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Abstract. In this work, we investigate the oscillation criteria for second order neutral delay dif-
ferential equations of the form

(r(t)[y(t)+ p(t)y(δ (t))]′)′ +q(t)G(y(τ(t))) = 0

and
(r(t)[[y(t)+ p(t)y(δ (t))]′]α )′ +q(t)(yβ (τ(t))) = 0,

where α and β are the ratio of odd positive integers.

1. Introduction

Consider the nonlinear neutral delay differential equations of the form

(r(t)[y(t)+ p(t)y(δ (t))]′)′ +q(t)G(y(τ(t))) = 0, (1.1)

(r(t)[[y(t)+ p(t)y(δ (t))]′]α)′ +q(t)(yβ (τ(t))) = 0, (1.2)

where r,q,δ ,τ ∈ C(R+,R+), p ∈ C(R+,R), G ∈ C(R,R) such that xG(x) > 0 for
x �= 0,α,β are the ratio of odd positive integers and δ (t) � t,τ(t) � t with δ (t) is
bijective and limt→∞ δ (t) = ∞ = limt→∞ τ(t) .

In [5], the authors have considered (1.1) when G(x) = x and also studied (1.2)
in [6], and they have established sufficient conditions for oscillation of all solutions of
(1.1) and (1.2) subject to the comparison results. Using double Riccati transformation,
Li and Rogovchenko [16] have studied (1.1) and presented new oscillation criteria with
restriction on p(t) � 0 and also required inter alia τ(t) � δ (t) � t condition but, the
base is the comparison results. A similar observation can be remarked in [7], where
Baculikova et al. have studied the neutral equation

(r(t)[y(t)+ p(t)y(δ (t))]′)′ +q(t)y(τ(t))+ v(t)y(σ(t)) = 0. (1.3)

In this work, our objective is to establish the sufficient condition results for os-
cillation of all solutions of (1.1) and (1.2) without the comparison results under the
assumptions
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(H1)
∫ ∞
0

dt
r(t) = ∞,

(H2)
∫ ∞
0

dt
r(t) < ∞,

(H ′
1)

∫ ∞
0

dt
rα (t) = ∞,

and
(H ′

2)
∫ ∞
0

dt
rα (t) < ∞

for all ranges p(t) with |p(t)| < ∞ .
Neutral delay differential equations find numerous applications in electric net-

works. For example, they are frequently used for the study of distributed networks
containing lossless transmission lines which arise in high speed computers where the
lossless transmission lines are used to interconnect switching circuits (see for e.g. [13]).
The problem of obtaining sufficient conditions to ensure the second order differential
equations which are special cases of (1.1) and (1.2) are oscillatory has received a great
attention. We refer the reader to some of the works [1] - [4],[9] - [12],[15] - [25] and
the references cited therein.

By a solution of (1.1) (or (1.2)), we mean a continuously differentiable function
y(t) which is defined for t � min{δ (t0),τ(t0)} such that y(t) satisfies (1.1) (or (1.2))
for all t � t0 . In the sequel, it will be always assumed that the solutions of (1.1) (or
(1.2)) exist on some half-line [t1,∞] for t1 � t0 . A solution of (1.1) (or (1.2)) is called
oscillatory if it has arbitrarily large zeros; otherwise, it is called nonoscillatory. Eq.(1.1)
(or (1.2)) is called oscillatory if all of its solutions are oscillatory.

2. Oscillation Criteria for (1.1)

In this section we establish the oscillation criteria for (1.1). We need the following
hypotheses for our use in the sequel:

(H3) there exists λ > 0 such that G(u)+G(v) � λG(u+ v) and G(uv) � G(u)G(v)
for u,v ∈ R and u,v > 0 (see for e.g.[14]);

(H4) G(−u) = −G(u), u ∈ R;

(H5)
∫ ∞
0 Q(t)dt = ∞, Q(t) = min{q(t),q(δ (t))};

(H6)
∫ ∞
0 q(t)dt = ∞;

(H7) δ n(t) = δ (δ n−1(t)), limn→∞ δ n(t) < ∞;

(H8)
∫ ∞
t0

Q(t)G(R(τ(t)))dt = ∞, R(t) =
∫ ∞
t

ds
r(s) ;

(H9)
∫ ∞
0

1
r(t)

∫ t
T Q(s)G(R(τ(s)))dsdt = ∞ f or every T > 0;

(H10)
∫ ∞
0 q(t)G(R(τ(t)))dt = ∞, R(t) =

∫ ∞
t

ds
r(s) ;

(H11)
∫ ∞
0

1
r(t)

∫ t
T q(s)G(R(τ(s)))dsdt = ∞ f or every T > 0.

