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Abstract. In this paper we study the exponential stability and exponential dichotomy of the first
order linear dynamic equation zΔ(s) = Mz(s) in terms of the boundedness of solutions of the
following Cauchy problems:{

zΔ(s) = Mz(s)+ f (s)Qb, 0 � s ∈ T,

z(0) = 0

and {
wΔ(s) = −Mwσ + f (s)(I−Q)b,
w(0) = 0,

where T is a time scale, M is a regressive matrix, b is a non-zero vector in Cm , f (s) is a
bounded and right-dense continuous function on T , and Q is a projection on Cm .

1. Introduction

Let A be a bounded linear operator acting on a complex Banach space X . A
well-known theorem of Daletckii and Krein [12] and Krein [21] says that the system
ẋ(t) = A x(t) is uniformly exponentially stable if and only if for each μ ∈ R and each
b ∈ X the solution of the Cauchy problem{

V̇ (t) = AV (t)+ eiμtb,

V (0) = 0

is bounded. The proof of this classical result can be found in [2]. This result can also
be extended for strongly continuous bounded semigroups; see [7, 8, 23].

Under a slightly different assumption the result on stability is also preserved for
any strongly continuous semigroups acting on complex Hilbert spaces; see, for exam-
ple, [24, 27] and the references cited therein. See also, [6, 16], for counter-examples.
In discrete case, similar results can be found in [1, 29, 30].

In [9, 28] the same results were extended to dichotomy for square size matrices in
both continuous and discrete cases. The main purpose of this article is to present the
results of [9, 28] in a unified way, i.e., on time scales.
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2. Basic Notation and Preliminaries

In 1988, the theory of dynamic equations on time scales was introduced by Hilger
[18, 19], with the motivation of providing a unification to continuous and discrete cal-
culus. Since then, this theory has been developing rapidly and has received a lot of
attention in recent years. The basic theory of time scales and dynamic equations on
time scales can be found in the monographes by Bohner and Peterson [3, 4] and the
references contained therein.

Recently, many researchers paid attention to the study of the different types of
stabilities of dynamic equations on time scales, with different approaches; see, e.g.,
[5, 10, 11, 14, 15, 17, 20, 22, 25, 26, 31].

By a time scale T , we mean a nonempty closed subset of real numbers. The for-
ward jump operator σ : T → T , backward jump operator ρ : T →T , and the graininess
function μ : T → R are respectively defined as

σ(s) = inf{n ∈ T : n > s}, ρ(s) = sup{n ∈ T : n < s}, μ(s) = σ(s)− s.

A point s ∈ T will be called left-scattered and left-dense if s > ρ(s) and ρ(s) = s ,
respectively. If s < σ(s) and σ(s) = s , then s will be called right-scattered and right-
dense, respectively. We also need the set Tz which is called the derived form of time
scale T and is defined as follows: if T has a left-scattered maximum n , then T

z =
T\{n} . Otherwise, Tz = T . Shortly,

T
z =

{
T\(ρ(supT),supT], if supT < ∞,

T, if supT = ∞.

A function h : T→R is called right-dense continuous provided it is continuous at right-
dense points in T and its left-sided limits exist at left-dense points in T . The set of all
right-dense continuous functions is denoted by Crd . If h is continuous at each right-
dense and left-dense point, then h is said to be a continuous function on time scale
T .

For h : T → R and s ∈ Tz , we define the delta derivative of h(s) denoted by
hΔ(s) , to be the number (if it exists) with the property that for any ε > 0, there exists a
neighborhood N of s such that

|[h(σ(s))−h(t)]−hΔ(s)[σ(s)− t]| � ε|σ(s)− t|, ∀ t ∈ N.

