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GLOBAL WELLPOSEDNESS TO THE INCOMPRESSIBLE
MHD EQUATIONS WITH SOME LARGE INITIAL DATA

XIAOPING ZHAI

(Communicated by Shangbin Cui)

Abstract. In this paper, we mainly study the global wellposedness for the n-dimensional homo-
geneous and nonhomogeneous incompressible magnetohydrodynamic equations in the critical
Besov spaces. By fully using the advantage of weighted function generated by heat kernel and
Fourier localization technique, we first get the global wellposedness for the homogeneous in-
compressible MHD equations with initial data under a nonlinear smallness hypothesis. It is
amazing that we can exhibit an initial data satisfying that nonlinear smallness assumption, de-
spite each component of the initial data could be arbitrarily large. Then, as an application of our
global well-posedness, we also extend our result to the inhomogeneous incompressible MHD
equations.

1. Introduction

In this paper, we consider the following incompressible MHD equations:

%—RieAu—i—u-Vu—i-VP—b-Vb:O,
@—LAlH—u-Vb—b-Vu:O (x,t) €ER" xR (1.1)
dr  Rm ’ ’ ’ )
Vu=V.b=0,

u(x,0) = ugp, b(x,0) = by, xeR",

where u is the velocity field, b is the magnetic field, P(x,7) is the scalar pressure, ug
and bg are the initial velocity field and the initial magnetic field respectively. Re > 0
is the viscosity coefficient and Rm > 0 is the magnetic diffusive coefficient which we
will assume Re = Rm = 1 for convenience. The MHD equations are a well-known
model which governs the dynamics of the velocity and magnetic fields in electrically
conducting fluids such as plasmas, liquid metals, and salt water, etc.

This model has been studied by many mathematicians and made more progress
in the past years due to its importance, see [5, 8, 10, 14, 15, 21, 22], [29]-[32], [35]-
[39], [42]-[44]. Briefly, Duvaut and Lions [14] established the local existence and
uniqueness of solution in the classical Sobolev space H*(R"),s > n, they also proved
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the global existence of solutions to this system with small initial data. Sermange and
Temam [37] proved the global unique solution in R?. With mixed partial dissipation
and additional magnetic diffusion in the two-dimensional MHD system, Cao and Wu
[5] proved that such a system is globally well-posed for any data in H*(RR?). In a recent
remarkable paper Lin, Xu and Zhang [30] or Zhang [43] proved the global existence of
smooth solution of the 2-D MHD system around the trivial solution (x;,0) (see [29]
for 3-D case). In [35], Ren, Wu, Xiang and Zhang got the global existence and the
decay estimates of small smooth solution for the 2-D MHD equations without mag-
netic diffusion. Fefferman, McCormick, Robinsonb and Rodrigo [15] established the
local-in-time existence and uniqueness of strong solutions in H* for s > 5 to the vis-
cous, non-resistive MHD equations in R?> or R® by using a new commutator estimate.
Chemin, McCormick, Robinsonb and Rodrigo [8] lately extended the result of [15] to
some Besov spaces. We also emphasize the partial regularity theory and blowup criteria
in [10, 21, 44] (see also the references therein).

By critical, we mean that we want to solve the system (1.1) in functional spaces
with invariant norms by the changes of scales which leaves (1.1) invariant. In the case of
incompressible MHD fluids, it is easy to see that the transformations: (u,,b;)(t,x) =
(Au(A2-,A-),Ab(A%-,A-)) have that property, provided that the pressure term has been
changed accordingly.

When the magnetic field b(x,t) is identically equal to zero, that is, in the case of
the incompressible Navier-Stokes equations, there have been lots of results, see [1, 4,
6,7, 16, 17,19, 25, 26, 27, 28, 40]. The well-posedness and the ill-posedness of the
initial value problem for (NS) have been considered by many mathematicians in the

. 143 143
series of scaling invariant spaces HZ (R3) < L3(R3) — B, 1+” (R3) — Bp,:” (R3) —
BMO ™ (R?) — B_L(R?), with 3 < p < oo; see for example, Fujita and Kato [16],
Kato [26], Kozono and Yamazaki [28], Koch and Tataru [27], Germain [19], Bourgain
and Pavlovi¢ [4] and Yoneda [40].

Inspired by the work [7], [23], [32], [33], [39], [42], our aim in this paper is to
go beyond the smallness condition on the initial data and to exhibit arbitrarily large
initial data in critical Besov spaces which generate a unique, global solution. We can
construct an example of a family of initial data with very large critical Besov norm
which satisfies the nonlinear smallness hypothesis. Before giving our main results, we
make some transforms for (1.1).

Let W =u-+b, W~ = u— b, then we change (1.1) into

OWr —AWT+W .VWT +VP =0,

OW™ —AW ™ +Wt. VW~ +VP =0,

VWr=V.-W~ =0, (1.2)
W+(x70) = W0+ =uy+ by,

W~ (x,0) = Wy =uo— bo.

