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Abstract. In this paper, oscillatory and asymptotic properties of solutions of nonlinear second
order neutral dynamic equations of the form

(
r(t)(y(t)+ p(t)y(α(t)))Δ

)Δ
+q(t)G(y(β(t)))−h(t)H(y(γ(t))) = 0

and (
r(t)(y(t)+ p(t)y(α(t)))Δ

)Δ
+q(t)G(y(β(t)))−h(t)H(y(γ(t))) = f (t)

are studied under assumptions

∞∫
0

1
r(t)

Δt < ∞ and

∞∫
0

1
r(t)

Δt = ∞

for various ranges of p(t) , where T is a time scale with supT = ∞ , t ∈ [t0,∞)T , and t0 � 0 .
Examples illustrating the results are included.

1. Introduction

The study of dynamic equations on time scales goes to seminal work of Stefan
Hilger [8] and has received a lot of attention in recent years. Time scales were cre-
ated to unify the study of continuous and discrete mathematics and is particularly use
in differential and difference equations. Many results concerning differential equa-
tions carry over quite easily to corresponding results for difference equations, while
other results seem to be completely different from their continuous counterparts. The
study of dynamic equations on time scales reveals such discrepancies, and allow us to
avoid proving results twice, once for differential equations and once again for differ-
ence equations. The general idea is to prove a result for a dynamic equation where the
domain of the unknown function is a time scale T , which is a non-empty closed subset
of the real numbers R . In this way the results of this paper not only apply to the set of
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real numbers or set of integers, but also to more general time scales such as T = hN ,
T = qN0 =

{
t : t = qk,k ∈ N0

}
with q > 1, T = N2

0 =
{
t2 : t ∈ N0

}
, T = {√n : n ∈ N0}

e.t.c,. For basic notations on the time scale calculus, we refer the reader to monographs
[4, 5] and the references cited therein.

In recent years, there has been increasing interest of obtaining sufficient condi-
tions for the oscillation and nonoscillation of solution of second order neutral dynamic
equation on time scales (see [1, 2, 9, 11, 13]) and references cited therein.

Q. Yang et al. [19] studied the oscillation of second-order quasi linear neutral
dynamic equation

(r(t)|zΔ(t)|α−1zΔ(t))Δ +q(t)|x(δ (t))|β−1x(δ (t)) = 0, (1.1)

on an arbitrary time scale T , where z(t) = x(t)+ p(t)x(τ(t)),α,β > 0 are constants,
and obtained oscillation criteria for the equation when β > α,β = α and β < α, re-
spectively with the followig assumptions:

(A1) r ∈Crd([t0,∞)T,(0,∞)) with
∫ ∞
t0

r
−1
α (t)Δt = ∞;

(A2) p,q ∈Crd([t0,∞)T,R) with 0 � p(t) < 1,q(t) � 0;

(A3) τ,δ ∈Crd([t0,∞)T,T),τ(t) � t , and δ (t)� t , and limt→∞ τ(t) = limt→∞ δ (t)= ∞.

Kubiaczyk et al. [10] established some sufficient conditions for oscillation of the
second-order neutral functional dynamic equation

(r(t)[m(t)y(t)+ p(t)y(τ(t))]Δ]Δ +q(t) f (y(δ (t))) = 0 (1.2)

for t ∈ [t0,∞)T , on a time scale T which is unbounded above, where p,q,r,τ and δ
are real valued rd-continuous positive functions defined on T . They obtained results by
using Riccati substitution and analysis of Riccati dynamic inequality.

Saker and O’ Regan [14] considerd the second-order nonlinear neutral functional
dynamic equation

(p(t)([y(t)+ r(t)y(τ(t))]Δ)γ )Δ + f (t,y(δ (t))) = 0, (1.3)

on a time scale T and established some new sufficient conditions for oscillation. The
results improve oscillation results for neutral dynamic equation on time scales and are
new when δ (t) > t and/or 0 < γ < 1.

In E. Thandapani et al. [16] obtained the oscillation criteria for the second-order
nonlinear neutral delay dynamic equation on time scales

(
(r(t)(y(t)+ p(t)y(t− τ))Δ)γ

)Δ
+q(t)yβ (t− δ ) = 0, t ∈ T,

where T is a time scale and

(H1) γ � 1, and β > 0 are quotients of odd positive integers;

(H2) τ,δ are fixed nonnegative constants such that the delay functions τ(t) = t−τ < t
and δ (t) = t − δ < t satisfy τ(t) : T → T and δ (t) : T → T for all t ∈ T ;
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(H3) p(t) is a positive and rd-continuous function on T such that 0 � p(t) < 1.

Zhang and Wang [20] studied the oscillation criteria for second-order nonlinear
dynamic equation

(
r(t)

(
y(t)+ p(t)y(τ(t)Δ)γ

)Δ
)Δ

+ f1(t,y(δ1(t)))+ f2(t,y(δ2(t))) = 0,

on time scale T , where p∈Crd(T, [0,1]) , fi ∈C(T×R,R), i = 1,2,γ > 0 is a quotient
of odd positive integers by using the Ricati transformation technique.

In [17], author studied the oscillatory and asymptotic behaviour of solutions of the
second order nonlinear delay differential equations of the form

(
r(t)(y(t)+ p(t)y(t− τ))′

)′ +q(t)G(y(t−σ))−h(t)H(y(t− δ )) = f (t)

and
(
r(t)(y(t)+ p(t)y(t− τ))′

)′ +q(t)G(y(t−σ))−h(t)H(y(t− δ )) = 0

for various range of p(t) under the assumptions

∞∫
0

dt
r(t)

< ∞ and

∞∫
0

dt
r(t)

= ∞.