Also a function h : T→R is called regulated if its left-sided limits exist at all left-dense
points and right-sided limits exist at all right-dense points. A function H : T → R is
called an anti-derivative of h : T → R provided HΔ(s) = h(s), ∀ s ∈ Tz . Note that
every right-dense continuous function has an anti-derivative. The indefinite integral of
h : T → R is given by ∫

h(s)Δs = H(s)+C

and the Cauchy integral is given by∫ s

r
h(t)Δt = H(s)−H(r).
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A function q : T → R is called regressive provided 1+ μ(s)q(s) �= 0 for all s ∈
Tz and is called positively regressive if 1+ μ(s)q(s) > 0. The set of all regressive and
right-dense continuous functions will be denoted by Reg(T) and the set of all right-
dense and positively regressive functions will be denoted by Reg(T)+ .

If q ∈ Reg(T) , then the first order linear dynamic equation zΔ(s) = q(s)z is called
regressive and eq(·,s0) is the solution of initial value problem zΔ(s) = q(s)z, z(s0) = 1.

Finally, if w : T → R is a function, then wσ : T → R is defined by

wσ (s) = w(σ(s)) for all s ∈ T.

DEFINITION 1. The function λ ∈Reg(Tz,C) is said to be uniformly regressive if
there exists an α > 0 such that it satisfies the following condition

α−1 �| 1+ μ(t)λ (t) | for t ∈ T
z. (2.1)

DEFINITION 2. If q ∈ Reg(T) , then the generalized exponential function eq(x,y)
on time scale T is defined by

eq(x,y) = exp

(∫ y

x
ξμ(s)q(s)Δs

)
for all x,y ∈ T,

with the cylindrical transformation given by

ξg(y) =

{
Log(1+gy)

h , if h �= 0,

y, if h = 0.

DEFINITION 3. Let g, h : T → R be two regressive functions. The operations ⊕
and � can be define as

g⊕h = g+h+ μgh, �g = − g
1+ μg

, and g�h = g⊕ (�h).

Here we recall few results from [3], without proofs, which will be useful later on.

LEMMA 1. (see [3, Theorem 2.36]) If g, h ∈ Reg(T) and c, x, y, z ∈ T , then

(i) e0(x,y) = 1 and eg(x,x) = 1 ;

(ii) eg(σ(x),y) = (1+ μ(s)g(s))eg(x,y);
(iii) eg(x,y) = 1

eg(y,x)
= e�g(x,y);

(iv) eg(x,y)eg(y,z) = eg(x,z);
(v) (e�g(x,y))Δ = (�g)(s)e�g(x,y);
(vi)

∫ y
x g(s)eg(cz,σ(s))Δs = eg(x,y)− eg(y,z) .
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Consider the first order linear dynamic system

zΔ(s) = Mz(s); z(s0) = z0, s ∈ T, (M)

where M is a square matrix of order m .
Concerning the exponential stability of system (M) , in [17] the following result

was obtained.

LEMMA 2. (see [17, Theorem 6.3]) System (M) is exponentially stable if and only
if there exists a γ > 0 with −γ ∈ Reg(T)+ such that for any s0 ∈ T , there exists an
α = α(s0) � 1 such that for any solution ψ(s) of (M) , we have

||ψ(s)|| � α‖z0‖e−γ(s,s0), s � s0, s ∈ T.

LEMMA 3. (see [13, Lemma 3.1]) Let T be a time scale and β > 0 be a positive
number such that β ∈Reg(T)+ . Then for the corresponding scalar system zΔ = β z the
following inequality holds

eβ (u,v) � eβ (u−v) f or all u � v.

In [27], a result concerning the system (M) in scalar case was obtained as follows.

PROPOSITION 1. (see [27, Proposition 6]) Let T be an unbounded time scale and
let λ ∈ C . The scalar system zΔ = λ z, z ∈ C is exponentially stable if and only if one
of the following conditions is satisfied for arbitrary s0 ∈ T .
(i)

ω(λ ) = limsup
S→∞

1
S− s0

∫ S

s0
lim

u→μ(s)

log |1+uλ |
u

Δs < 0 .

(ii) ∀ S ∈ T : ∃s ∈ T with s > S such that 1+ μ(s)λ = 0 .

