS
′
( S∗

S(t)
−1

)
+d1I

′
1

( f1(I∗1 )
f1(I1(t))

−1
)

+d2I
′
2

( f2(I∗2 )
f2(I2(t))

−1
)
,

where

VS(t) = S−S∗−S∗ ln
S
S∗

, VIi(t) = Ii(t)− I∗i −
∫ Ii(t)

I∗i

fi(I∗i )
fi(η)

dη , i = 1,2,

and

Vi(t) =
∫ t

t−cτi

( fi(Ii(s))
fi(I∗i )

−1− ln
fi(Ii(s))
fi(I∗i )

)
ds, i = 1,2.



118 DANXIA CHEN AND ZHITING XU

By (4.10), we know the function V is defined and bounded from below.
A direct calculation shows that

c
dVS

dt
=

S−S∗

S
(cS′) =

S−S∗

S

(
dsS

′′ + μ(S∗−S)+ β1S
∗ f1(I∗1 )+ β2S

∗ f2(I∗2 )

−β1S f1(I1(t − cτ1))−β2S f2(I2(t− cτ2))
)
,

c
dVIi

dt
=

fi(Ii)− fi(I∗i )
fi(Ii)

(cI′i )

=
fi(Ii)− fi(I∗i )

fi(Ii)
(
diI

′′
i + βiS fi(Ii(t− cτi))− (μi + γi)Ii

)
,

and

d
dt

(
S′

(S∗

S
−1

))
=

S∗ −S
S

S′′ − S∗(S′)2

S2 ,

d
dt

(
I′i
( fi(I∗i )

fi(Ii)
−1

)
=I′′i

( fi(I∗i )
fi(Ii)

−1
)
− fi(I∗i )

fi(Ii)
f ′i (Ii)(I

′
i )

2,

and

dVi

dt
= − fi(Ii(t− cτi))

fi(I∗i )
+

fi(Ii)
fi(I∗i )

+ ln
fi(Ii(t− cτi))

fi(Ii)
, i = 1,2.

Thus,

dV
dt

=− dsS∗(S′)2

S2 − d1 f1(I∗1 ) f ′1(I1)(I
′
1)

2

f 2
1 (I1)

− d2 f2(I∗2 ) f ′2(I2)(I
′
2)

2

f 2
2 (I2)

− μ(S−S∗)2

S

+ β1S
∗ f1(I∗1 )+ β2S

∗ f2(I∗2 )− β1 f1(I∗1 )(S∗)2

S
− β2 f2(I∗2 )(S∗)2

S
+ β1S

∗ f1(I1(t− cτ1))− (μ1 + γ1)I1 + β2S
∗ f2(I2(t− cτ2))− (μ2 + γ2)I2

−β1S f1(I1(t− cτ1))
f1(I∗1 )
f1(I1)

+ (μ1 + γ1)I1
f1(I∗1 )
f1(I1)

−β2S f2(I2(t− cτ2))
f2(I∗2 )
f2(I2)

+ (μ2 + γ2)I2
f2(I∗2 )
f2(I2)

− (μ1 + γ1)I∗1
f1(I1(t− cτ1))

f1(I∗1 )
+ (μ1 + γ1)I∗1

f1(I1)
f1(I∗1 )

+ (μ1 + γ1)I∗1 ln
f1(I1(t− cτ1))

f1(I1)
− (μ2 + γ2)I∗2

f2(I2(t− cτ2))
f2(I∗2)

+ (μ2 + γ2)I∗2
f2(I2)
f2(I∗2 )

+ (μ2 + γ2)I∗2 ln
f2(I2(t − cτ2))

f2(I2)
.

Note that

ln
fi(Ii(t − cτi))

fi(Ii)
= ln

S∗

S
+ ln

S fi(Ii(t − cτi))
S∗ fi(Ii)

, (μi + γi)I∗i = βiS
∗ fi(I∗i ), i = 1,2,
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it follows that

dV
dt

=− dsS∗(S′)2

S2 − d1 f1(I∗1 ) f ′1(I1)(I
′
1)

2

f 2
1 (I1)

− d2 f2(I∗2 ) f ′2(I2)(I
′
2)

2

f 2
2 (I2)

− μ(S−S∗)2

S

− (μ1 + γ1)I∗1
(S∗

S
−1− ln

S∗

S

)
− (μ2 + γ2)I∗2

(S∗

S
−1− ln

S∗

S

)
− (μ1 + γ1)I∗1

(S f1(I1(t − cτ1))
S∗ f1(I1)

−1− ln
S f1(I1(t − cτ1))

S∗ f1(I1)

)
− (μ2 + γ2)I∗2

(S f2(I2(t − cτ2))
S∗ f2(I2)

−1− ln
S f2(I2(t − cτ2))

S∗ f2(I2)

)
+(μ1 + γ1)I∗1

(
− I1

I∗1
+

I1 f1(I∗1 )
I∗1 f1(I1)

+
f1(I1)
f1(I∗1 )

−1
)

+(μ2 + γ2)I∗2
(
− I2

I∗2
+

I2 f2(I∗2 )
I∗2 f2(I2)

+
f2(I2)
f2(I∗2 )

−1
)

=− dsS∗(S′)2

S2 − d1 f1(I∗1 ) f ′1(I1)(I
′
1)

2

f 2
1 (I1)

− d2 f2(I∗2 ) f ′2(I2)(I
′
2)

2

f 2
2 (I2)