In [18], author studied the oscillatory and asymptotic behaviour of solutions of a
class of nonlinear second-order neutral difference equations with positive and negative
coefficients of the form

Δ(r(n)Δ(y(n)+ p(n)y(n−m)))+q(t)G(y(n− k1))−h(t)H(y(n− k2)) = f (t)

and

Δ(r(n)Δ(y(n)+ p(n)y(n−m)))+q(t)G(y(n− k1))−h(t)H(y(n− k2)) = 0

under the assumptions

∞

∑
n=0

1
r(n)

< ∞ and
∞

∑
n=0

1
r(n)

= ∞

for various ranges of p(n) .
The objective of this paper is to study the oscillatory and asymptotic properties of

solutions of the nonlinear second-order neutral delay dynamic equations with positive
and negative coefficients of the form

(
r(t)(y(t)+ p(t)y(α(t)))Δ

)Δ
+q(t)G(y(β (t)))−h(t)H(y(γ(t))) = 0 (H)

and
(
r(t)(y(t)+ p(t)y(α(t)))Δ

)Δ
+q(t)G(y(β (t)))−h(t)H(y(γ(t))) = f (t) (NH)
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on a time scale T such that supT = ∞ and t0 ∈ T .
We consider these equations under the assumptions that

(H0 )
∞∫
t0

1
r(s)

( ∞∫
s
h(t)Δt

)
Δs < ∞;

(H1 )
∞∫
0

1
r(t) Δt < ∞;

(H2 )
∞∫
0

1
r(t) Δt = ∞.

Here we extended the result of [17, 18] to second order dynamic equations with
positive and negative coefficients and the results obtained are new and generalize the
earlier work in [17, 18].

For equations (H) and (NH) we will use the notation [t0,∞)T = [t0,∞)∩T and as-
sume that r ∈Crd ([t0,∞)T,(0,∞)) , p, f ∈Crd ([t0,∞)T,R) , q,h∈Crd ([t0,∞)T,(0,∞)) ,
G,H ∈ (R,R) satisfying uG(u) > 0 and uH(u) > 0 for u �= 0, G is nondecreasing, H
is bounded, and α,β ,γ ∈Crd( T,T) are strictly increasing functions such that

lim
t→∞

α(t) = lim
t→∞

β (t) = lim
t→∞

γ(t) = ∞,α(t),β (t),γ(t) � t

and

(α ◦β )(t) = (β ◦α)(t) for all t ∈ [t0,∞)T.

The inverse of α(t) will be denoted by α−1(t)∈Crd(T,T) . Whenever we write t � t1 ,
we mean t ∈ [t1,∞)∩T .

Let t−1 = inft∈[t0 ,∞)T
{α(t),β (t),γ(t)} . By a solution of (H) and (NH), we mean

a function y ∈ Crd ([t−1,∞)T,R) , and such that y(t) + p(t)y(α(t)) ∈ C1
rd ([t0,∞),R) ,

r(t)(y(t)+ p(t)y(α(t)))Δ ∈ C1
rd ([t0,∞)T,R) , and such that (H) ((NH)) is satisfied on

[t0,∞)T . A solution of (H) or (NH) is called oscillatory if it is neither eventually pos-
itive nor eventually negative, and it is nonoscillatory otherwise. In this paper, we do
not consider solutions that eventually vanish identically. An equation will be called
oscillatory if all its solutions are oscillatory.

2. Preliminary Lemmas

We will need the following lemmas in the sequel.

LEMMA 1. Let (H1 ) hold. let u(t) be an eventually positive rd-continuously dif-
ferentiable function such that r(t)uΔ(t) is rd-continuously differentiable function on

[t0,∞)T such that
(
r(t)uΔ(t)

)Δ � 0 for large t , where r ∈C([0,∞)T,(0,∞)) .

(i) If uΔ(t) > 0 , then there exist a constant K > 0 such that u(t) � KR(t) , for
large t.

(ii) If uΔ(t) < 0 , then u(t) > −r(t)uΔ(t)R(t) , where R(t) =
∞∫
t

Δs
r(s) .



Differ. Equ. Appl. 8, No. 2 (2016), 207–223. 211

Proof. (i) Since R(t) < ∞,R(t) → 0 as t → ∞ and u(t) is nondecreasing, we can
find a constant K > 0 such that u(t) � KR(t) for all large t.

(ii) For s � t , we have r(s)uΔ(s) � r(t)uΔ(t) , and hence

u(s) � u(t)+
s∫

t

r(t)uΔ(t)
r(θ )

Δθ = u(t)+ r(t)uΔ(t)
s∫

t

Δθ
r(θ )

.

Thus,

0 < u(s) � u(t)+ r(t)uΔ(t)
s∫

t

Δθ
r(θ )

implies that u(t) � −r(t)uΔ(t)R(t) .

LEMMA 2. Assume that (H2) hold. Let u(t) and uΔ(t) be positive rd-continuously

differentiable functions with uΔ2
(t) � 0 for t � T � 0 . Then

u(t) � (t −T )uΔ(t) = η(t)r(t)uΔ(t)

for t � T � 0 , where η(t) = t−T
r(t) .

Proof. The proof is simple and hence the details are omitted.

LEMMA 3. ([[12], Lemma 3.5]) Let F,H,P : [t0,∞)T → R satisfy

F(t) = H(t)+P(t)H(α(t)) for t ∈ [t̂,∞)T,

where t̂ ∈ [t0,∞)T is such that α(t) � t0 for all t ∈ [t̂,∞)T . Assume that there exist
constants P1,P2 ∈ R such that P(t) is one of the following ranges:

(1) −∞ � P(t) � 0,

(2) 0 � P(t) � P1 < 1,

(3) 1 < P2 � P(t) < ∞.