DEFINITION 4. Let T be an unbounded time scale and we define for arbitrary
s0 ∈ T , the sets

EC(T) :=
{

λ ∈ C : limsup
S→∞

1
S− s0

∫ S

s0
lim

u→μ(s)

log |1+uλ |
u

Δs < 0

}

and

ER(T) := {λ ∈ R|∀ S ∈ T : ∃ s ∈ T with s > S such that 1+ μ(s)λ = 0}.
On time scale T there is a set of exponential stability defined by

E(T) = EC(T)∪ER(T).

REMARK 1. For any time scale T we have EC(T) ⊂ {λ ∈ C : Re(λ ) < 0} , be-
cause if Re(λ ) � 0, then |1+uλ |� 1 for all non-negative u ∈ R .
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Let S (M) denote the spectrum of the matrix M .

THEOREM 1. (see [27, Theorem 21]) Let the time scale T be unbounded from
above and let M be a regressive matrix. Then the following statements are true.
(i) If the system zΔ = Mz is exponentially stable, then S (M) ⊂ EC(T).
(ii) If (2.1) is true for all eigenvalues λ of M and if S (M) ⊂ EC(T) , then the system
zΔ = Mz is exponentially stable.

3. Spectral Decomposition Theorem on Time Scales

In [9, 28], the authors used the idea of spectral decomposition theorems in discrete
and continuous cases, respectively. Here, first we recall the spectral decomposition
theorems in continuous and discrete cases and then we prove them over time scales,
which is the main tool for proving our main results.

Let M be a square matrix of order m and qM be the characteristic polynomial
associated with M and let S (M) := {λ1,λ2, . . . ,λk} , k � m be its spectrum. It is clear
that there exist integer numbers m1,m2, . . . ,mk � 1 such that

qM(λ ) = (λ −λ1)m1(λ −λ2)m2 . . .(λ −λk)mk , m1 +m2 + . . .+mk = m.

Let j ∈ {1,2, . . . ,k} and Z j := ker(M − λ jI)mj . It is easy to check that Z j is an
etM -invariant subspace of Cm and dim(Z j) � 1.

In [28], the spectral decomposition theorem in continuous case was stated as fol-
lows.

THEOREM 2. (see [28, Theorem 1.1]) For each z ∈ Cm there exist r j ∈ Z j ( j ∈
{1,2, . . . ,k}) such that

esMz = esMr1 + esMr2 + . . .+ esMrk, s ∈ R.

Moreover, if r j(s) := esMr j , then r j(s) ∈ Z j for all s ∈ R and there exist Cm -valued
polynomials t j(s) with deg(t j) � mj −1 such that

r j(s) = eλ jst j(s), s ∈ R, j ∈ {1,2, . . . ,k}.
Similarly, for discrete case the similar spectral decomposition theorem was proved in
[9] and is stated as follows.

THEOREM 3. (see [9, Theorem 1]) For each z ∈ Cm there exist y j ∈ Yj , ( j ∈
{1,2, . . . ,k}) such that

Asz = Asy1 +Asy2 + . . .+Asyk, for any s ∈ Z+.

Moreover, if y j(s) := Asy j , then y j(s) ∈ Yj for all s ∈ Z+ and there exist Cm -valued
polynomials t j(s) with deg(t j) � mj −1 such that

y j(s) = λ s
j t j(s), s ∈ Z+, j ∈ {1,2, . . . ,k}.
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Consider the system zΔ(s) = Mz(s), s ∈ T . We know that the solution of the
Cauchy problem

zΔ(s) = Mz(s), z(0) = z0

is given by z(s) = eM(s,0)z0. And the solution of the Cauchy problem{
zΔ(s) = Mz(s)+ f (s),
z(0) = 0

is given by

z(s) =
∫ s

0
eM(s,σ(t)) f (t)Δt.

We are in the position to state and prove the spectral decomposition theorem on
time scales.

