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Abstract. This work is concerned with the Fredholm property of the second order differential
operator associated to a class of boundary conditions. Several sufficient conditions will be proved
along with constructing the generalized inverse for such operator. The result is a basic tool to
analysis the boundary value problems at resonance for nonlinear perturbation of such operators.

1. Introduction

The question of the solvability for nonlinear pertubation of differential operators
have been extensively studied. To indentify a few, we refer the reader to [1, 2, 3, 4,
7, 8, 10, 12, 13, 16, 17, 18] and references therein. Almost such problems, written in
operator form, is of the type

L x = Nx, (1.1)

where L is a linear mapping between two Banach spaces X and Z , while N : X → Z
is a nonlinear mapping. When studying problem (1.1), one is often confronted with
the difficulty that the relevant linearized operator is not invertible in suitable function
spaces. There have been some methods to overcome this obstacle as the alternative
method [1, 17], the pertubation method (the name was proposed by Kannan [9]) or
continuation method of Mawhin [4]. One important ingredient to be able to apply these
abstract results is proving the Fredholm property of the operator L . Throught this
paper we use the terms ”Fredholm property” of an operator acting from a Banach space
to another Banach space if that operator is a Fredholm operator or a Fredholm operator
of index zero or a Fredholm operator of positive index. The definitions of such operators
are given as follows.

DEFINITION 1. Let X ,Z be two Banach spaces. A linear operator L : domL ⊂
X → Z is called to be a Fredholm operator if the following conditions hold

(a) kerL has finite dimension;

(b) ImL is a closed subset of Z and has finite codimension.
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If L is a Fredholm operator, the index of L is the interger

i(L ) := dimkerL − codimL .

DEFINITION 2. The operator L is called a Fredholm operator of index zero
(resp. a Fredholm operator of positive index) if it is a Fredholm operator and i(L ) = 0
(resp. i(L ) > 0).

In recent years, the Fredholm properties of differential operators in connection
with various problems have been discussed in many great papers, see [5, 6, 11, 14, 15]
and references therein. For the differential operators associated to multi-point boundary
conditions, this property is often proved by constructing first a continuous projector
Q : Z → Z which satisfies kerQ = ImL . And then it follows that ImL has finite
codimension as well as index of L is equal to zero (see [2, 3, 7, 10, 12, 13, 18]).
However, it seems that the construction a such projector is difficult when dimkerL is
large ([10]-[13]). So looking for the sufficient conditions to ensure Fredholm property
of L is quite limited.

The goal of current paper is to study the differential operator L : domL ⊂ X → Z
defined by

L x(t) =
d2x
dt2

(t) = x′′(t),

where X := C1
(
[0,1];Rd

)
, Z := L1

(
(0,1);Rd

)
endowed with their usual norms and

domL =

⎧⎨
⎩x ∈ X , x′′ ∈ Z and

⎧⎨
⎩

Ax(0)+Bx′(0) = D
∫ 1
0 x(s)ds

Ex(1)+Fx′(1) = G
∫ 1
0 x(s)ds

⎫⎬
⎭ ,

with A , B , D and E , F , G are square matrices of order d . Our results mentioned
two issues. The first is looking for the conditions of coefficient matrices for which
the operator L is the Fredholm operator of index zero (section 2) and the second is
characterizing the set of all right-hand side functions y ∈ Z for which the equation
L x = y has at least one solution x ∈ domL (section 3). To the best of our knowledge,
the that issues have not been developed in general cases of dimension of the kernel.
Furthermore our method involves several new ideas and gives a unified method of attack
for many boundary value problems at resonance. Previous paper dealt with one problem
at a time whereas our method allows us to solve many problem at once.

We end this section by noting that our results can be used to discuss the solvability
of equation

L x(t) = f
(
t,x(t),x′(t)

)
,t ∈ (0,1),

on domL by using the Mawhin’s continuation theorem. This can be done by standard
arguments (see [4, 10, 13]). However we will not state here.

2. Fredholm property of the operator L

In the rest of paper we use the following notations
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� O is zero matrix of order d×d and θ is zero element of Rd .

� Id : the identity matrix of order d .

� Iνz(t) :=
∫ t
0(t− s)ν−1z(s)ds , for all z ∈ Z and ν ∈ {1,2} .