If H(t) > 0 for large t ∈ [t0,∞)T , liminft→∞ H(t) = 0 , and limt→∞ F(t) = L ∈ R

exists, then L = 0.

3. Oscillation properties for (H)

In this section, we study the asymptotic behaviour of solutions of equation (H)
under assumptions (H1 ) and (H2 ). We will make use of the following conditions on
the functions in the equations (H) and (NH):

(H3 ) there exists λ > 0 such that G(u)+G(v) � λG(u+v) for u,v∈R with u,v > 0;

(H4 ) G(u)G(v) = G(uv) for u,v ∈ R;

(H5 ) G(−u) = −G(u) ; u ∈ R;

(H6 )
±c∫
0

Δu
G(u) < ∞ .
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REMARK 1. (H4 ) implies (H5 ). Indeed G(1)G(1) = G(1) , so that G(1) = 1.
Further, G(−1)G(−1) = G(1) = 1 gives (G(−1))2 = 1. Since G(−1) < 0, then
G(−1) = −1. Consequently, G(−u) = G(−1)G(u) = −G(u) . On the other hand,
G(uv) = G(u)G(v) for u > 0,v > 0 and G(−u) = −G(u) implies that

G(uv) = G(u)G(v) for every u,v ∈ R .

REMARK 2. The prototype of G satisfying (H3 ) and (H5 ) is

G(u) =
(
a+b |u|μ) |u|υ sgnu,

where a � 1,b � 1,μ � 0, and υ � 0. However, the prototype of G satisfying (H3)
and (H4) is G(u) = |u|γsgnu , where γ > 0. This G also satisfies H3 and (H5) .

REMARK 3. Notice that if y(t) is a solution of (H), then x(t) = −y(t) is also a
solution of (H) provided that G and H satisfies (H4 ) or (H5 ).

THEOREM 1. Let 0 � p(t) � p1 < ∞ , and assume that conditions (H0 ), (H1 ),
(H3 )-(H5 ) hold. If

(H7 )
∞∫

0

Q(t)G(R(β (t)))Δt = ∞,

where Q(t) = min{q(t),q(α(t))} and R(t) =
∫ ∞
t

Δs
r(s) , then any solution of (H) is either

oscillatory or converges to zero as t → ∞ .

Proof. Let y(t) be a nonoscillatory solution of (H) on [t0,∞)T , say y(t) is even-
tually positive solution. (The proof in case y(t) < 0 eventually is similar and will be
omitted.) Then, there exists t1 ∈ [t0,∞)T such that y(t) , y(α(t)) , y(β (t)) , y(γ(t)) and
y(α(β (t))) are all positive for t � t1 . Define

z(t) = y(t)+ p(t)y(α(t)), (3.1)

and

k(t) =
∞∫

t

1
r(s)

∞∫
s

h(θ )H(y(γ(θ )))ΔθΔs. (3.2)

Notice that condition (H0 ) and the fact that H is a bounded function imply that k(t)
exists for all t . Now if we let

w(t) = z(t)− k(t) = y(t)+ p(t)y(α(t))− k(t), (3.3)

then (
r(t)wΔ(t)

)Δ
= −q(t)G(y(β (t))) � 0, (3.4)
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for all t ∈ [t1,∞)T . Clearly, r(t)wΔ(t) is a monotonic function on [t1,∞)T . Let wΔ(t) <
0 for t � t1 . Suppose that w(t) < 0, then y(t) � z(t) � k(t) , t � t1 . We note that k(t) is
bounded with lim

t→∞
k(t) = 0 and hence there exists a constant M > 0 such that y(t) � M

for t � t2 for some t2 > t1 . So, w(t) is bounded and lim
t→∞

w(t) exists. This is contradicts

to the fact that lim
t→∞

w(t) = lim
t→∞

z(t) �= 0 implies that z(t) < 0 for t � t3 for some t3 > t2.

Assume that w(t) > 0 for t � t1 . Successive integrating inequality (3.4) from t1 to
t , we can find a constant η > 0 such that w(t) � η for t � t2 > t1 . By Lemma 1 (ii), we
get w(t) � − r(t)wΔ(t)R(t) and hence z(t) � − r(t)wΔ(t)R(t) for t � t2 . Since w(t)
is bounded, R(t) is bounded and r(t)wΔ(t) is monotonic implies that lim

t→∞

(
r(t)wΔ(t)

)
exist. By using (H3 ), and (H4 ) in equation (H) gives

0 =
(
r(t)wΔ(t)

)Δ +q(t)G(y(β (t)))+G(p1)
(
r(α(t))wΔ(α(t))

)Δ

+G(p)q(α(t))G(y(β (α(t))))
=

(
r(t)wΔ(t)

)Δ +G(p1)
(
r(α(t))wΔ(α(t))

)Δ +q(t)G(y(β (t)))
+G(p)q(α(t))G(y(β (α(t))))

�
(
r(t)wΔ(t)

)Δ +G(p1)
(
r(α(t))wΔ(α(t))

)Δ + λQ(t)G(y(β (α(t))
+py(α(β (t))))

�
(
r(t)wΔ(t)

)Δ +G(p1)
(
r(α(t))wΔ(α(t))

)Δ + λQ(t)G(z(β (t))

�
(
r(t)wΔ(t)

)Δ +G(p1)
(
r(α(t))wΔ(α(t))

)Δ

+λQ(t)G(−r(β (t))wΔ(β (t))R(β (t)))
=

(
r(t)wΔ(t)

)Δ +G(p1)
(
r(α(t))wΔ(α(t))

)Δ

+λQ(t)G(R(β (t)))G(−r(β (t))wΔ(α(t)))