LEMMA 1. [5] Assume that (H1) holds. If y(t) is a positive solution of (1.1) such
that the corresponding function z(t) = y(t)+ p(t)y(δ (t)) > 0 , then z(t) satisfies

z(t) > 0,r(t)z′(t) > 0,(r(t)z′(t))′ < 0

eventually.
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LEMMA 2. Assume that (H2) holds. Let y(t) be any continuous function defined
on [t0,∞), t0 � 0 such that (r(t)y′(t))′ � 0 on [t0,∞) . If y′(t) < 0 for t � t0, then
y(t) � −R(t)r(t)y′(t) .

Proof. For s � t,r(s)y′(s) � r(t)y′(t) and hence

y(s) � y(t)+
∫ s

t

r(t)y′(t)
r(θ )

dθ = y(t)+ r(t)y′(t)
∫ s

t

1
r(θ )

dθ .

Therefore,

0 < y(s) � y(t)+ r(t)y′(t)
∫ s

t

dθ
r(θ )

implies that y(t) � −R(t)r(t)y′(t) .

THEOREM 1. Let 0 � p(t) � a < ∞ and τ(δ (t)) = δ (τ(t)) for every t > 0 . If
(H1),(H3)− (H5) hold, then (1.1) is oscillatory.

Proof. On the contrary, without loss of generality we assume that y(t) > 0 (because of
(H4)) is a nonoscillatory solution of (1.1) on [t0,∞), t0 > 0. Hence, there exists t1 > t0
such that y(t) > 0, y(δ (t)) > 0, and y(τ(t)) > 0 for t � t1 . Defining z(t) as in Lemma
2.1 and then taking the lemma into account, it follows that z(t) � C for t � t2 . Using
(1.1), it follows that

(r(t)z′(t))′+q(t)G(y(τ(t)))+G(a)(r(δ (t))z′(δ (t)))′+G(a)q(δ (t))G(y(τ(δ (t))))= 0.

Using (H3 ) in the above equation, we obtain

(r(t)z′(t))′ +G(a)(r(δ (t))z′(δ (t)))′ + λQ(t)G(z(τ(t))) � 0,

due to τ(δ (t)) = δ (τ(t)) . Consequently, there exists t3 > t2 such that

λG(C)Q(t) � −(r(t)z′(t))′ −G(a)(r(δ (t))z′(δ (t)))′ (2.1)

for t � t3 . Integrating (2.1) from t3 to +∞ , we obtain a contradiction to (H5) . This
completes the proof of the theorem.

REMARK 1. Equation (1.1) includes a class of nonlinear neutral differential equa-
tions when p(t) � 0. It is learnt that G could be linear, sublinear or superlinear also.

THEOREM 2. Let −1 <−b � p(t) � 0, b > 0 . Assume that (H1),(H4) and (H6)
hold. Then every unbounded solution of (1.1) is oscillatory.

Proof. Let y(t) be an unbounded nonoscillatory solution of (1.1). Proceeding as in
the proof of Theorem 1, we can find a t1 > t0 such that y(t) > 0, y(δ (t)) > 0 and
y(τ(t)) > 0 for t � t1 . Since z(t) is monotonic, then either z(t) > 0 or < 0 for t � t1 .
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Clearly, Lemma 1 holds when z(t) > 0 for t � t1 . Using the fact that z(t) � y(t) for
t � t1 , it follows from (1.1) that

(r(t)z′(t))′ +q(t)G(z(τ(t))) � 0.

The rest of this case follows from Theorem 1.
Suppose that z(t) < 0 for t � t1 . Since y(t) is unbounded, then there exists

{vn}∞
n=1 ⊂ [t3,∞) such that vn → ∞ as n → ∞ and y(vn) → ∞ as n → ∞ . Indeed,

z(vn) � y(vn)−by(τ(vn)) � (1−b)y(vn)

implies that z(t) > 0, which is absurd. This completes the proof of the theorem.