In the following, we shall spit the solutions (W, W™) to (1.2) as

WH=Wi+W', W =Wy +W (1.3)
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with
Wi =W, Wp =W, (1.4)
and (W™, W) satisfying
AW — AW +W VW +W VW + W, -VW +W, -VW; +VP =0,
OW —AW +W -VWy + W' - VW + W VW + W VW, +VP= %5,
VW =V.W =0, ’
(x,0)=0, W (x,0)=0.
Now we can state our main results in this paper:

+’1
THEOREM 1. Let n >3, 1 < p < 2n, for any (ug,by) € B P(R™), divug =

divbg = 0, there exist two positive constants co and Cy such that zf

- + n n
Co(|[Wy - VW ||L1( +’B—11+—)+HWF VWe HL' ® 5, 5))
xexp{ColIW | 1oy + Wy H <@ 6
Pl pl
then (1.1) has a global solution
—1+3 n s~ 145 n 1+n) n
(u,b) € C([0,+%0):B,, " (R") NL7((0,+20);B,,, " (R"))NL'((0,+);B,,," (R")),
(1.7)
and
. + b — n
L L LS
S (14 ||Wy - VWE 14z W -VW, Cpen
S (14 [|W il (B,,11+p)+H F FH (Bpll+p))
xexp{CIWG | vy + W | g (1.8)

pl pl

where W0+ =ug+bo, Wy = uo— bo, Wi = e’AW0+, and Wy = e’AWO_.

REMARK 1. It should be mentioned that, very recently, He, Huang and Wang
[22] in L3(R?) (when Re = Rm) and H : (R%) (when Re # Rm) respectively proved
that if the difference between the magnetic field and the velocity is small initially, there
exists a global strong solution without smallness restriction on the size of initial ve-
locity or magnetic field. Noticing that the embedding relation H2 (R3) — L3(R3) —

B, 5 (R3) and the method here used which can be easily verified is still valid when
Re # Rm , our global wellposedness thus can be regarded as an extension of [22]. More-
over, our result also implies the positive answer to the open problem given by Remark
2.6in [22].
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REMARK 2. We emphasize that forany n >3, p € (n,2n), o, € (0,1) and ¢,y

be in the Schwartz space .(R"), our result implies the global wellposedness of (1.1)
with initial data of the form

Wo-t_g (x) = Wo.e (x) = @0.e(x) +vo.e(x),

1
of (—loge)z
wo,g(x)df&(O,M,O,Qz---8n_29n11/8,—32~~~8n_1l//£),

81—ﬂ+——oc
def (—loge)%
vo.e() & LB O bes 01 B 39106 — (12— 2)0h O 206,0),
e p

where
Xn X Xp—
0e(x) =cos () 9(x), y() =cos (L) y, o2, 2w (19)
€ € v
Indeed, we can get by a similar computation of [7] that

e Wy, - Ve’AWOSH o, < CeY(—loge)?, (1.10)
p,l

with y = (2n—0)(3 — 5;) > 0. Yet

S
S

CH(—loge) ¥ < [(Woe)is Wop)illl 5t <C(=loge)t, i=1,-n. (LID)

p,1

Combining with the above remark, this class of large data allow the initial data
ug, by, even WO+7WO’ can be arbitrarily large, which considerably improve the recent
results [39] and [42].

As an application of our main Theorem 1.1, we also consider the following non-
homogeneous incompressible MHD system [12]:

pr +div(pu) =0

(pu); +div(pu @ u) — uAu+ VI1=b- Vb,
bi—VAb+u-Vb—b-Vu=0, (1.12)
divu = 0,divb =0,

(p;u,b)li=0 = (po, u0,bo),

where p is the density and u is the velocity field, b is the magnetic field, IT(x,¢) is the
scalar pressure, i > 0 is the viscosity coefficient and v > 0 is the magnetic diffusive
coefficient. Moreover, in order to avoid vacuum regions, we will always suppose the
initial density to satisfy

0<p"<polx), xeR"™
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By applying maximum principle on the parabolic equation (1.12), one gets a priori that
the density p (if it exists on the time interval [0, T]) keeps the same lower bound as the
initial density py:

0<p*<p(t,x), Vrel0,T], xeR"

We define @ = 1/p — 1 and assume y = v = 1 for convenience which allows us to
work with the following system:

da+u-Va=0,
du+u-Vu+ (1+a)(VII—Au)= (1+a)(b-Vb),
b —Ab+u-Vb—b-Vu=0, (1.13)

divu = 0,divb =0,
(a7u7b)|[:0 = (a07u07b0)'