First it’s necessary to note that, for x ∈ domL , we can write

x(t) = x(0)+ x′(0)t + I
2L x(t). (2.1)

So, when x ∈ domL , the boundary conditions

⎧⎨
⎩

Ax(0)+Bx′(0) = D
∫ 1
0 x(s)ds

Ex(1)+Fx′(1) = G
∫ 1
0 x(s)ds

are

equivalent to
A

(
x(0),x′(0)

)T = B (L x) , (2.2)

where

• A =
(

A−D B− 1
2D

E −G E +F − 1
2G

)

• B : Z → R
2d is a continuous linear mapping defined by

B(z) =

⎛
⎜⎜⎜⎝D

∫ 1

0
I
2z(t)dt︸ ︷︷ ︸

B1(z)

,G
∫ 1

0
I
2z(t)dt− (

EI
2z(1)+FI

1z(1)
)

︸ ︷︷ ︸
B2(z)

⎞
⎟⎟⎟⎠ ,z ∈ Z. (2.3)

Therefore domL can be represented as follows

domL =
{

x(t) = x(0)+ x′(0)t + I
2L x(t),t ∈ [0,1] : A

(
x(0)
x′(0)

)
= B (L x)

}
.

LEMMA 1. We have

kerL = {x ∈ X : x(t) = c0 + c1t, t ∈ [0,1], (c0,c1) ∈ kerA } ∼= KerA ,

and ImL = {z ∈ Z : B(z) ∈ ImA } .

Proof. The proof of this Lemma is straightforward and we will omit the details.

THEOREM 1. The operator L is the Fredholm operator. Moreover the index of
L is

• zero if dim(ImA + ImB) = 2d.

• positive if dim(ImA + ImB) < 2d.
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To prove this Theorem we need the following lemma

LEMMA 2. Let E,F be two vector spaces on field K , T be a linear operator
from E into F . Assume that V be a subspaces of F . If U is an algebraic complement
of T −1 (V ) in E then U is isomorphic to any algebraic complement of V ∩T (E)
in T (E) .

Proof. Let TU be the restriction of T on U . Since T −1
U (0)⊂U ∩T −1 (V ) =

{0} it is easy to see that TU is an isomorphism from U into T (U ) which means
that U is isomorphic to T (U ) . So it is sufficient to show that TU (U ) ≡ T (U ) is
an algebraic complement of V := V ∩T (E) in T (E) .

Indeed, for any y ∈ T (E) , there exist x1 ∈ T −1 (V ) and x2 ∈ U such that

y = T x1 +T x2.

Since T x1 ∈ V and T x2 ∈ T (U ) the above equality implies that T (E) = V +
T (U ) . On the other hand, if y0 ∈ V ∩T (U ) , then y0 = T (x0) , where

x0 ∈ T −1 (V )∩U = {0} .

Therefore y0 = T (0) = 0. This implies V ∩T (U ) = {0} . So T (E) = V ⊕T (U ) .
The proof of Lemma is complete.

Proof of Theorem 1 Since B is continuous from Z into R2d and ImA is closed in
R2d it is clear that ImL is a closed subspace of Z . Further we have dimkerL =
dimkerA < ∞ . So it remains to show that codimImL = dimkerL . Indeed, by using
Lemma 2, if Z0 is an algebraic complement of ImL in Z then Z0 isomorphic to any
algebraic complement of ImA ∩ ImB in ImB . So

codimImL = dim(Z/ ImL ) = dimZ0

= dim(ImB/(ImA ∩ ImB))
= dimImB−dim(ImA ∩ ImB)
= dim(ImA + ImB)−dimImA

This implies that codimImL < ∞ and so L is the Fredholm operator. The remains is
evident. The proof of Lemma is complete. �

Next we will provide some sufficient conditions for L to be a Fredholm operator
of index zero. First we need the following lemma:

LEMMA 3. The image of B can be defined by

ImB =
{
(Dα, Eβ +Fγ +Gα) ∈ R

d ×R
d : α,β ,γ ∈ R

d
}

.

Consequently, if ImG ⊂ ImE + ImF then ImB = ImD× (ImE + ImF) .
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Proof. Recall that B(z) = (B1(z),B2(z)) , where

B1(z) = D
∫ 1

0
dt

∫ t

0
(t− s)z(s)ds,

B2(z) = G
∫ 1

0
dt

∫ t

0
(t− s)z(s)ds−E

∫ 1

0
(1− s)z(s)ds−F

∫ 1

0
z(s)ds.