REMARK 2. We may note that G could be linear, superlinear or sublinear in The-
orem 2. If z(t) < 0 for t � t2 , then y(t) < y(δ (t)) implies that

y(t) < y(δ (t)) < y(δ 2(t)) < .... < y(δ n(t)) < ....

holds. Consequently, y(t) is bounded due to (H7) and hence z(t) is bounded. When
z′(t) < 0 for t � t2 , it happens that r(t)z′(t) � r(t2)z′(t2) which then implies that
limt→∞ z(t) = −∞ . Therefore, this case doesn’t arise in Theorem 2.

THEOREM 3. Let −1 <−b � p(t) � 0, b > 0 . Assume that (H1),(H4),(H6) and
(H7) hold. Then every solution of (1.1) either oscillates or converges to zero.

Proof. The proof of the theorem follows from Theorem 2 and Remark 2.6. In case
z(t) < 0,

0 � lim
t→∞

z(t) = limsup
t→∞

(y(t)+ p(t)y(δ (t)))

� limsup
t→∞

(y(t)−b y(δ (t)))

� limsup
t→∞

y(t)+ liminf
t→∞

(−b y(δ (t)))

= limsup
t→∞

y(t)−b limsup
t→∞

y(δ (t))

= (1−b) limsup
t→∞

y(t)

implies that limsup
t→∞

y(t) = 0. Hence, lim
t→∞

y(t) = 0. This completes the proof of the

theorem.

THEOREM 4. Let −∞ < −b � p(t) � −1, b > 1 . Assume that (H1),(H4) and
(H6) hold. Then every bounded solution of (1.1) either oscillates or converges to zero.

Proof. The proof of the theorem follows from the proof of Theorem 3. In case

z(t) < 0, r(t)z′(t) > 0, (r(t)z′(t))′ < 0,
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we assert that liminf
t→∞

y(t) = 0. Otherwise, let there exist a > 0 and t4 > t3 such that

y(δ (t)) � a for t � t4 . Integrating (1.1) from t4 to ∞ we obtain a contradiction to
(H6) . Therefore, our assertion is true. Hence, there exists {un}∞

n=1 ⊂ [t4,∞) such that
un → ∞ as n → ∞ and lim

n→∞
y(un) = 0. Let lim

t→∞
z(t) = L,L ∈ (−∞,0] . For t � t4 , we

have

z(δ−1(t))− z(t) = y(δ−1(t))+ [p(δ−1(t))−1]y(t)− p(t)y(δ (t))

which then implies that

lim
t→∞

[y(δ−1(t))+{p(δ−1(t))−1}y(t)− p(t)y(δ (t))] = 0.

Also, it is true that

lim
n→∞

[y(δ−1(un))+{p(δ−1(un))−1}y(un)− p(un)y(δ (un))] = 0,

that is,

lim
n→∞

[y(δ−1(un))− p(un)y(δ (un))] = 0.

Since

y(δ−1(un))− p(un)y(δ (un)) � −p(un)y(δ (un)),

then it follows that limsup
n→∞

[−p(un)y(δ (un))] = 0, that is, lim
n→∞

[−p(un)y(δ (un))] = 0.

Ultimately,

L = lim
n→∞

z(un) = lim
n→∞

[y(un)+ p(un)y(δ (un))] = 0.

Therefore,

0 = lim
t→∞

z(t) = liminf
t→∞

(y(t)+ p(t)y(δ (t)))

� liminf
t→∞

(y(t)−b y(δ (t)))

� limsup
t→∞

y(t)+ liminf
t→∞

(−b y(δ (t)))

= limsup
t→∞

y(t)−b limsup
t→∞

y(δ (t))

= (1−b) limsup
t→∞

y(t),

implies that limsup
t→∞

y(t) = 0. Hence the proof of the theorem is complete.