Compared with the homogeneous MHD equations, the nonhomogeneous incom-
pressible MHD has been also extensively studied (see [2],[9],[131,[18],[20][24]). Ger-
beau and Le Bris [18] (see also Desjardins and Le Bris [13]) got the global existence of
weak solutions of finite energy in the whole space or in the torus. With the initial data
are closed to a constant state, Abidi and Paicu [2] established the global strong solutions
in the critical Besov spaces. Moreover, they allowed variable viscosity and conductiv-
ity coefficients. Chen, Tan, and Wang [9] extended the local existence in presence
of vacuum by using the Galerkin method, energy method and the domain expansion
technique. Lately , with initial data satisfies some compatibility conditions, by using
a critical Sobolev inequality of logarithmic type, Huang and Wang [24] got the global
strong solution to the 2-D nonhomogeneous incompressible MHD system, which im-
proved all the previous results. Recently, Gui [20] studied the Cauchy problem of the
2-D magnetohydrodynamic system with inhomogeneous density and electrical conduc-
tivity. He showed that this system with a constant viscosity is globally well-posed for a
generic family of the variations of the initial data and an inhomogeneous electrical con-
ductivity. Moreover, he established that the system is globally well-posed in the critical
spaces if the electrical conductivity is homogeneous. In this paper, we shall generalize
the global results in [2], [41] to a more general case. We get the following theorem:
<

THEOREM 2. Let q, p satisfy 1 < g < p < 2n be such that Ll] — . Suppose

11

P n
o 142 : . .

that ap € B |(R"), (uo,bo) € B, "(R"), divug = divbg = 0 and (uo,bo) satisfies
the condition (1.6). Moreover, there is a sufficiently small constant ¢ > 0 such that

<e, (1.14)

llaoll
B 1

g
q,
then the system (1.13) has a global solution (a,u,b,VI1) with
R ~ R 142
ac C([O,—l—oo);B;”l(R”)) OLN(RJ“;B;”I(R”)); Vile L (R+;Bp’1+" (R™));

—142 ~ —142 142
(u.0) € C([0,+2):B,, " (RM) NL=(R*:8,, " (R") NL (RV:B, " (R")).
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Before going on, we give an overview of the paper. In the second section, we

shall collect some basic facts on Littlewood-Paley analysis and various product laws
in Besov spaces; then in Section 3, we prove the global wellposedness of Theorem 1 .
Finally in the last section, we present the proof of the global existence part of Theorem
2.
Notations : Let A, B be two operators, we denote [A, B] = AB — BA, the commutator
between A and B. For a < b, we mean that there is a uniform constant C, which
may be different on different lines, such that @ < Cb. For X a Banach space and / an
interval of R, we denote by C(I;X) the set of continuous functions on I with values in
X . For g € [1, 00|, the notation L7(I;X) stands for the set of measurable functions on
I with values in X, such that 7 — || f(¢)||x belongsto LI(I). We always denote (d;) ez
is a generic element of [!(Z) so that ¥;czd; = 1.

2. Preliminaries

Let (x,9) be two smooth radial functions, 0 < (y,¢) < 1, such that y is sup-
ported in the ball Z ={& e R",|£| < ‘3—‘} and ¢ is supported in the ring ¥ = {& €
R",% << %} Moreover, there holds

2 92778 =1, vE#0.

J€z
Let h=.Z7 '@ and h=.% 'y, then we define the dyadic blocks as follows:
byf = 9 ID) =27 [ W@y f(x=)dy.
$if = 22Dy =2 [ F@I)fx—y)dy
By telescoping the series, we thus have the following Littlewood-Paley decomposition

u= Y Aju, VueS'(R")/P[R",
€z

where Z[R"] is the set of polynomials (see [34] ). Moreover, the Littlewood-Paley
decomposition satisfies the property of almost orthogonality:

AkAjuEO if |k—]|>2 and Ak(ijluAju)EO if ‘k—]|>5
Now we recall the definition of homogeneous Besov spaces.

DEFINITION 1. Let (p,r) € [1,4]? s € R and u € .7](R"), which means that
ue . (R?) and lim;_._o ||Sjul|z~ = O (see Definition 1.26 of [3]), we set

leell gy, = %[ Ajullio)er,

then we define B}, ,(R") £ {u € Yé(R")|||u||B;J < oo},
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REMARK 3. Let 1 < p,r<eo,s € R, and u € .#(R"). Then u belongs to B;J if
and only if there exists {d;,} jcz such that ||d;,||; =1 and

IAjullr < 277 |lully,  forall j€Z.

We are going to define the space of Chemin-Lerner (see[23]) in which we will work,
which is a refinement of the space LA( A(R)).

DEFINITION 2. Let s < 2, (,4,p) € [I, 4> and T € (0,4]. We define
k (B, -(R")) as the completion of C([0,T7];.#(R")) by the norm

f||z;(3;-,,>={ 22" (/ 1A¢.f (1) Lpdt) } <o,
’ qeZ

with the usual change if r = . For short, we just denote this space by Z% (B;‘,’,) .

REMARK 4. Itis easy to observe that for 0 < s1 < s, 0 € [0,1], p,r,A,A1,A4; €
[1,4e], we have the following interpolation inequality in the Chemin-Lerner space

(see[3]):

ez, < Wl g IS

r)
with 3 = & + 18 and s = 651 + (1 - 6)s
Let us emphasize that, according to the Minkowski inequality, we have

“ps < o i < Arps = o5 i >
||fHL%~(B?7,r) = Hf”L%(B;,A’,) it A<n, Hf”L%(B;,A’,) = ”fHL%(B;,),V if A>r.