Clearly it’s suffit to prove the inclusion supset (⊃) . Let (ξ ,ζ ) be an element of the set{
(Dα, Eβ +Fγ +Gα) ∈ R

d ×R
d : α,β ,γ ∈ R

d
}

.

Then we can write ξ = Dα1 , and ζ = Eα2+Fα3+Gα1, where αi = (αi1,αi2, ...,αid)∈
Rd . We consider the function

z(t) = (z1(t),z2(t), ...,zd(t)) , t ∈ [0,1],

where z j(t) = a j +b jt + c jt2 with the coefficients a j,b j,c j be choosen such that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ 1
0 dt

∫ t
0(t − s)z(s)ds = α1 j,

∫ 1
0 (1− s)z j(s)ds = −α2 j,

∫ 1
0 z j(s)ds = −α3 j.

It is note that by some simple calculations we can see that the above system of linear
equation has a unique solution. Hence we can deduce that ξ = D

∫ 1
0 dt

∫ t
0(t−s)z(s)ds =

B1(z) and

ζ = G
∫ 1

0
dt

∫ t

0
(t− s)z(s)ds−E

∫ 1

0
(1− s)z(s)ds−F

∫ 1

0
z(s)ds = B2(z),

which implies (ξ ,ζ ) ∈ ImB . So

ImB =
{
(Dα, Eβ +Fγ +Gα) ∈ R

d ×R
d : α,β ,γ ∈ R

d
}

.

Now assume that ImG ⊂ ImE + ImF . If (ξ ,ζ ) ∈ ImD× (ImE + ImF) then
there exist α,β ,γ ∈ Rd such that

ξ = Dα and ζ = Eβ +Fγ.

On the other hand, it’s clear that there are α1,α2 ∈ R
d such that Eα1 +Fα2 = Gα . So

we can write

ξ = Dα and ζ = E (β −α1)+F (γ − γ2)+Gα,

which implies (ξ ,ζ )∈ ImB . Hence it is easy to see that ImB = ImD×(ImE + ImF) .
The Lemma has been proved.
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COROLLARY 1. The operator L is the Fredholm operator of index zero provided
that one of following conditions holds

(a) det(D) �= 0 and det(E) �= 0 ,

(b) det(D) �= 0 and det(F) �= 0 ,

(c) det(D) �= 0 and det(E +F) �= 0 ,

Proof. Using lemma 3 it’s easy to prove that if one of above conditions holds then
ImB = R2d . So by theorem 1 L is a Fredholm operator of index zero.

COROLLARY 2. The operator L is the Fredholm operator of index zero provided
that one of following conditions hold

(a) 2B = D, det

(
E +F − G

2

)
�= 0 , and Im(A−D)+ ImD = Rd ,

(b) det(A−D) �= 0 and one of determinants det(E) , det(F) , det(E +F) is not equal
to zero,

(c) det(2B−D) �= 0 and one of determinants det(E) , det(F) , det(E + F) is not
equal to zero.

Proof. (a) In this case it’s clear that ImA = Im(A−D)×Rd . By combining
this equality and lemma 3 we get

ImA + ImB = (Im(A−D)+ ImD)×R
d

and so dim(ImA + ImB) = 2d. From theorem 1 we deduce that L is the Fredholm
operator of index zero.

(b) We will check that ImA + ImB = Rd ×Rd. Indeed, for u,v ∈ Rd , the system{
(A−D)x+

(
B− 1

2D
)
y+Dα = u

(E −G)x+
(
E +F − 1

2G
)
y+Gα +Eβ +Fγ = v

has at least one solution defined by x = (A−D)−1u, y = α = 0 and⎧⎨
⎩

β = E−1 (v− (E−G)x) , γ = 0, if det(E) �= 0,
β = 0, γ = F−1 (v− (E−G)x) , if det(F) �= 0,
β = γ = (E +F)−1 (v− (E−G)x) , if det(E +F) �= 0.

This show that (u,v) ∈ ImA + ImB which implies ImA + ImB = Rd ×Rd. So L
is the Fredholm operator of index zero by using theorem 1.

(c) This case can be proved similarly.