THEOREM 5. Let 0 � p(t) � a < ∞ . Assume that τ(δ (t)) = δ (τ(t)) holds for
every t > 0 . If (H2)− (H4),(H8) and (H9) hold, then (1.1) is oscillatory.
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Proof. Proceeding as in the proof of Theorem 1 we can find t1 > t0 such that
y(t) > 0, y(δ (t)) > 0 and y(τ(t)) > 0 for t � t1 . It follows that z(t) and r(t)z′(t)
are of one sign on [t1,∞) . We consider two cases upon the sign of r(t)z′(t) , that is,
z′(t) > 0 and z′(t) < 0 for t � t1 . Suppose the former holds. Then there exist t2 > t1
and a constant C1 > 0 such that z(t) �C1 for t > t2 . It is easy to verify that there exist,
C > 0 and t3 > t2 such that z(t) � CR(t) for t � t3 (∵ limt→∞ R(t) = 0 and R(t) is
bounded). Consequently, we can write the inequality similar to (1.3) as

λG(CR(τ(t)))Q(t) � −(r(t)z′(t))′ −G(a)(r(δ (t))z′(δ (t)))′ (2.2)

for t � t3 . Integrating (2.2) from t3 to ∞ , we obtain a contradiction. Ultimately,
the latter holds. From Lemma 2, we have that z(t) � −R(t)r(t)z′(t) for t � t2 > t1 .
Since r(t)z′(t) is nonincreasing, then we can find a constant C > 0 and t3 > t2 such
that r(t)z′(t) � −C and z(t) � CR(t) for t � t3 . Consequently, (2.2) holds for t � t3 .
Integrating (2.2) from t3 to t , we obtain that

λG(C)
∫ t

t3
Q(s)G(R(τ(s)))ds � −(1+G(a))r(t)z′(t)

due to nonincreasing r(t)z′(t) . Hence

λG(C)
r(t)

∫ t

t3
Q(s)G(R(τ(s)))ds � −(1+G(a))z′(t).

Since limt→∞ z(t) exists, then it follows from the above inequality that

λG(C)
∫ ∞

t3

1
r(t)

∫ t

t3
Q(s)G(R(τ(s)))dsdt < ∞,

a contradiction to (H9) . Thus the proof of the theorem is complete.

THEOREM 6. Let −1 < −b � p(t) � 0, b > 0 . Assume that (H2),(H4),(H10)
and (H11) hold. Then every unbounded solution of (1.1) oscillates.

Proof. Proceeding as in the proof of Theorem 2, we conclude that z(t) is mono-
tonic on [t1,∞) . Hence there exists t2 > t1 such that z(t) > 0 or z(t) < 0 for t � t2 .
Consider that z(t) > 0 on [t2,∞) . Using the same type of reasoning as in the proof of
Theorem 5, we can find C > 0 and t3 > t2 such that z(t) � CR(t) for t � t3 . Since
z(t) � y(t) , then it follows that y(t) � CR(t) on [t3,∞) , if we assume that z′(t) > 0.
Therefore (1.1) becomes

(r(t)z′(t))′ +G(C)G(R(τ(t)))q(t) � 0 (2.3)

for t � t3 . Integrating (2.3) from t3 to ∞ , we obtain a contradiction to (H10) . Hence
z′(t) < 0 for t � t2 . Rest of this case follows from the proof of Theorem 5.

Next, we suppose that z(t) < 0 on [t2,∞) . Let there exist t3 > t2 such that z′(t)> 0
or z′(t) < 0 for t � t3 . Rest of this case follows from the proof of Theorem 2. Thus the
proof of the theorem is complete.
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THEOREM 7. Let −1 < −b � p(t) � 0, b > 0. Assume that (H2) , (H4) , (H7) ,
(H10) and (H11) hold. Then every solution of (1.1) either oscillates or converges to
zero.

Proof. The proof of the theorem follows from the proof of Theorems 3 and 6. Due
to (H7) , y(t) is bounded and hence z(t) is bounded. Therefore, lim

t→∞
z(t) exists when

z(t) < 0. Hence, the theorem is proved.

THEOREM 8. Let −∞ < −b � p(t) � −1,b > 1 . Assume that (H2),(H4),(H10)
and (H11) hold. Then every bounded solution of (1.1) either oscillates or converges to
zero.

Proof. The proof of the theorem can be followed from the proof of Theorems 7
and 4. Hence, the details are omitted.