In order to prove main Theorem 1.1, we need to introduce the following weighted
Chemin-Lerner type norm from [23, 33]:

DEFINITION 3. Let f(r) € L}, .(RY), f(t) > 0. We define

lullzg s, —{ zfﬁ(/ 1) ”M()”q,dt)}
LT‘j (B,,) ) b LP

for s € R,p € [1,o],q,r € [1,00), and with the standard modification for g = e or

=00,

1
r

The following Bernstein’s lemma will be repeatedly used throughout this paper.

LEMMA 1. Let & be a ball and ¢ a ring of R". A constant C exists so that
for any positive real number A, any non-negative integer k, any smooth homogeneous
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Sunction o of degree m, and any couple of real numbers (a,b) with 1 < a < b, there
hold

Suppit C A% = sup ||0%u|;p < CEHIARI/a=1/b) |1y 1o,
|or|=k

Suppit C A€ = C* IAK||u| o < sup [|0%ul|e < CKHIAK||u)| o,

|o|=k

Suppit C A% = ||o(D)ull;p < ComA™ "=V |u]| .

On the other hand, it has been demonstrated that the Bony’s decomposition [3] is
very effective to deal with nonlinear problems. Here, we recall the Bony’s decomposi-
tion in the homogeneous context:

wv =T+ Tou+R(u,v),

where

Tqu;fESj_luAjV, R(u,v) dﬁfEAjuAjv, and Ajvd:ef Y Aj/v.

JEZ JEZ ‘jlfjlgl

As an application of the above basic facts on Littlewood-Paley theory, we present
the following product laws in Besov spaces.

LEMMA 2. Let 1 < p,r< oo, 51 < ;’—7,52 < ;7—7 with s+ 3 >nmax(0,%—1) (51 <
.51+s2—%

§7S2 < % if r=1). Assume that a € By} ,(R"),b € B}.(R"). Then ab € B),, (R")
and

bl -5 < Cllelgy 115,
The proof of this lemma is standard which can be found in [1], [33], we omit its proof
here.

LEMMA 3. (Lemma 2.100 from Bahouri et al. (2011)). Let 0 € R,1 < r < oo,
and 1 < p < py < oo. Let v be a vector field over R". Assume that

1 1 1 1
6 >-—nmin{—,—} or o>—l—nmin{—,—} if divw=0. (2.1
p1p pip

Define R; def [v-V,Aj]f (or R; def div[v,Aj|f, if divv = 0). There exists a constant C
depending continuously on p,py,0, and n, such that

i n
2/9|R; e <C||Vy|| n o, if o<l4+—. 2.2
1P IRl < IV g s, L e

Further, if 6 >0 (or c > —1,if divv=0) and % = I%—ﬁ, then

17 IR llr) illir < CCVYIle= 111l

D

HIVVligg IV Allr2)- (2.3)
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In the limit case © = —min(pi7 L) [or o =—1 —mln(pl7 L) if divv =0 ], we have
sup 2/°(|R; || <[Vl a ||fsg... (2.4)
jz-1 B,

REMARK 5. The estimates (2.2) — (2.4) are also valid in the homogeneous frame-
work (i.e., with A; instead of A; and with homogenous Besov norms instead of non-
homogeneous ones), provided

n n
o<—, or co=— and r=1.
p

Finally, we recall the solvability of the following Cauchy problem of the heat
equation in the Chemin-Lerner type space:

ou— UAu= f(x,1), u(x,0) = up(x). (2.5)

LEMMA 4. (see [3]) Let seR, 1< p,r,p <eoand O <T < oo Assume that ug €
o -(R") and f € (B ( (]R")). Then the heat equation (2.5) has a unique solution

uels (B, .(R")) NLA.(B ( (]R")). In addition, there exists a constant C > 0 such that
Sforall p; € [p,], we have

€L 1
P fuf 2 < C(lluollgy, +u?lIfIL 0 02 )
B B, P

If furthermore r is finite then u € C(0,T], B}, ,(R")).