(3.5)

for t � t3 > t2 . Since −r(t)wΔ(t) is nondecreasing, we can find a constant c > 0, and
t4 > t3 such that −r(t)wΔ(t) � c , for t � t4 . From (3.5), we have

λQ(t)G(c)G(R(β (t))) � −
(
r(t)wΔ(t)

)Δ −G(p1)
(
r(α(t))wΔ(α(t))

)Δ
(3.6)

for t � t5 > t4 . Integrating (3.6) from t5 to ∞ , we get
∞∫

t5

Q(t)G(R(β (t)))Δt < ∞,

which contradicts (H7 ).
Next, we suppose that wΔ(t) > 0 for t � t1 . If w(t) < 0, then w(t) exists and 0 �=

lim
t→∞

w(t) = lim
t→∞

z(t) which implies z(t) < 0, for large t , which is a contradiction to the

fact that z(t) > 0. Hence lim
t→∞

w(t) = 0. So also, lim
t→∞

z(t) = 0 implies that lim
t→∞

y(t) = 0

since y(t) � z(t) for t � t2 > t1.
Now we suppose that w(t) > 0 for t � t2 > t1 . By Lemma 1 (i), it follows that

w(t) � KR(t) and z(t) � w(t) � KR(t) for t � t2 . From (3.5), we get

λQ(t)G(K)G(R(β (t))) � −
(
r(t)wΔ(t)

)Δ −G(p1)
(
r(α(t))wΔ(α(t))

)Δ
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for t � t3 > t2 . Integrating the above inequality implies

∞∫
t5

Q(t)G(R(β (t)))Δt < ∞,

is a contradiction. This completes the proof of the theorem.

THEOREM 2. Let −1 < p2 � p(t) � 0 . If (H0 ), (H1 ), (H4 ) and
(H8 )

∞∫
0

q(t)G(R(β (t)))Δt = ∞,

where R(t) =
∫ ∞
t

Δs
r(s) hold, then any solution of (H) is either oscillatory or tends to zero

as t → ∞ .

Proof. Let y(t) be a nonoscillatory solution of (H), say y(t) , y(α(t)) , y(β (t)) ,
y(γ(t)) are positive for all t1 ∈ [t0,∞)T , t1 � t0 . Setting z(t),k(t) and w(t) as in
(3.1), (3.2) and (3.3), we obtain (3.4) for t � t1 . Hence, wΔ(t) is monotonic for large
t ∈ [t1,∞)T which implies that either w(t) > 0 or w(t) < 0 for t � t2 > t1.

Suppose that wΔ(t) < 0 and w(t) < 0 for t � t2 . Then 0 �= lim
t→∞

w(t) = lim
t→∞

z(t)

implies that z(t) < 0 for t � t2. Hence, y(t) < y(α(t)) for t � t3 for some t3 > t2 , that
is, y(t) is bounded on [t3,∞)T . Consequently, w(t) is bounded and lim

t→∞

(
r(t)wΔ(t)

)
exists. Since, w(t) is monotonic, then lim

t→∞
w(t) = L,L ∈ (−∞,0) gives lim

t→∞
z(t) = L .

We claim that liminf
t→∞

y(t) = 0. If not, there exists a constant M > 0 and t4 > t3 such

that y(t) � M for t > t4 . Integrating (3.4), we get

∞∫
t4

q(t)Δt < ∞,

a contradiction to the fact that R(t) → 0 as t → ∞ and (H8 ) implies that

∞∫
0

q(t)Δt = ∞. (3.7)

So, our claim holds. By Lemma 3, L = 0. Hence,

0 = lim
t→∞

z(t) = limsup
t→∞

[y(t)+ p(t)y(α(t))]

� limsup
t→∞

[y(t)+ p2y(α(t))]

� limsup
t→∞

y(t)+ liminf (
t→∞

p2y(α(t)))

= (1+ p2)limsup
t→∞

y(t),
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which implies that limsup
t→∞

y(t) = 0, that is, lim
t→∞

y(t) = 0.

Next, we consider the case w(t) > 0 for t � t2 . Let lim
t→∞

w(t) = l, l ∈ [t0,∞).

We claim that y(t) is bounded. If not, there exists an increasing sequence {τn}∞
n=1 ⊂

[t2,∞)T such that τn → ∞,y(τn) → ∞ as n → ∞ , and y(τn) = max{y(t) : t2 � t � τn} .
we choose τ1 large enough so that α(τ1) � t2 . Hence,

0 � w(τn) � y(τn)+ p(τn)y(α(τn))− k(τn) � (1+ p2)y(τn)− k(τn).

Since k(τn) is bounded and 1+ p2 > 0, we have w(τn) > 0 for large n , which is a con-
tradiction to the fact that lim

t→∞
w(t) exists, so our claim is true. Hence, lim

t→∞

(
r(t)wΔ(t)

)
exists. Using Lemma 1 (ii), we get w(t) �− r(t)wΔ(t)R(t) and hence y(t) � w(t) �−
r(t)wΔ(t)R(t) , t � t3 > t2. Hence, (3.4) becomes

q(t))G(R(β (t)))G
(
−r(β (t))wΔ(β (t))

)
� −

(
r(t)wΔ(t)

)Δ
,

for t � t4 > t3 . Since r(t)wΔ(t) is nonincreasing, we can find a constant b > 0 such
that r(β (t))wΔ(β (t)) � −b for t � t5 for some t5 > t4 . Integrating the last inequality,
we get

∞∫
t5

q(t)G(R(β (t)))Δt < ∞,

is a contradiction to (H8 ).
Suppose that wΔ(t) > 0 for t � t1 . So, we have two cases, w(t) > 0 or w(t) < 0

for t � t1 . Let w(t) > 0 for t � t1 , then by Lemma 1 (i), y(t) � w(t) � KR(t) for
t � t3 > t2 and hence equation (3.4) becomes

q(t))G(KR(β (t))) � −
(
r(t)wΔ(t)