THEOREM 4. Let M be a regressive matrix of order m. For each w ∈ Cm there
exist z j ∈ Z j ( j ∈ {1,2, . . . ,k}) such that

eM(s,0)w = eM(s,0)z1 + eM(s,0)z2 + . . .+ eM(s,0)zk, s ∈ T.

Moreover, if z j(s) := eM(s,0)z j , then z j(s) ∈ Z j for all s ∈ T and there exist Cm -
valued polynomials t j(s) with deg(t j) � mj −1 such that

z j(s) = eλ j
(s,0)t j(s), s ∈ T, j ∈ {1,2, . . . ,k}.

From Cayley–Hamilton theorem and the fact that

ker[gh(M)] = ker[g(M)]⊕ker[h(M)],

whenever the complex valued polynomials g and h are relatively prime, it follows that

C
m = Z1⊕Z2⊕ . . .⊕Zk. (3.1)

Let w ∈ Cm . For each j ∈ {1,2, . . . ,k} there exist unique z j ∈ Z j such that

w = z1 + z2 + . . .+ zk.

Thus
eM(s,0)w = eM(s,0)z1 + eM(s,0)z2 + . . .+ eM(s,0)zk, s ∈ T.

Let t j(s) := e�λ j
(s,0)z j(s) . A simple calculation shows that

tΔ
j
mj (s) =

e�λ (s,0)(M−λ jI)mj z jeM(s,0)
(1+ μλ j)mj

= 0.

The last equality follows because z j(s) belongs to Z j for each s ∈ T . Thus t j is a
C

m -valued polynomial having degree less than mj .
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4. Exponential Dichotomy in terms of Boundedness of Solution of a Cauchy
Problem

Using the idea of [27], here first we decompose C into three parts and then with
the help of this decomposition we decompose Cm into three spectral subspaces which
will help us to use the idea of dichotomy.

Let us divide C into three sets as follows.

EC(T) =
{

λ ∈ C : limsup
S→∞

1
S− s0

∫ S

s0
lim

u→μ(s)

log |1+uλ |
s

Δs < 0

}
,

E+
C

(T) =
{

λ ∈ C : limsup
S→∞

1
S− s0

∫ S

s0
lim

u→μ(s)

log |1+uλ |
s

Δs > 0

}

and

E0
C(T) =

{
λ ∈ C : limsup

S→∞

1
S− s0

∫ S

s0
lim

u→μ(s)

log |1+uλ |
s

Δs = 0

}
.

Clearly, C = EC(T)∪E+
C

(T)∪E0
C
(T) . By using this decomposition of C , we can state

the following definition.

DEFINITION 5. Let S (M) denote the spectrum of the regressive matrix M . The
system

zΔ(s) = Mz(s); z(s0) = z0 (M)

is said to be exponentially stable if all eigenvalues of matrix M are uniformly regressive
and S (M) ⊂ EC(T) and it is said to be expansive if S (M) ⊂ E+

C
(T) . If S (M)∩

E0
C
(T) = φ , then the system is said to be dichotomic.

REMARK 2. By the decomposition of C
m in (3.1) , let us consider

C
m = Ws(M)⊕W0(M)⊕Wu(M),

where

Ws(M) =
k⊕

j=1,λ j∈EC(T)

ker(M−λ jI)n j ,

W0(M) =
k⊕

j=1,λ j∈E0
C
(T)

ker(M−λ jI)n j ,

and

Wu(M) =
k⊕

j=1,λ j∈E+
C

(T)

ker(M−λ jI)n j .

Now if M is a dichotomic matrix, then W0(M) = {0} , and so Cm = Ws(M)⊕Wu(M) .

Our result concerning the exponential stability of (M) is stated as follows.
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THEOREM 5. The system zΔ(s) = Mz(s); z(s0) = z0 is exponentially stable if and
only if for each b∈Cm and each bounded function f the unique solution of the Cauchy
problem {

zΔ(s) = Mz(s)+ f (s)b,

z(0) = 0
(M,b,z0)

is bounded.