3. Global wellposedness of Theorem 1

3.1. The estimate of the pressure

In this subsection, we will give the estimate of the pressure function in the frame-
work of weighted Chemin-Lerner type space. Taking divergence to the first equation of
(1.5) yields that

—AP=div(W VWi +W VW' +W; -VW +W; -VW7).  (3.D)

The following proposition concerning the estimate of the pressure .
. 4 e~ Feerp It Lt
PROPOSITION 3. Let 1 < p <2n with (W",W™) € L7(B,, ")NL;(B,,"). De-
note
FO) = IWE O g + 1We O s

pl p.l
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and .
P, = Pexp{—1 / F(r)dz}, for A>0,

145
and similar notations for W, , W . Then (3.1) has a unique solution VP € L} (B )

and there holds

[ P/l” i
Bpf )
<8||WM\ v HWR e WL e (W ien
Bp+1 ) Ly plﬂ)) "L plﬂ)) /lﬁf(Bp‘lW)
WL en (Wall en + W VW (3.2)
s, ") )y T g

Proof of Proposition3. As both the existence and uniqueness parts of Proposition
3 basically follow from the uniform estimate (3.2) for approximate solutions of (3.1).
For simplicity, we just prove (3.2) for smooth enough solutions of (3.1). Multiplying
(3.1) by exp{—A [{ f(1)dT}, we arrive at

VP, = V(=A) "' div(Wy - VWi + W - VW, + Wy - VW, + (W -VWi),).
Applying the operator A; to the above equation and taking L} (L?)-norm yield that

VP, || n SIWo - VWE e W VWAII n
LB, ") e L))
+|[Wg - VW/1|| 1n +||(WF VW )/l” LBy (3.3)

pl pl ")

By Lemma 1, 2 and Young’s inequality, we have

|We VWA g <CIWE VWL g G4
Li(B,; ) 1By ")
W W, g SITI e IWE, g (33)
e, e, ) s,
Lo L Iy A LA R L T LT
pl tf( p,1 )
We W3l ores N/HWF I, W15 a7
pl
1/2 1/2 1/2 1/2
s [Iwel CHAHWF I3 170, g I 2y e

pl p,1
<8W n + (Wl - n n . (3.7
LAY Fu g " Wil yopy G

1’ Ly, ") 1

Inserting the estimates (3.4)-(3.7) into (3.3), we can finally get (3.2) which implies
the result of our proposition.
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3.2. Complete the proof of Theorem 1.1

. R
In fact, when (ug,bo) € Bp.1+" (R™), by the proof of local existence of Theorem
1, there exists a positive time 7' so that the MHD equations have a unique solution
(u,b) with

1+” .1+2

(u,b) €C([0,T):B,, ") NL([0,T]; Bp1 )ﬁLl([O,T};Bp’l”). (3.8)

Denote T* to be the largest time so that there holds (3.8), hence to prove Theorem
1.1, we only need to prove that 7" = oo and (1.7) holds .

Let f(t), P,, W, , W, be given by Proposition 3, it follows from the first equa-
tion of (1.5) that

AWy +AfWy — AW, +W; - VWi +W VW5 +W; - VW,
+(Wp VW) + VP =0

Applying the operator AQ,' to the above equation and taking L? inner product with

|A;W5 [P~2A;W, (when 1 < p <2, we need to make some modification see [11]), we
obtain

HA il A FONAW, (10 + 2 | AW |11

SNA; W5 - VW)l + 1A, (W - VW) |o + |A; (W - VW) |10
A (Wi - VW) ) e+ 1A (VP |1

By Proposition 3, we can get

ot ot
W . |4 —|—7L W _.n +c W n
0 105, IS v el

STl g HIWl, vy F WD g W1, g

(pl tj( plp) I(pl tj( [)A,lp

I v TR g I VWL, g (3.9)

t(,;[ ! (B,," Li(B,, )

Similar arguments as in deriving (3.9) can be used to conclude from the second equation
of (1.5) that

Wl s AW s ealWall s
Lw pl+P L/lf(Bpl+p) I(B,flp)

SelWill , ep FIWl, g VHIWIL_ g W]
L) L@,") s, e,

)

U+ IWEIL s Wl s YAWRL s Wl )
F LT(B,,11+p) F Lio(Bl)ll+p) Ltl.f(Bp#ll+p) Ltl‘f(Bp,ler)

+([IWg - VW | (B—1+")+HWF VW H L ) (3.10)

p.l (pl )
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Summing up the estimates (3.9) and (3.10), choosing

€ small enough, C=min{cy,c;}

and
A=C(1+||Wi n +||W, Cpn ),
IV e, IV o5
we have that
HWUL n A+ /1H~ —14n +C(||WM\ n Wyl n )
e, ") P 1) 8,7
W VVVJr — n + VVJr V _ n
<MWy g W VW vy )
+C W_~,ﬂ—|- n Will. _jon + no). 3.11
W0y Iy g MW + I g ). LD

Now let C; be a small enough positive constant, which will be determined later
on, we define T by

T* = su {tGO,T* WL e W s
€ 0TIT g I v,
W, g W0, g <G GI2)
N5, ") )

In what follows, we shall prove that 7** = o under the assumption of (1.6). Oth-
erwise, taking C;C; < 5C, we deduce from (3.11) that

—+
Wil n 4+ [|Wyll n —|—C w n + n
I3l 5, Hu\wH) 51y 5+ Iy )

P
(B, 1 b1 ) Li(B,,")