)Δ

for t � t3 > t2 . Integrating the above inequality from t3 to ∞ , we get

∞∫
t3

q(t)G(R(β (t)))Δt < ∞,

is a contradiction to (H8 ). Hence, w(t) < 0 for t � t1 . Therefore, lim
t→∞

w(t) exists

and 0 �= lim
t→∞

w(t) = lim
t→∞

z(t) implies that z(t) < 0 for t � t2 > t1 . So, y(t) is bounded

on [t3,∞)T for some t3 > t2 . Using the same type of reasoning mentioned above,
we obtain lim

t→∞
y(t) = 0. If 0 = lim

t→∞
w(t) = lim

t→∞
z(t) , then y(t) is bounded. Otherwise,

this is a contradiction that w(t) > 0 for large t . Proceeding as above again we obtain
lim
t→∞

y(t) = 0.

THEOREM 3. Let −∞ < p3 � p(t) � p2 < −1 . If (H0 ), (H1 ), (H4 ) and (H8 )
hold, then every bounded solution of (H) is either oscillatory or tends to zero as t → ∞ .
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Proof. Let y(t) be a bounded nonoscillatory solution of (H) on [t0,∞)T , say y(t)
is an eventually positive solution. There exists t1 ∈ [t0,∞)T such that y(t) , y(α(t)) ,
y(β (t)) , y(γ(t)) and y(α(β (t))) all are positive for t � t1 . Setting z(t),k(t) and w(t)
as in (3.1), (3.2) and (3.3), we obtain (3.4) for t � t1 . From (3.4), it follows that
wΔ(t) > 0 or wΔ(t) < 0 for t � t1 . Proceeding as in the proof of Theorem 2, we obtain
L = 0. Hence,

0 = lim
t→∞

z(t) = liminf
t→∞

[y(t)+ p(t)y(α(t))]

� liminf
t→∞

[y(t)+ p2y(α(t))]

� limsup
t→∞

y(t)+ liminf (
t→∞

p2y(α(t)))

� limsup
t→∞

y(t)+ p2limsup (
t→∞

y(α(t)))

= (1+ p2)limsup
t→∞

y(t),

which implies that limsup
t→∞

y(t) = 0, that is, lim
t→∞

y(t) = 0 since (1 + p2) < 0. The

remaining part of the proof can be followed from the proof of the Theorem 2. This
completes the proof of the theorem.

THEOREM 4. Let 0 � p(t) � p < ∞ . If (H0 ), (H2 )–(H4 ) and

(H9)
∞∫

0

Q(t)Δt = ∞,

hold, then any solution of (H) is either oscillatory or converges to zero as t → ∞ .

Proof. Let y(t) be a nonoscillatory solution of (H), say y(t) , y(α(t)) , y(β (t)) ,
y(γ(t)) are positive for all t ∈ [t1,∞)T , t1 � t0 . Setting z(t),k(t) and w(t) as in (3.1),
(3.2) and (3.3), we obtain (3.4) for t � t1 . Hence, (r(t)wΔ(t)) is a monotonic function
on [t1,∞)T. Let wΔ(t) < 0 for t � t1 . Integrating (3.4) from T to t , we obtain

w(t) � w(T )+ r(T )wΔ(T )
t∫

T

Δs
r(s)

.

Hence, w(t) < 0 due to (H2 ). Proceeding as in the proof of the Theorem 1, we obtain
a contradiction if w(t) < 0 for t � t2 > t1 . Hence, wΔ(t) > 0 for t � t1 . First assume
that w(t) < 0 for t � t2 , then lim

t→∞
w(t) exists, that is, either 0 �= lim

t→∞
w(t) = lim

t→∞
z(t) or

lim
t→∞

w(t) = 0. In both these cases using the same type of argument as in the proof of

Theorem 1, we obtain lim
t→∞

y(t) = 0.

Suppose that w(t) > 0 for t � t1 . Consequently, there exists a constant α > 0
such that w(t) � α for t � t2 > t1 , that is, z(t) � w(t) � α , with which (3.5) yields

∞∫
t3

Q(t)Δt < ∞,
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for t3 > t2 , contradicting (H9 ). This completes the proof of the theorem.

THEOREM 5. Let 0 � p(t) � p1 < ∞ , rΔ(t) � 0 and β (t) � α(t) . If (H0 ), (H2 )-
(H4 ), (H6 ) and

(H10)
∞∫
Q(t)G(η(β (t)))Δt = ∞,

hold, then any solution of (H) is either oscillatory or tends to zero as t → ∞ .

Proof. Proceeding as in the proof of Theorem 4, we consider the case wΔ(t) > 0
and w(t) > 0 for t � t1 . Since rΔ(t) � 0 implies wΔ2

(t) � 0 for t � t1 . From (3.5),
and Lemma 2 it follows that

0 �
(
r(t)wΔ(t)

)Δ +G(p1)
(
r(α(t))wΔ(α(t))

)Δ + λQ(t)G(z(β (t)))
�

(
r(t)wΔ(t)

)Δ +G(p1)
(
r(α(t))wΔ(α(t))

)Δ

+λQ(t)G(η(β (t)))G(r(β (t))wΔ(β (t))),

for t � t2 > t1 . Hence

λQ(t)G(η(β (t))) � −[
G(r(β (t))wΔ(β (t)))

]−1 (
r(t)wΔ(t)

)Δ

−G(p)
[
G(r(β (t))wΔ(β (t)))

]−1 (
r(α(t))wΔ(α(t))

)Δ
.