EXAMPLE 1. Consider (1.1) on [π ,∞) , where p(t) = (1 + 1/t) , δ (t) = t − π ,
τ(t) = t − 3π , q(t) = t , r(t) = t2 and G(u) = u. Clearly, all conditions of Theorem
5 are satisfied for (1.1) when G(u) = u . Hence every solution of (1.1) oscillates. In
particular, y(t) = sin t is an oscillatory solution of (1.1).

EXAMPLE 2. Consider (1.1) on [π ,∞) , where p(t) = −e−π ,δ (t) = t −π ,τ(t) =
t− 3π

2 ,

q(t) =
4

(e−
3π
2 + |e−tsint|)

� 4

(1+ e−
3π
2 )

,

r(t) = 1 and G(u) = u(1+ |u|) . Clearly, all conditions of Theorem 3 are satisfied for
(1.1). Hence every solution of (1.1) either oscillates or converges to zero. In particular,
y(t) = e−t sin t is such a solution of (1.1).

3. Oscillation Criteria for (1.2)

In this section, we establish sufficient condition for oscillation of all solutions of
(1.2), where α and β are the quotient of odd positive integers. We need the following
lemmas for our use in the sequel:

LEMMA 3. [6] Assume that A � 0, B � 0 and λ � 0 . Then

(A+B)λ � 2λ−1(Aλ +Bλ ).

If 0 � λ � 1 , then
(A+B)λ � (Aλ +Bλ ).

LEMMA 4. [6] Let p(t) � 0 . Assume that
∫ ∞
0 r−1/α(t)dt = ∞ . If y(t) is a posi-

tive solution of (1.2), then the corresponding function z(t) = y(t)+ p(t)y(δ (t)) satisfies

z(t) > 0, z′(t) > 0, (r(t)(z′(t))α )′ < 0

for any large value of t.
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LEMMA 5. Assume that
∫ ∞
0 r−1/α(t)dt < ∞ . Let Rα(t) =

∫ ∞
t r−1/α(t)dt . Let y(t)

be an eventually positive solution of (1.2) such that

z(t) = y(t)+ p(t)y(δ (t)) (3.1)

is of one sign, for large value of t . Then the following are true:

1. If z(t) > 0 and z′(t) > 0 for large t , then z(t) � CRα(t) .
2. If z(t) > 0 and z′(t) < 0 for large t, then

z(t) � −Rα(t)r1/α(t)z′(t) and

(
z(t)

Rα(t)

)′
� 0.

Proof. The proof of 1 is immediate. Proof of 2 follows from the proof of Lemma
2. Hence, the details are omitted.

THEOREM 9. Let 0 � p(t) � a < ∞ . Assume that τ(δ (t)) = δ (τ(t)) for every
t > 0 If

(H12)
∫ ∞
0 r−1/α(t)dt = ∞ =

∫ ∞
t0

Q(t)dt, Q(t) = min{q(t),q(δ (t))}
holds, then every solution of (1.2) oscillates.

Proof. Proceeding as in Theorem 1 and taking Lemma 4 into account, it follows
that z(t) is nondecreasing on [t1,∞) and hence z(t) � C for t � t2 > t1 . Using (1.2), it
follows that

(r(t)(z′(t))α)′ +q(t)yβ (τ(t))+aβ (r(δ (t))(z′(δ (t)))α )′ +aβq(δ (t))yβ (τ(δ (t))) = 0.
(3.2)

Due to Lemma 3, (3.2) becomes

(r(t)(z′(t))α)′ +aβ (r(δ (t))(z′(δ (t))α)′ +21−λQ(t)zβ (τ(t)) � 0

(∵ τ(δ (t)) = δ (τ(t))) for t � t2 . Hence, there exists t3 > t2 such that

21−λQ(t)Cβ � −(r(t)(z′(t))α)′ −aβ (r(δ (t))(z′(δ (t)))α )′ (3.3)

for t � t3 . Integrating (3.3) from t3 to +∞ , we obtain a contradiction to (H12) . This
completes the proof of the theorem.

THEOREM 10. Let −1 < −b � p(t) � 0, b > 0 . Assume that

(H13)
∫ ∞
0 r−1/α(t)dt = ∞ =

∫ ∞
0 q(t)dt

hold. Then every unbounded solution of (1.2) is oscillatory.

