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Abstract. The aim of this survey paper is to provide the recent developments on the existence,
uniqueness and regularity results to fully nonlinear elliptic equations of the form{

F(x,u,Du,D2u) = f (x) in Ω,

u = 0 on ∂Ω,

where Ω is a smooth bounded domain in R
n .
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[104] S. KOIKE, A. ŚWIECH, Maximum principle and existence of Lp -viscosity solutions for fully non-
linear uniformly elliptic equations with measurable and quadratic term, NoDEA Appl., 11, 4 (2004),
491–509.
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