(3.8)

Since lim
t→∞

(
r(t)wΔ(t)

)
exists, then by using (H6 ) in (3.6), we get

∞∫
t2

Q(t)G(η(β (t)))Δt < ∞,

a contradiction to (H10 ). Hence the proof of theorem is complete.

THEOREM 6. Let −1 � p2 � p(t) � 0 . If (H0 ), (H2 ), (H4 ) and (3.7) hold, then
any solution of (H) is either oscillatory or tends to zero as t → ∞ .

Proof. Proceeding as in the proof of Theorem 4, we obtain w(t) < 0 for t � t2 > t1
when wΔ(t) < 0. Hence, w(t) is monotonic function on [t2,∞)T and 0 �= lim

t→∞
w(t) =

lim
t→∞

z(t) exists. Following the argument in Theorem 2, we obtain lim
t→∞

y(t) = 0.

Assume that wΔ(t) > 0 for t � t1 . If w(t) < 0 for t � t2 for some t2 > t1 , then by
using same arguments as in Theorem 2, we obtain lim

t→∞
y(t) = 0. Suppose that w(t) > 0

for t � t2 > t1 . Then there exists a constant γ > 0 and t3 > t2 such that w(t) � γ for
t � t3 . Consequently, y(t) � w(t) � γ for t � t3 . Integrating (3.4) from for t4 � t3 to
∞ , yields

∞∫
t4

q(s)Δs < ∞,

which is a contradiction (3.7). Hence the theorem is proved.
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THEOREM 7. Let −∞ � p3 � p(t) � p4 < −1 . If (H0 ), (H2 ), (H4 ) and (3.7)
hold, then every bounded solution of (H) is either oscillatory or tends to zero as t → ∞ .

Proof. The proof of the theorem is follows from Theorem 3 and Theorem 6.

4. Oscillation properties of (NH)

This section is concerned with the oscillatory and asymptotic behaviour of so-
lutions of equation (NH) for suitable forcing functions f (t) . We restrict our forcing
functions to those that change signs. We will use the following condition:

(H11 ) There exists F ∈Crd([t0,∞)T,R) such that rFΔ ∈Crd([t0,∞)T,R) , (rFΔ)Δ = f
and

−∞ < liminf
t→∞

F(t) < 0 < limsup
t→∞

F(t) < ∞.

THEOREM 8. Let 0 � p(t) < p < ∞ . Assume that If (H0 ), (H3 )-(H5 ) and (H11 )
hold. If

(H12 )

limsup
t→∞

t∫
t0

Q(s)G(F(β (s)))Δs = +∞ and liminf
t→∞

t∫
t0

Q(s)G(F(β (s)))Δs = −∞,

then every bounded solution of (NH) is oscillates.

Proof. Suppose that y(t) is a nonoscillatory solution of (NH) on [t0,∞)T so that
y(t) , y(α(t)) , y(β (t)) and y(α(β (t))) are all positive on [t1,∞)T , for some t1 � t0 .
With z(t),k(t) and w(t) as in (3.1)-(3.3), let

v(t) = w(t)−F(t) = z(t)− k(t)−F(t) (4.1)

for t � t1 . Then (NH) becomes

(
r(t)vΔ(t)

)Δ
= −q(t)G(y(β (t))) � 0. (4.2)

Thus, v(t) and vΔ(t) are monotonic on [t2,∞)T , for some t2 > t1 . Suppose that vΔ(t) <
0 for t � t1 . If v(t) < 0 for t � t2 > t1 , then z(t) < k(t)+F(t). Hence,

0 = liminf
t→∞

z(t) � liminf
t→∞

(k(t)+F(t))

� limsup
t→∞

k(t)+ liminf
t→∞

F(t)

= lim
t→∞

k(t)+ liminf
t→∞

F(t) < 0,



Differ. Equ. Appl. 8, No. 2 (2016), 207–223. 219

is a contradiction to the fact that z(t) > 0. Thus, v(t) > 0 for t � t2 , that is, z(t) >
k(t)+F(t) > F(t) for t � t2 . In view of (NH), (H3 ), and (H4 ) it is easy see that

0 =
(
r(t)vΔ(t)

)Δ +G(p1)
(
r(α(t))vΔ(α(t))

)Δ +q(t)G(β (t))
+G(p1)q(α(t))G(β (α(t)))

�
(
r(t)vΔ(t)

)Δ +G(p1)
(
r(α(t))vΔ(α(t))

)Δ + λQ(t)G(z(β (t)))

�
(
r(t)vΔ(t)

)Δ +G(p1)
(
r(α(t))vΔ(α(t))

)Δ + λQ(t)G(F(β (t))),

(4.3)

for t � t3 for some t3 � t2 . We note that lim
t→∞

v(t) exists. If y(t) is unbounded, then

v(t) = z(t)− k(t)−F(t) > y(t)−F(t)− k(t)

implies that v(t) is unbounded. Thus, y(t) is bounded on [t4,∞)T , t4 > t3 , that is,

lim
t→∞

(
r(t)vΔ(t)

)Δ
exists. Integrating the inequality (4.3), we obtain

limsup
t→∞

t∫
t4

Q(s)G(F(β (s)))Δs < ∞

contradicting (H12 ).
Next, we suppose that vΔ(t) > 0 for t � t1. Then lim

t→∞

(
r(t)vΔ(t)

)
exists. Similar

contradictions hold for the case v(t) > 0 and v(t) < 0 for t � t2 > t1.

THEOREM 9. Let 0 � p(t) � p1 < ∞ . If (H0 ), (H1 ), (H3 )-(H5 ), (H7 ) and (H11 )
hold, then (NH) is oscillatory.