Proof. On the contrary, we proceed as in Theorem 2 and obtain

(r(t)(z′(t))α )′ +q(t)zβ (τ(t)) � 0 (3.4)

t � t1 due to (3.1). In this case, Lemma 4 is applicable for t � t1 . Proceeding as in the
proof of Theorem 9, we obtain a contradiction to (H13) . The proof for the case z(t) < 0
for t � t1 follows from Theorem 2. Hence the theorem is proved.
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THEOREM 11. Let −1 < −b � p(t) � 0, b > 0. Assume that (H7) and (H13)
hold. Then every solution of (1.2) either oscillates or converges to zero.

Proof. The proof of the theorem follows from the proof of Theorem 3. Hence the
details are omitted.

THEOREM 12. Let −∞ < −b � p(t) � −1 b > 1 . If (H13) holds, then every
bounded solution of (1.2) either oscillates or converges to zero.

THEOREM 13. Let 0 � p(t) � a < ∞ . Assume that τ(δ (t)) = δ (τ(t)) hold for
every t > 0 . If
(H14)

∫ ∞
0 r−

1
α (t)dt < ∞,

∫ ∞
t0

Q(t)Rβ
α(τ(t))dt = ∞

and

(H15)
∫ ∞
0

[
1

r(t)
∫ t
T Q(s)Rβ

α(τ(s))ds
] 1

α
dt = ∞ f or every T > 0

hold, then (1.2) is oscillatory.

Proof. On the contrary, we proceed as in Theorem 9 and Theorem 5. It follows
from (3.2) that

− (r(t)(z′(t)α))′ −aβ (r(δ (t))(z′(δ (t)))α )′ � 21−λCβ Rβ
α(τ(t))Q(t) (3.5)

for t � t3 due to Lemma 3 and Lemma 5(1). Integrating (3.5) from t3 to ∞ , we obtain
a contradiction to (H14) . Hence z′(t) < 0 for t � t1 . Applying Lemma 5(2), it happens

that z(t) � −Rα(t)r
1
α (t)z′(t) for t � t2 � t1 . Since r(t)(z′(t))α is nonincreasing, then

we can find a constant Cα > 0 and t3 > t2 such that r(t)(z′(t))α � −Cα and z(t) �
CRα(t) for t � t3 . Consequently, (3.5) holds for t � t3 . Integrating (3.5) from t3 to t ,
we obtain that

21−λCβ
∫ t

t3
Q(s)Rβ

α(τ(s))ds � −(1+aβ)r(t)(z′(t))α

due to nondecreasing (r(t)(z′(t)))α . Hence

21−λCβ

r(t)

∫ t

t3
Q(s)Rβ

α (τ(s))ds � −(1+aβ)(z′(t))α .

Since limt→∞ z(t) exists, then it follows from the above inequality that

[
21−λCβ

(1+aβ)

] 1
α ∫ ∞

t3

[
1

r(t)

∫ t

t3
Q(s)Rβ

α (τ(s))ds

] 1
α

dt < ∞,

a contradiction to (H15) . This completes the proof of the theorem.

THEOREM 14. Let −1 < −b � p(t) � 0, b > 0. Assume that

(H16)
∫ ∞
0 r−

1
α (t)dt < ∞,

∫ ∞
0 q(t)Rβ

α(τ(t))dt = ∞



256 A.K. TRIPATHY, B. PANDA AND A.K. SETHI

and

(H17)
∫ ∞
0

[
1

r(t)
∫ t
T q(s)Rβ

α(τ(s))ds
] 1

α
dt = ∞ f or every T > 0

hold. Then every unbounded solution of (1.2) oscillates.

Proof. Let y(t) be an unbounded nonoscillatory solution of (1.2). Without loss of
generality, we may assume that y(t) > 0 for t � t0 . Hence there exists t1 > t0 such that
y(t) > 0, y(δ (t)) > 0 and y(τ(t)) > 0 for t � t1 . Using (3.1) in (1.2), it follows that
z(t), r(t)(z′(t))α are of one sign on [t2,∞) , t2 > t1 . Suppose that z(t) > 0 for t � t2 .
Let z′(t) > 0 for t � t2 . Since z(t) � y(t), then (1.2) reduces to (3.4). Using Lemma
5(1) in (3.4) and then integrating from t3(> t2) to ∞ , we get a contradiction to (H16) .
Ultimately, z′(t) < 0 for t � t2 . The rest of this case follows from Theorem 13.