REMARK 1. By using lemma 3 and the analysis of matrix A we can obtain some
various sufficient conditions which are similar the corollaries 1 and 2.
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3. The generalized inverse of operator L

Assume that dim(ImA + ImB) = 2d . It follows from Theorem 1 that there exist
continuous projectors P : X → X and Q : Z → Z such that

ImP = KerL , KerQ = ImL , X = KerL ⊕KerP, Z = ImL ⊕ ImQ.

Moreover the restriction of L on domL ∩kerP , LP , is an isomorphism from domL ∩
kerP onto ImL . Then the generalized inverse of L is defined by KP,Q = L −1

P (I−Q) .
The construction such projectors as well as the generalized inverse of L is very

important to study the linear equation

L x = y,

on domL as well as the correspondent nonlinear boundary value problems at reso-
nance by using the Mawhin’s continuation theorem (see [4, 10, 18, 13] and references
therein). In the following we will present a general way to construct the projectors
Q , P and pseudo inverse KP,Q . For this aim we denote the orthogonal complement
of ImA ∩ ImB in ImB by Σ and assume that {ei : i = 1,2, ...,m} is an its basis.
Denoted by M the matrix whose j th column is e j . It is well known that

PM = M
(
M TM

)−1
M T

is the orthogonal projection matrix with ImPM = Σ .
In order to construct the projector Q we first note that if z = c0 + c1t + c2t2 then

B(z) = D

⎛
⎝ c0

c1

c2

⎞
⎠ , where

D =

⎛
⎝ D/6 D/24 D/60

G/6−E/2−F G/24−E/6−F/2 G/60−E/12−F/3

⎞
⎠

By some lengthy calculations we can prove the equality ImB = ImD . On the other
hand it’s clear that the restriction D∗ of D on the orthogonal complement kerD⊥ of
kerD is an isomorphism from kerD⊥ onto ImD . For i = 1,2, ...,m , we put

ωi(t) = ω0
i + ω1

i t + ω2
i t2, where

(
ω0

i ,ω1
i ,ω2

i

)
= D−1

∗ ei ,

and consider the subspace Z0 of Z which is spanned by the vectors {ωi}m
i=1 . Then it’s

evident that

dimZ0 = dim(ImA ∩ ImB)⊥ = dimImB−dim(ImA ∩ ImB) = dimkerA .

We can also show that Z0 is an complement of ImL in Z . Moreover,

z ∈ ImL ⇔ 〈Bz,ei〉 = 0, ∀i ∈ {1,2, ...,m}.
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Now we define the linear map Q : Z → Z by

Q(z) =
m

∑
i=1

λiωi(t), ∀z ∈ Z, (3.1)

where (λ1,λ2, ...,λm) is the unique solution of the system linear equation ∑m
i=1 λiei =

PM B(z). It’s not difficult to prove that Q is a continuous projector on Z and

ImQ = Z0, kerQ = ImL and Z = ImL ⊕ ImQ.

Now we shall construct the projector P and the map L −1
P . Let A + be the Moore-

Penrose pseudoinverse of A . For x ∈ X we put

Px = (1,t)
(
I2d −A +A

)(
x(0),x′(0)

)T
, (3.2)

Here if (α,β ) ∈ Rd ×Rd then the notation (1,t)(α,β )T stand for α + β t . Since
I2d −A +A is an orthogonal projector on kerA it’s not difficult to check that P is a
continuous projector on X . Furthermore we have

ImP = kerL , X = kerL ⊕kerP.

LEMMA 4. The operator L on domL ∩kerP is invertible and its inverse L −1
P

is defined by

L −1
P z(t) = (1,t)A + (B(z))T + I

2z(t), t ∈ [0,1], z ∈ ImL . (3.3)

Moreover, there exists positive constant C such that L −1
P satisfies the following esti-

mate ∥∥L −1
P z

∥∥� C‖z‖, ∀z ∈ ImL . (3.4)

Proof. Let z ∈ ImL then it follows from (3.3) that(
L −1

P z(0),(L −1
P z)′(0)

)
=
(
A +B(z)

)T
. (3.5)

Hence it follows that PL −1
P z = θ , that is, L −1

P z ∈ kerP . Moreover by combining
(3.3) and (3.5) we obtain

A
(
L −1

P z(0),
(
L −1

P z
)′

(0)
)T

= A A +B(z) = B(z).