Proof. Proceeding as in the proof of Theorem 8, v(t) < 0 is not possible when
vΔ(t) < 0 for t � t1 . Hence v(t) > 0, for some t � t2 for some t2 > t1 . By using
Lemma 1 (ii) with u(t) is replaced by v(t) , we get v(t) � −r(t)vΔ(t)R(t) for t � t2
and hence

z(t) � −r(t)vΔ(t)R(t)+ k(t)+F(t)
� −r(t)vΔ(t)R(t)+ k(t)+F+(t)
> −r(t)vΔ(t)R(t),

for t � t2 , where F+(t) = max{F(t),0}. Further, r(t)vΔ(t) is nondecreasing, so we

can find a constant c > 0 and t3 > t2 such that −(
r(t)vΔ(t)

)Δ � −c for t � t3 . Hence,
inequality (3.5) becomes

−λQ(t)G(−c)G(R(β (t))) � −
(
r(t)vΔ(t)

)Δ −G(p1)
(
r(t)vΔ(t)

)Δ
, (4.4)

where w(t) is replaced by v(t) for t � t4 > t3 . Since lim
t→∞

v(t) exists, we claim that

y(t) is bounded. Otherwise, following the same argument as in Theorem 8, v(t) is
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unbounded. Hence, lim
t→∞

(
r(t)vΔ(t)

)Δ
exists. Integrating the inequality (4.4) from t4 to

∞ , we obtain

limsup
t→∞

t∫
t4

Q(s)G(β (s))Δs < ∞,

a contradiction to (H7).
Let vΔ(t) > 0 for t � t1 . The argument for the case v(t) < 0for t � t2 > t1 is same

as mentioned in Theorem 8. Hence, v(t) < 0 for t � t2 > t1 . By Lemma 1 (i), it follows
that v(t) � KR(t) , that is, z(t) > KR(t)+k(t)+F+(t) > KR(t) for t � t2 . Using same
type of reasoning as in the proof of Theorem 1, we obtain a contradiction to (H7 ). This
completes the proof of theorem.

THEOREM 10. Let 0 � p(t) � p1 < ∞ . If (H0 ), (H2 )-(H4 ), (H9 ) and (H11 )
hold, then every solution of (NH) is oscillates.

Proof. Proceeding as in the proof of Theorem 8, we assume that vΔ(t) < 0 for
t � t1 . So, v(t) < 0 for t � t2 > t1 due to (H2 ). Using the same type of argument as in
the proof of Theorem 8, v(t) < 0 is a contradiction. Thus, vΔ(t) > 0 for t � t1 . Hence,
v(t) > 0 for t � t2 > t1 . Since, v(t) is nondecreasing, there exists a constant α > 0 and
t3 > t2 such that v(t) � α , for t � t3 . Thus,

z(t) > α + k(t)+F(t) � α + k(t)+F+(t) > α ,

for t � t3 , where F+(x) = max{F(t),0} . Using the last inequality and then integrating
(4.3) from t4 to ∞ , we get

t∫
t4

Q(t)Δt < ∞,

for t4 � t3 , a contradiction to (H9 ). This completes the proof of the theorem.

THEOREM 11. Let −1 < p2 � p(t) � 0 . Assume that If (H0 ), (H4 ), (H11 ) and

(H13)
∞∫
q(t)G(F+(y(β (t)))Δt = ∞,

hold. Then any solution y(t) of (NH) is either oscillatory or satisfies limsup
t→∞

|y(t)|= 0.

Proof. Suppose that y(t) is a nonoscillatory solution of (NH) on [t0,∞)T so that
y(t) , y(α(t)) , y(β (t)) and y(α(β (t))) are all positive on [t1,∞)T for some t1 � t0 .
With z(t),k(t) and w(t) as in (3.1)-(3.2) and (4.1), we get (4.2). Thus, v(t) and vΔ(t)
are monotonic on [t2,∞)T , for some t2 > t1 . Let vΔ(t) < 0 for t � t1 . Hence, lim

t→∞
v(t) =

lim
t→∞

(z(t)−F(t)) implies that z(t)−F(t) < 0 when v(t) < 0, that is, liminf
t→∞

z(t) =−∞.

So limsup
t→∞

y(t) = +∞ .
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Next, we assume that v(t) > 0 for t � t2 > t1 . Hence, lim
t→∞

v(t) = lim
t→∞

(z(t)−k(t)−
F(t)) implies that z(t)−F(t) > 0. If lim

t→∞
v(t) �= 0, then z(t) > F(t) for t � t2 . Hence,

y(t) > F+(t) for t � t3 > t2 . We claim that y(t) is bounded. If not, there exists an
increasing sequence {τn}∞

n=1 ⊂ [t2,∞)T such that τn → ∞ , x(τn) → ∞ as n → ∞ , and

x(τn) = max{x(t) : t3 � t � τn} .

We may choose n large enough so that α(τn) � t2. Hence,

v(τn) � y(τn)+ py(α(τn))− k(τn)−F(τn)
� (1+ p2)y(τn)− k(τn)−F(τn)

implies that v(τn) → ∞ as n → ∞ , a contradiction to the fact that lim
t→∞

v(t) exists. So

our claim holds and lim
t→∞

(
r(t)vΔ(t)

)
exists. Integrating (4.2) from t3 to ∞ , we obtain

∞∫
t3

q(t)G(F+(y(β (t)))Δt < ∞,

a contradiction to (H13 ). If lim
t→∞

v(t) = 0, then z(t)−F(t) > 0 or z(t)−F(t) < 0 for

all t � t2 . If z(t)− F(t) > 0 for t � t2 , then we have a contradiction where as if
z(t)−F(t) < 0 for t � t2 , then limsup

t→∞
y(t) = +∞ .