The proof for the case z(t) < 0 for t � t1 follows from Theorem 2. Hence the
theorem is proved.

THEOREM 15. Let −1 < −b � p(t) � 0, b > 0. Assume that (H7),(H16) and
(H17) hold. Then every solution of (1.2) either oscillates or converges to zero.

Proof. The proof of the theorem follows from the proof of Theorems 3 and 14.
Due to (H7) , y(t) is bounded and hence z(t) is bounded. Therefore, lim

t→∞
z(t) exists

when z(t) < 0. Thus, the proof of the theorem is complete.

THEOREM 16. Let −∞ < −b � p(t) � −1,b > 1 . Assume that (H16) and (H17)
hold. Then every bounded solution of (1.2) either oscillates or converges to zero.

Proof. The proof of the theorem can be followed from the proof of Theorems 15
and 4. Hence, the details are omitted.

EXAMPLE 3. Consider α = β = 1. If we choose p(t) = e−2π , δ (t) = t −
2π , τ(t) = t − 3π , q(t) = 4e3π and r(t) = 1, then all conditions of Theorem 9 are
satisfied for (1.2) on [2π ,∞) . Hence every solution of (1.2) oscillates. In particular,
y(t) = e−t cos t is an oscillatory solution of (1.2).

EXAMPLE 4. Consider α = β = 1. If we choose p(t) = (1+ 1/t), δ (t) = t −
π , τ(t) = t−3π , q(t)= t and r(t) = t2 , then all conditions of Theorem 13 are satisfied
for (1.2) on [3π ,∞) . Hence every solution of (1.2) oscillates. In particular, y(t) = sin t
is an oscillatory solution of (1.2).

4. Summary

Our method suggests that the comparison results are not necessary to study the
oscillatory behaviour of solutions of the equations like (1.1), (1.2) and (1.3). It is inter-
esting to apply our method to the nonlinear form of (1.3) as

(r(t)[y(t)+ p(t)y(δ (t))]′)′ +q(t)G(y(τ(t)))+ v(t)H(y(σ(t))) = 0, (4.1)
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where r,q,v,δ ,τ,σ ∈C(R+,R+), p ∈C(R+,R), G,H ∈C(R,R) such that

xG(x) > 0, xH(x) > 0 for x �= 0, and δ (t) � t , τ(t) � t , σ(t) � t

with limt→∞ δ (t) = ∞ = limt→∞ τ(t) = ∞ = limt→∞ σ(t) .
Using our method, we state here two results without proofs:

THEOREM 17. Let 0 � p(t) � a < ∞ for every t > 0 . Assume that (H1) holds. If
the following assumptions hold:

(H18) τ(δ (t)) = δ (τ(t)) , σ(δ (t)) = δ (σ(t)) for every t > 0 ,

(H19) there exist λ , μ > 0 such that
G(u)+G(v) � λG(u+ v) , H(u)+H(v) � μH(u+ v)
for u,v ∈ R and u,v > 0 (see for e.g.[14]),

(H20) G(uv) � G(u)G(v) , H(uv) � H(u)H(v) , G(−u) = −G(u) , H(−u) = −H(u)
for all u,v ∈ R ,

and

(H21)
∫ ∞
t0

[Q(t)+ kV (t)]dt = ∞ , k > 0 , where Q(t) = min{q(t),q(δ (t))} and V (t) =
min{v(t),v(δ (t))} ,

then every solution of (4.1) oscillates.

THEOREM 18. Let 0 � p(t) � a < ∞ for every t > 0 . Assume that (H2) and
(H18)− (H20) hold. If:

(H22)
∫ ∞
t0

[Q(t)G(R(τ(t)))+ kV (t)H(R(σ(t)))]dt = ∞ , R(t) =
∫ ∞
t

ds
r(s) , k > 0 ,

and

(H23)
∫ ∞
0

1
r(t)

∫ t
T [Q(s)G(R(τ(s)))+ kV (s)H(R(σ(s)))]dsdt = ∞ , ∀T > 0,k > 0 ,

then every solution of (4.1) oscillates.
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