This show that L −1
P z ∈ domL and so L −1

P is well-defined.
On the other hand it’s clear that L L −1

P z(t) = z(t) , for all t ∈ [0,1] and z∈ ImL .
Moreover, if x ∈ domL ∩kerP then we have

L −1
P L x(t) = (1,t)A +B(L x)+ I

2L x(t) (3.6)

for all t ∈ [0,1] . Since x ∈ domL ∩kerP it follows that

A
(
x(0),x′(0)

)T = B (L x) and A +A
(
x(0),x′(0)

)T =
(
x(0),x′(0)

)T
. (3.7)
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By combining (3.6), (3.7) we get L −1
P L x(t) = x(t), ∀t ∈ [0,1] .

Finally, by using (3.3) and the continuity of B we can obtain the estimate (3.4)
and the proof of Lemma is complete.

The main result is presented as below. Its proof is directly corollary of above
analysis.

THEOREM 2. Let H = {z ∈ Z : 〈B(z),ei〉 = 0, ∀i ∈ {1,2, ...,m}} . The the equa-
tion L x = y has

(i) no solution if y /∈ H ,

(ii) at least one solution defined by x = L −1
P (y) if h ∈ H .

4. Examples

This section presents some examples which is to illustrate our results.

EXAMPLE 1. (Second order differential operators with Sturm-Liouville type con-
ditions) Let d = 1 and

A = α, B = β , E = γ, F = δ and D = G = 0,

where α,β ,γ,δ are real numbers which satisfy the conditions γ2 + δ 2 �= 0 and α(γ +
δ ) = β γ . We have

A =
[

α β
γ γ + δ

]
and Bz =

(
0,−γI

2z(1)− δ I
1z(1)

)
.

Without loss of generality we can assume γ �= 0. Then it’s not difficult to prove that
ImB = {0}×R ,

KerA =
{(

− γ + δ
γ

ξ ,ξ
)

: ξ ∈ R

}
and ImA =

{(
ζ ,

α
γ

ζ
)

: ζ ∈ R

}
.

This implies dim(ImB + ImA ) = 2 and so L is the Fredholm operator of index zero
by theorem (1).

Next we note that Σ = ImB = {0}×R has a basis {e1 = (0,1)} and PM is the
identity mapping on ImB . On the other hand, since

D =
(

0 0 0
−ρ1 −ρ2 −ρ3

)
,

with ρ1 =
γ
2

+ δ , ρ2 =
γ
6

+
δ
2

, ρ3 =
γ
6

+
δ
2

, we can show easily that

kerD⊥ = {λ (ρ1,ρ2,ρ3) : λ ∈ R} ,
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and D−1∗ : {0}×R→ kerD⊥ defined by

D−1
∗ (0,ζ ) =

−ζ
ρ2

1 + ρ2
2 + ρ2

3

(ρ1,ρ2,ρ3) , ∀ζ ∈ R.

Hence ω1(t) = −ρ1 + ρ2t + ρ3t2

ρ2
1 + ρ2

2 + ρ2
3

, for all t ∈ [0,1] . So the projector Q be defined by

following formula

Qz(t) =
γI2z(1)+ δ I1z(1)

ρ2
1 + ρ2

2 + ρ2
3

(
ρ1 + ρ2t + ρ3t

2) .

Now it’s not difficult to show that A + =
(

0 γ−1

0 0

)
and I2−A +A =

(
0 γ−1(γ + δ )
0 1

)
.

By using (3.2) we can define the projector P by

Px(t) = x′(0)
(
− γ + δ

γ
+ t

)
, ∀t ∈ [0,1].

Moreover, since B(z) = (0,0) for all z ∈ ImL it follows from lemma 4 that

L −1
P z(t) =

∫ t

0
(t − s)z(s)ds, t ∈ [0,1], z ∈ ImL .

From above analyses we get

Claim 1. The equation L x = y has at least one solution defined by

x(t) = L −1
P y(t) =

∫ t

0
(t− s)y(s)ds, t ∈ [0,1]

if and only if

γ
∫ 1

0
(1− s)y(s)ds+ δ

∫ 1

0
y(s)ds = 0.

EXAMPLE 2. (Second order differential operators with nonlocal boundary condi-
tions) Let

A = D = F = O and B = E = G = Id .

In this case we have A =

[
O Id

O
1
2

Id

]
and B(z) =

(
0,

1
2

∫ 1

0
s2z(s)ds− 1

2

∫ 1

0
z(s)ds

)
.