Assume that vΔ(t) > 0 for t � t1 . Then lim
t→∞

(
r(t)vΔ(t)

)
exists. Proceeding as

the proof above, we obtain a contradiction for case v(t) > 0. If v(t) < 0, then limsup
t→∞

y(t) = +∞ . This completes the proof of theorem.

THEOREM 12. Let −∞ < p3 � p(t) � −1 . If all conditions of Theorem 11 hold,
then every bounded solution of (NH) is either oscillatory or satisfies limsup

t→∞
|y(t)| = 0.

The proof follows from Theorem 11 and hence details are omitted.

EXAMPLE 1. For T = R , we consider the equation

(
y(t)+ e−ty(t−π)

)′′ +(1+ e−t)y(t −2π)

− e−t(1+ sin2 t)
y(t −4π)

1+ y2(t −4π)
= 2e−t sin t, (4.5)

where,
p(t) = e−t , q(t) = e−t +1, h(t) = e−t(1+ sin2 t).

If we choose F(t) = e−t cost , then (r(t)F ′(t))′ = 2e−t sin t = f (t) . Clearly, (H0 ),
(H2 )-(H4 ), (H9 ), and (H11 ) are satisfied. Hence by Theorem 10, every solution of
(4.5) are oscillatory. In particular, y(t) = sin t is such an oscillatory solution of (4.5).
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EXAMPLE 2. For T = Z , consider the equation

Δ(enΔ(y(n)+ p(n)y(n−1)))+q(n)y(n−2)

−h(n)
y(n−4)

1+ y2(n−4)
= (−1)nen, n � 0, (4.6)

where
p(n) = 2+(−1)n, q(n) = (2e+3)en− e−n, h(n) = 2e−n.

Indeed,
Q(n) = (2e+3)en−1− e−(n−1), R(n) =

e
e−1

e−n.

If we choose F(n)= [2(1+e)−1(−1)n] , then f (n)= Δ(enΔF(n)) . Clearly, (H0 ), (H1 ),
(H3 )-(H5 ), and (H11 ) are satisfied. Moreover, (H7 ) is given by

∞

∑
n=0

Q(n)G(R(n−2)) =
∞

∑
n=0

[
(2e+3)en−1− e−(n−1)

]
e

e−1
e−(n−2)

=
e2(2e+3)

e−1

∞

∑
n=0

1− e4

e−1

∞

∑
n=0

e−2n = ∞.

Hence, by Theorem 9, equation (4.6) oscillates. In particular, y(n) = (−1)n is one
of such solution.
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[6] L.H. Erbe, Q. Kong, B.G. Zhang, Oscillation Theorey for Functional Differential Equation, Dekker,

NewYork, 1995.
[7] I. Gyori, G. Ladas, Oscillation Theorey for Delay Differential Equations with Applications, Oxford

Univ. Press, London, 1991.
[8] S. Hilger, Analysis on measure chainis: a unified approach to continuous and discrete calculus, Results

Math. 18 (1990), 18–56.
[9] B. Karpuz, J. V. Manojlovic, O. Ocalan, Y. Shoukaku, Oscillaton criteria for a class of second-order

neutral delay differential equations, Appl. Math. Comput. 210 (2009). 303–312.
[10] I. Kubiaczyk, S. H. Saker, A. Sikorska-Nowak, Oscillaton criteria for nonlinear neutral functional

dynamic equations on time scales, Math. Slovaca. 63 (2013), 263–290.
[11] T. Li, Y. V. Rogovvchenko, Oscillation theorems for second-order nonlinear neutral delay differential

equations, Abst. Appl. Anal. 2014 (2014), Article ID 594190, 5pages.



Differ. Equ. Appl. 8, No. 2 (2016), 207–223. 223

[12] S. Panigrahi and P.R. Reddy, On oscillatory fourth order nonlinear neutral delay dynamic equations,
Comput. Math. Appl. 62 (2011), 4258–4271.

[13] H. Qin, N. Shang, Y. Lu, A note on oscillation criteria of second order nonlinear neutral delay
differential equations, Comput. Math. Appl. 56 (2008), 2987–2992.

[14] S. H. Saker and D. O’Regan, New oscillation criteria for second-order neutral dynamic equations on
time scales via Ricati substitution, Hiroshima Math. J. 42 (1) (2012), 109–122.

[15] E. Thandapani, V. Piramanantham and S. Pinelas, Oscillation criteria for second-order neutral de-
lay dynamic equations with mixed nonlinearities, Advances in Difference Equations, 2011, Article
ID594190, 5pages.

[16] E. Thandapani and V. Piramanantham, Oscillation criteria for second order nonlinear neutral dynamic
equations on time scales, Tamkang J. Math. 43 (2012), 109–122.

[17] A. K. Tripathy, Oscillation properties of a class of neutral differential equations with positive and
negative coefficients, Fasciculi Mathematici, 45 (2010), 133–155.

[18] A. K. Tripathy, Oscillatory behaviour of a class of nonlinear second order mixed difference equations,
Elect. J. Qual. Theory of Diff. Eqs. 48 (2010), 1–19.

[19] Q. Yang, Z. Xu, Oscillation criteria for second order quasilinear neutral delay differential equations
on time scales, Comput. Math. Appl. 62 (2011), 3682–3691.

[20] Shao-Yan Zhang and Qi-Ru Wang, Oscillation criteria for second-order nonlinear dynamic equations
on time scales, Abstract and Applied Analysis, 2012 (2012), Article ID 743469, 20 pages.

(Received August 21, 2015)

(Revised October 21, 2015)

Saroj Panigrahi
School of Mathematics and Statistics

University of Hyderabad
Hyderabad-500 046, India.

e-mail: spsm@uohyd.ernet.in, panigrahi2008@gmail.com

Ercan Tunç
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