CIWg - VWL | L +[We - VW H L )

p.l (pl )

which gives rise to

—+ = =Tt =
Will. 0 +|W |. _n +C(W n +[|W n
I 1o, 0t Uy 171 )
<C(|Wg - VWHH e W VW Iy )
BI’1 ) Bpl )
X exp c/ e 7 )dr} (3.13)

pl pl

Noting (1.4) and Lemma 4, we have

+ —
We .. (B*H;)_'_HWF [ (BfH;’,)"'HWF | FIWe | s

7 1l P
By LB, ,,1) Li(B, ;")

S HWOJFH —l+5 "‘HWO I —1+”~ (3.14)

pl pl
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Therefore, we can deduce from (3.13) that

. - .
WL g HW . _n +C(|W + |W n
L L B (LA WP L IR
W FWEN vy IVl )
Bpl Bpl)
mm{ﬂWﬂ\HHW%H4+& (3.15)

In particular, (3.15) implies that if we take Cy large enough and c¢( sufficiently small in
(1.6), there holds

W s +|[W s +|[WT . + W . <2

L A LA I L S
for + < T**, which contradicts with (3.12). Whence we conclude that 7** = «, and
there holds

W e +WT. n +C(WT n +||W™ n
e L e (L e L IS
SOA+IWE-VWEN g +IWE-VWE] g )
LB, L, ")
< exp {COWG | 1op + W5 1| 1p) }, (3.16)
pl pl

which and (3.14) also imply that

ull . 4 bll n +C n n
103 Bl o+ C0 o + B )
S(+[We - VW, H —148 +HWF VW H 1)
LB, " LiB,, ")
xexp{CUMGI| g + 195 | g} (3.17)
pl pl

Consequently, we complete the proof our main Theorem 1.

4. Proof of the Theorem 2

The strategy to the proof of Theorem 2 is to seek a solution of (1.13) with the form
u=ug+it, b=>bg+b, VII = VIIg + VII with (ug,bg,VIIg) solving the classical
MHD system:

ur — Aug +ug-Vug +VIIg —br-Vbr =0
Obr — Abgr+ug-Vbgr — bg-Vugr =0 @.1)
divug =0, divbg =0 ’

URli—0 =uo, bRrli—o = bo,
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and (a, it, b, VII) solving

dia+ (ii+ug)-Va=0

i+ it-Vii+ug-Vii+ it - Vug — (1 4+ a)Aii — ahug + (1 + a) VIT+ aVIlg
—(1+a)(b-Vb+b-Vbg+bg-Vb) —a(bg-Vbg) =0

b —Ab+it-Vb+it-Vbgr+ug-Vb—b-Vii—b-Vug—bg-Vii =0

divi =0, divb =0,

(a,it,b)|—0 = (a0,0,0).

4.2)

From the Theorem 1 we have just proved, we can get the following estimate for
(ug,bg) under the assumption (1.6):
lurll. s +lORIL s +[lugl] +16rll | en +FIVIIRI s
@, ") P, 7 LB 15,7 L,y
SO IWE VWE g WV g )

p,1 pl )

xexp {CUMWGI| g+ W5 | _rp) }- (43)

p 1 p 1
In what following, we mainly discuss the equation (4.2). In order to close the
energy estimates, we will begin from the estimates of transport equation and pressure
function.

4.1. The estimate of the transport equation

The goal of this section is to investigate the following free transport equation in
the framework of weighted Chemin-Lerner type norm:

da+u-Va=0, (t,x) e R" xR", ali—o = ap, xeR" (4.4)

PROPOSITION 4. Let p > q > 1 with Ll]— 1% < }%, and A be a positive number.

Let uc L7 (B, *" (R")NLL(B, 7 (")) and ao € B! (R"). Denote

€02 () and 0z S aexp{ <4 ["st)ar'}.

pl

Then (4.4) has a unique solution a € C([0, T];B; | (R™)) satisfying

ayil. .n +(A-C ap I

I IIL?(B;I) (A =Cllarll g<B:1>
aol| » +||u n ||layl|- 4.5)
Cllanlg +17,y e loall_ g )

forany 7 € (0,T] and A large enough.

The proof of this proposition is similar to [33], here, we omit the details.
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4.2. The estimate of the pressure

For A > 0, we denote

P
p.1 p.1 Pl p.1 p.l

a :aexp{—/otlf(t’))dt’}, i — ﬁexp{—/otlf(t/))dt/},
I;;L:l;exp{—/otlf(t’))dt’}, T, :ﬁexp{—/(:xf(t’))dz’}.