− μ(S−S∗)2

S

− (μ1 + γ1)I∗1
(S∗

S
−1− ln

S∗

S

)
− (μ2 + γ2)I∗2

(S∗

S
−1− ln

S∗

S

)
− (μ1 + γ1)I∗1

(S f1(I1(t − cτ1))
S∗ f1(I1)

−1− ln
S f1(I1(t − cτ1))

S∗ f1(I1)

)
− (μ2 + γ2)I∗2

(S f2(I2(t − cτ2))
S∗ f2(I2)

−1− ln
S f2(I2(t − cτ2))

S∗ f2(I2)

)
+(μ1 + γ1)I∗1

( I1
I∗1

− f1(I1)
f1(I∗1 )

)( f1(I∗1 )
f1(I1)

−1
)

+(μ2 + γ2)I∗2
( I2

I∗2
− f2(I2)

f2(I∗2 )

)( f2(I∗2 )
f2(I2)

−1
)
.

In views of fi(Ii) = Ii
1+αiIi

, i = 1,2, the last two term reduces to

−α1(μ1 + γ1)(I1 − I∗1)
2

(1+ α1I1)(1+ α1I∗1 )
− α2(μ2 + γ2)(I2− I∗2)2

(1+ α2I2)(1+ α2I∗2 )
� 0.

In addition, note that f ′i (Ii) > 0 for Ii > 0, i = 1,2, and

S∗

S
−1− ln

S∗

S
� 0 for S > 0,

and

S fi(Ii(t− cτi))
S∗ fi(Ii)

−1− ln
S fi(Ii(t − cτi))

S∗ fi(Ii)
� 0 for Ii(t − cτ1) > 0, S > 0, i = 1,2.

Consequently, V is decreasing and bounded from below on R+ . Note that dV
dt = 0 if

and only if S ≡ S∗ , I1 ≡ I∗1 , I2 ≡ I∗2 , S′ = 0, I′1 = 0 and I′2 = 0. Thus, this shows the
boundary condition (4.2) holds, which completes the proof. �
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In what follows, we turn to study the traveling wave solution of the fourth equation
of (2.1). Letting x+ ct by t , then the equation reads

dRR′′(t)− cR′(t)+ γ1I1(t)+ γ2I2(t)− μR(t) = 0. (4.11)

Then we have the following conclusion.

LEMMA 4.10. Assume that R0 > 1 and R0 > 1 . Then for every c > c∗ , Eq.(4.11)
has a traveling wave solution R(t) with lim

t→−∞
R(t) = 0 and lim

t→∞
R(t) = R∗ .

Proof. Note that equation (4.11) has a bounded solution given by

R(t) =
1

Λ4

(∫ t

−∞
eρ41(t−s) +

∫ ∞

t
eρ42(t−s)

)
(γ1I1(s)+ γ2I2(s))ds,

where

ρ41 =
c−

√
c2 +4dRμ
2dR

< 0, ρ42 =
c+

√
c2 +4dRμ
2dR

> 0, Λ4 = dR(ρ42−ρ41).

By using the L’Hôspital rule, we get

lim
t→−∞

R(t) =
1

Λ4

( 1
ρ42

− 1
ρ41

)
lim

t→−∞
(γ1I1(t)+ γ2I2(t)) = 0,

and

lim
t→∞

R(t) =
1
μ

lim
t→∞

(γ1I1(t)+ γ2I2(t)) =
γ1

μ
I∗1 +

γ2

μ
I∗2 = R∗.

This completes the proof. �
Finally, summing up Theorem 4.1 and Lemma 4.10, we obtain the main result in

this section.

THEOREM 4.2. Assume that R0 > 1 and R0 > 1 . Then for every c > c∗ , sys-
tem (2.1) admits a traveling wave solution with speed c which connects the equilibria
E0(1,0,0,0) and E∗(S∗, I∗1 , I∗2 ,R∗) .

5. Conclusion and discussion

In this paper, starting from the works [1, 5], we presented a mathematical model to
describe the spatial dynamics of a diffusive disease model with two-strains and latency
delays. For this model, by an abstract treatment, we studied the existence, uniqueness
and positive of the solution to the initial-boundary-value problem associated to system
(2.1).

For the model under consideration, the global stability of the equilibria is com-
pletely determined by selecting suitable Lyapunov functionals. More precisely, the
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disease dies out from the population if the basic reproduction R0 � 1; but, if R0 > 1,
then the disease will persist and one or both of the strains become endemic: depend-
ing the model parameter values, either one or both of the two boundary (one-strain)
equilibrium or the co-persistence equilibrium is globally attractive.

As we know, the traveling wave solutions describes the disease propagation into
the susceptible individuals from an initial disease-free equilibrium to the disease equi-
librium. Here, we proved that existence such a traveling wave solution connecting the
disease free and endemic equilibria is totally determined by the threshold values R0

and R0 .
As a final remark, it is worth to mention, in this paper, we do not show whether

c∗ is the minimal wave speed cmin , that is, there does not exist traveling wave solution
connecting the two steady states for 0 < c < cmin . Recently, Liang and Zhao [13] have
proved that for a class of system with certain monotonicity, these two speeds indeed
coincide. Clearly, the results in [13] can not apply to the model directly, since system
(2.1) is non-monotone. Hence, it is of interest to study the relation of the minimal wave
speed and the asymptotic speeds of spread for system (2.1). This problem will be left
for our further investigation.
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