Proof. Necessity: Let zΔ(s) = Mz(s); z(s0) = z0 be exponentially stable. Then
by Lemma 2,

||ψ(s)|| � α‖z0‖e−γ(s,s0), s,s0 ∈ T.

We need to prove that for each b∈Cm and each bounded function f the unique solution
of the Cauchy problem (M,b,z0) is bounded. Taking norm of the solution of (M,b,z0) ,
we have

||z(s)|| = sup
s∈T

∣∣∣∣
∫ s

0
eM(s,σ(t)) f (t)bΔt

∣∣∣∣
� sup

s∈T

∣∣∣∣
∫ s

0
eM(s,σ(t))Δt

∣∣∣∣ || f (t)b||
= sup

s∈T

∣∣∣∣M−1
∫ s

0
MeM(s,σ(t))Δt

∣∣∣∣C
= CM−1 sup

s∈T

|eM(s,0)− eM(s,s)|

= CM−1||eM(s,0)−1||
� CM−1||ψ(s)||+CM−1

� CM−1γ‖z0‖e−γ(s,s0)+CM−1

� CM−1γ‖z0‖e−γ(s−s0) +CM−1.

Hence, the unique solution of (M,b,z0) is bounded.
Sufficiency: Suppose to the contrary that system (M) is not exponentially stable.

Then for ν ∈ {1,2, . . . ,k} there exists an eigenvalue λν of M such that λν /∈ EC(T) .
By Remark 1, EC(T) ⊂ {λ ∈ C : Re(λ ) < 0} . Thus Re(λν) � 0, which implies that
|1+uλν | � 1 for all non-negative u ∈ R . Letting f (t) = C and b = 0+0+ . . .+0+
bν +0+ . . .+0, then by spectral decomposition theorem in Theorem 4, eM(s,σ(t))b =
eλν (s,σ(t))pν(t) , where pν(t) is a polynomial of degree less than or equal to mν −1.
In this case the solution of (M,b,z0) can be written as

z(s) =
∫ s

0
eM(s,σ(t)) f (t)bΔt

=
∫ s

0
eλν (s,σ(t))pν(t)CΔt

= C
∫ s

0

eλν (s,t)
1+ μλν

pν(t)Δt.
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Since Re(λν) � 0, so z(s) → ∞ as s → ∞ , i.e., the unique solution of (M,b,z0) is
unbounded, which is a contradiction. Hence, system (M) is exponentially stable. This
completes the proof.

We know that the system zΔ(s) = Mzσ (s); z(s0) = z0 is expansive if and only if
zΔ(s) = −Mz(s); z(s0) = z0 is stable. Thus we can state the following corollary.

COROLLARY 1. The system zΔ(s) = Mz(s); z(s0) = z0 is expansive if and only
if for each b ∈ Cm and each bounded function f the unique solution of the Cauchy
problem {

zΔ(s) = −Mzσ + f (s)b,

z(0) = 0

is bounded.

In the next theorem we give our main result.

THEOREM 6. System (M) is dichotomic if and only if there exists a projection Q
having the property eM(s,0)Q = QeM(s,0) for all s � 0 such that for each non-zero
vector b in Cm and each bounded function f such that eM(s,0) f (s) = f (s)eM(s,0) ,
the solutions of the following Cauchy problems{

zΔ(s) = Mz(s)+ f (s)Qb,

z(0) = 0
(M,Qb,z0)

and {
wΔ(s) = −Mwσ + f (s)(I−Q)b,

w(0) = 0
(−M,(I−Q)b,w0)

are bounded.