We now begin to estimate the pressure. Taking the divergence to the second equa-
tion of (1.13) and using divu = divb = 0, we have

F@&) = lur(@)] 1on + ur(@)]> 5+ |1br(2 M s + bR (r OI7 s +VOR@] _1en,
B BP BY B

and

VI =V(-A) " ldiv [aVﬁ—F i-Vit+ug - Vit + it - Vug — aAit — alug
+aVIg— (14a)(b-Vb+b-Vbg+bg-Vb) —a(bR~VbR)]
=V(-A)"'div {aVﬁ—k u-Vu+u-Vug — alu — aAug
+aVTlg — (14a)(b-Vb+b-Vbg) —a(bg- VbR)] : (4.6)
Multiplying by exp {— [ Af(¢))dt'} on both side of (4.6), it follows that
VII, =V(-A) ldiv [aVﬁ;L +it-Vity + ity - Vug — aAiiy — ay Aug

+ay Vg — (1+a)(b-Vby, + by, - Vbg) —al(bR-VbR)} .
4.7)

By the fact that the Riesz transform % maps continuously from homogeneous
Besov spaces B), ,(R") to B}, ,(R") with the uniform operator norm, we yields that

VI, s SlE-Val s - Vuell
VTGl 508, 1 Bt
+lladiz 1 +lardugl] | v +Ha/1VHRH .
(Bpl (Bpl pl )

+||<1+a><bl.vzm>uy (B,H%ﬁH<1+a><b-vm>ny

p.1 1\ p,1 )

+ [la(br- Vbr), || (B—1+;;)+Havnl|| R (4.8)

p.l (pl )
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By the Besov product laws Lemma 2 and Definition 3, we get

i- Vi, a <l Vi, n
17,y 153, S 19Tl
Slall._ vn [l n (4.9)
p, ) e )
3 Vil 1ig S [ el 100 1
pl pl
Sl ven (4.10)
7 f(Bp‘ll*l’ )
A e A .
|aiz,, || Bt Slla ||~ || i || (B,,lf")
SIIaIIN n IIMH : (4.11)
L qu L} (Bpl )
A _ n t/ ﬂdt/
ozl ) 5 ) 1)l )
Slaally 2 (4.12)
f
CZVH)L n <HaH~ VH?L - 5 (413)
| I, vy Sl i IV, i
(b Vor)al,rog % ) el ey
<|| ally gl (4.14)
’f
l+a E;L-VbR qyn 1+ a~ n bl Vbg i4n
10+ V0l g S 4l ) [
(1+Ha\L Moall.,  ven (4.15)
ird,) L)
1 b-Vb e <1 b-Vb Cn
[(1+a)( /I)HLI ) S <( +HaH i )H by | e
(1+||a|| )||b||~ 5 |[ba | n
sy e

q,1
(4.16)
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Taking the above estimates (4.9)- (4.16)into (4.8), we can get the following inequality

under the assumption that C|la|| _ ( n : is small enough:
(B
q.1

VT e UL g Wl g I, g

pl t Bpl ) p,1 tf p,1 )
+|la H~ s Nl ep +lall,x lIBalL, 5
(Ba) " L(B,,") LBy, B ")
+ 1+l )Hb\L e oAl en I 7L||~ ~
L;Q(B;l) (Bp lJr L (Bp+l ) tf(Bq)

4.17)

4.3. Complete the proof of Theorem 2
. N —1+2 —14+2 .
Indeed for given ag € B, |(R"), up€ B, "(R"), b€ B,; " (R") with ”aO”Bgl
q,
sufficiently small and p, g satisfying the conditions in Theorem 2, it follows by a

similar argument in [2] that there exists a positive time 7' so that (1.13) has a local
solution (a,u,b) with

ac C([O,T);B,;ﬂ”l)ﬂZ“((O,T);le); VII e Ll((o T).BfH;); "
(u,b)6C([07T);B;ll+%)mZ""((O,T);B | )OLI((O T); B1+")7 :

in addition, if L +1 > % , then the solution is unique. We denote 7 to be the supremum
of T so that (4.18) holds. Hence, to prove Theorem 2, we only need to prove that
T" =00,

Multiplying (1.13), and (1.13)3 by exp{— [gAf(t))dt'}, applying A; to the
equations and taking the L? inner product of the resulting equation with |A iy, |p A iy,
|Ajby|P~2A by, respectively, we get from the basic energy method that

Nl —ien + 102l —ven (il | aen +[ball | 1en)
Les,, ") L8, ") LB,\") LB,\")
Al g FIBl, )

1.\ p,l ) If( )
SNV, g+ sl o + 17V

p:1 p.1 i ( Pl )

+ iy - Vurl|  _ion +lug- Vi || n + |ladAidy || n

s, ") s, ") s, ")
+||(1+a)(bR'VbA)HL1(Bq+" +[(1+a) (b - Vog)|| L5

p.l p,1

+H%VHRH o +(1+a)(b-Vby)| o i Voall s

L 3,1 ") LiB,, ")
+ |la(bg- VbR)?L” Cipn |l - VbR|| v ur- VbAH s

LB, ") LB, ") LB, ")
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+1|b-Va a +||by - Vu n +||br-Vu en . 4.19
[ all i |7 - Vug| Bt |br- Vit || (B,,lf”) (4.19)

By Lemma 2, interpolation inequality and Young’s inequality, we obtain

g - Vit ||, i N/ (@] g Miea Ol g dr’

pl pl

§/0 HuR(t’)HB% IIﬁz(t’)HZ,H%Hﬁx(t’)ll cpdt’(420)

p.1

St

SCEapll.,  en Fellipll | in
o, ") L®,\")

Similarly,

i VBl g SC@NBN, reg +ellbaly s @an

pl ) 1.\ p.l I(Bp#l
bR - V”)L” n SCEapll.  n tellip]l o oaen
Bp11+ ) Ltl‘f(Bpj*P) L}(B:;P) (4.22)

1 br-Vb len
[(1+a)(br l)||L1(Bpll+p)

1 Cl(e l; _4n ellb no). 4.23
S (U lal (B;%I )(C(e)ll Asz(B ven ellby e )) (4.23)

By the product laws in Besov spaces and (4.17), we have

H(l"'a VHH (B l+"

ol )
<e(thal g VT g Nl g+l v,
el g Wl grep + Ol o Bl g,
el MO o 102l o el o} @29

The other terms in (4.20) can be estimated by a similar way of (4.9)- (4.16) and
be controlled by the right hand side of (4.17). Substituting the above estimates (4.20)-
(4.24) into (4.19), taking € small enough and under the assumption (1.14) we yield
that

n n + b n + n + n
il vy BN reg + SR g 1Bl g )

7)
t p.l f p.l p.l p.l
FA(laall,  en bl an)
Ly, ") LB
Shall s Nl s+l s

LrB,, ") L(8,,") LB, ")
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+ |a ||~ g il gen + At lall_ Moall, s
;1 L 1+p) (Bq.l tj 1+p)
+ (1t lall, o N6l s 1Ball, ven el (4.25)
@l s, e, I B
On the other hand, taking g(¢) = f(¢) in Proposition 4 implies
laall.. 2 +(A=Ollaxl., =
L7 (B))) L} (B])
Clllaoll 5 + 1] g laall. 2 )- (4.26)
ql L(Bpl (Bql)
Summing up (4.25) and (4.26) and taking A large enough yields that
_on Hluyll.  ipn + b  _jian
L A CY M
+ellal | g +115 AH n )
(B,,l ) (B,,l )
< n + n ||l n
ool 4107y o3 ol s 1 1l
t+lall_, || o, s, T (A llall )||b||~ i ||b7L|| . (427)

n n
q q P
LpB1) L}(8,,") LpB1) Ly, " L}8,,")

Now let 1 be a small enough positive constant to be determined later on, we define

wx O * —
T Saup{re 0.7 all gy + 0T e B g
t \Pg.1 t p.1 p,1
(4.28)

lall g 1B, ey <2m).
B B 7

(pl (pl

(4.28) implies that

lall_, 2 <2,
B.y)

(ql

in particular, if we take 1 < 5=, where c¢ is the constant in (1.14). Then (1.14) auto-
matically holds for ¢ < T**. In What follows, we shall prove that 7** = e under the
assumption (1.6) and (1.14). Otherwise, if 7** < oo, taking

c 1
< —) forr < T*,

A
m < = min(ge, A1+ 0)C 2

we would deduce from (4.27) that

lapll. = +||m||~ i +||b/1||~ Cen Al an Al aen
L7 irs,, ") irs,, ") LB L8,
< laoll - (4.29)
B
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On the other hand, it’s easy to observe from (4.29) that

lall_ o il ey 18I ey +lal | ey +15]

. RERO
L7 I, ") Irs,, ") L8, Li8,\")
5(”611\\~ oAl ceen A+ ball s 7L||
! i@, ") i@, ") LB
_ 1
+1b ﬂ)CX {/)L t’dt’}.
1831, 05 )exp{ [ 25)
As a consequence,
lall__ o+l e DI e ] s +b] s
(B I, ") Lr,, ") LhB,\7) LB,
(4.30)

t
Slaol g exp{ [ ashar} forr <7,
B 0
q,1
Thanks to the estimate (1.8) in Theorem 1, there exists a constant C such that

!
AF(dr 1+ |Wo - VW, Cn Wi VW Cen )?
/0 f(t)at (( + W FH LGB 142 )‘f'H F FH L )

p.1 ( p,1
X exp{CUIWG | 1o + W5 | 10)})- (431
pl pl
Combining (4.30) with (4.31), we reach
_on + _ ian EN Cien H|lu n b
el gt 1 g+ 0Bl e 0l o 1By
+ 2
<cuaouBglexp(<1+nwF Wy oo IV TWEL, g )
q, P, P,
X exp{C(W | 1vg + W5l 1)}
pl pl

which implies that if we take [|ag|| » sufficiently small, the following estimate would
B

q,1
hold

- +ﬁ~ 7ﬂ+b7~ ,n+u n—f—l; n
lall_.. | ||L°°(B 5y L T Nl L] BT 2 o LI S

2B cB,, " Ly, ") Lis,,") Lis,,")
<Cco<n forr<T™,

and the solution would exist beyond 7**. This contradicts (4.28). Whence we conclude
that 7** = oo. This completes the proof of Theorem 2.
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