Proof. Necessity: Suppose that system (M) is dichotomic. By Remark 2, Cm =
Ws(M)⊕Wu(M) . Let us define Q : Cm → Cm by Qw := ws , where w = ws + wu ,
ws ∈ Ws , and wu ∈ Wu . Clearly, Q is a projection. Moreover, for all w ∈ C

m and all
s � 0, we have

QeM(s,0)w = QeM(s,0)(ws +wu)
= Q(eM(s,0)ws + eM(s,0)wu)
= eM(s,0)ws

= eM(s,0)Qw,

where the fact that Ws(M) is an eM(s,0)-invariant subspace is used. Thus QeM(s,0) =
eM(s,0)Q . Now the solution of (M,Qb,z0) is given by

z(s) =
∫ s

0
eM(s,σ(t)) f (t)QbΔt.
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Applying Theorem 4, we have

eM(s,σ(t)) f (t)Qb = f (t)eM(s,σ(t))Qb

= f (t)Q(eλ1
(s,σ(t))p1(t)+ eλ2

(s,σ(t))p2(t)+ . . .

+eλν (s,σ(t))pν (t)+ . . .+ eλk
(s,σ(t))pk(t))

= f (t)(eλ1
(s,σ(t))p1(t)+ . . .+ eλν (s,σ(t))pν (t)),

where λi ∈Ws(M) for i∈ {1, . . . ,ν} and λ j ∈Wu(M) for j ∈ {ν +1, . . . ,k} . It is clear
that the solution of (M,Qb,z0) is bounded. Similarly, we can show that the solution of
(−M,(I−Q)b,w0) is bounded.
Sufficiency: Suppose to the contrary that system (M) is not dichotomic. Then W0(M) �=
0 and so there exists an eigenvalue λl of M such that λl ∈ E0

C
(T) . Since b ∈ Cm , so

let us choose b such that

b = 0+0+ . . .+0+bl +0+ . . .+0.

Then either bl ∈ Ws(M) or bl ∈ Wu(M) . If l � ν , then bl ∈ Ws(M) and if l > ν , then
bl ∈ Wu(M) .
Case-1: Assume bl ∈ Ws(M) . Then by Theorem 4,

eM(s,σ(t)) f (t)Qb = eM(s,σ(t)) f (t)Qbl = f (t)eλl
(s,σ(t))pl(t), l ∈ {1,2, . . . ,ν}.

So the solution of (M,Qb,z0) becomes

z(s) =
∫ s

0
f (t)eλl

(s,σ(t))pl(t)Δt,

where pl(t) is a polynomial of degree less than or equal to ml −1. Let f (t) =C . Then

z(s) =
∫ s

0
Ceλl

(s,σ(t))pl(t)Δt = C
∫ s

0
eλl

(s,σ(t))pl(t)Δt,

which is clearly unbounded. Hence, we arrived at a contradiction.
Case-2: Suppose bl ∈ Wu(M) . The solution of (−M,(I−Q)b,w0) is given by

w(s) =
∫ s

0
e�M(s,t) f (t)(I −Q)bΔt.

Now again by Theorem 4,

e�M(s,σ(t)) f (t)(I −Q)b = e�M(s,σ(t)) f (t)(I −Q)bl

= f (t)e�M(s,σ(t))(I−Q)bl

= f (t)e�λl
(s,σ(t))pl(t),

where pl(t) is a polynomial of degree less than or equal to ml −1. So the solution of
(−M,(I−Q)b,w0) becomes

w(s) =
∫ s

0
f (t)e�λl

(s,σ(t))pl(t)Δt.
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Letting f (t) = C , then

w(s) = C
∫ s

0
e�λl

(s,σ(t))pl(t)Δt.

Clearly, e�λl
(s,σ(t)) → 1 as s → ∞ and so w(s) → ∞ as s → ∞ , which is again

unbounded. Hence, in this case we also arrived at a contradiction. As in both cases we
have contradictions, and thus we accept that system (M) is dichotomic. The proof is
complete.
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Basel, (1996).

[24] J.M.A.M. van Neerven, Individual stability of strongly continuous semigroups with uniformly bounded
local resolvent, Semigroup Forum, 53 (1996), 155–161.

[25] A.C. Peterson and N.Y. Raffoul, Exponential stability of dynamic equations on time scales, Adv. Dif-
ference Equ., 2 (2005), 133–144.
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