It is easy to prove that

ImB = {θ}×R
d, KerA = R

d ×{θ} and ImA = {(2ξ ,ξ ) : ξ ∈ R
d}.

Since dim(ImA + ImB) = 2d it follows from Theorem 1 that the operator L is the
Fredholm operator of index zero.
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Next it’s easy to see that Σ = ImB and PM is the identity mapping on ImB .
Further by some simple calculations we obtain

D =
(

O O O

− Id
3 − Id

8 − Id
15

)
,

kerD⊥ =
{(

α,
3α
8

,
α
5

)
∈ R

3d : α ∈ R
d
}

,

and D−1∗ : {θ}×R
d → kerD⊥ defined by D−1

∗ (θ ,α) = −4800
1889

(
α,

3
8

α,
1
5

α
)

. So

by using (3.1) we get the formula of projector Q as follow

Qz(t) = −4800
1889

B2(z)
(

1+
3
8
t +

1
5
t2
)

, t ∈ [0,1].

On the other hand since A + =
(

O O

Id O

)
we can deduce that Px(t) = x(0) for all

t ∈ [0,1] . Further it follows easily from Lemma 4 that

L −1
P z(t) =

∫ t

0
(t − s)z(s)ds, t ∈ [0,1], z ∈ ImL .

Finally we obtain the following result

Claim 2. The equation L x = y has at least one solution given by x(t) =
∫ t
0(t−s)y(s)ds

if and only if ∫ 1

0
s2y(s)ds−

∫ 1

0
y(s)ds = 0.

EXAMPLE 3. Let following matrices

Λ1 =
[

1 0
0 2

]
, Λ2 =

[
1 2
3 4

]
, and Λ3 =

[
1/2 2
2 3

]
.

Consider the operator L on domL with

A = E = G = Λ1, B = Λ2, F = Λ3, D = O.

In this case we have

A =

⎛
⎜⎜⎝

1 0 1 2
0 2 3 4
0 0 1 2
0 0 2 4

⎞
⎟⎟⎠ and B(z) =

⎛
⎜⎜⎝

0
0

φ(z)
ψ(z)

⎞
⎟⎟⎠ ,

where z(t) = (z1(t),z2(t)) and

φ(z) =
1
2

∫ 1

0
s2z1(s)ds−

∫ 1

0
z1(s)ds−2

∫ 1

0
z2(s)ds,
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ψ(z) =
∫ 1

0
s2z2(s)ds−2

∫ 1

0
z1(s)ds−4

∫ 1

0
z2(s)ds.

It’s not difficult to show that

• kerA = {λ (0,−1,2,−1) : λ ∈ R} ,

• ImA = {(α,β ,γ,2γ) : α,β ,γ ∈ R} ,

• ImB = {(0,0)}×R2 .

Since ImB∩ImA = {(0,0,γ,2γ) : γ ∈ R} it follows that dim(ImB + ImA )= 4 and
L so is the Fredholm operator of index zero.

Construction of the projector Q:

• The orthogonal complement of ImA ∩ ImB in ImB is
Σ = {(0,0,−2γ,γ) : γ ∈ R} . A basis of this subspace is {e1 = (0,0,−2,1)} , and
so we get

PM =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 4

5 − 2
5

0 0 − 2
5

1
5

⎞
⎟⎟⎠ .

• D =

⎛
⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
− 5

6 −2 − 3
8 −1 − 7

30 − 2
3

−2 − 11
3 −1 − 7

4 − 2
3 − 17

15

⎞
⎟⎟⎠

• kerD⊥ has a basis as follow{
ε1 =

(
−5

6
,−2,−3

8
,−1,− 7

30
,−2

3

)
,ε2 =

(
−2,−11

3
,−1,−7

4
,−2

3
,−17

15

)}
.

• D−1∗ : {(0,0)}×R2 → kerD⊥ defined by

D−1
∗ (0,0,α,β ) =

(
1204545600
119586041

α − 623952000
119586041

β
)

ε1

+
(
−623952000

119586041
α +

328352400
119586041

β
)

ε2

• the formula of projector Q : Qz(t) =
(− 2

5φ(z)+ 1
5ψ(z)

)
ω1(t) , for all z ∈ Z ,

where

ω1(t) =
(− 624976800

119586041
286479600
119586041

)
+
(− 25815600

7034473
274954500
119586041

)
t +

(− 343127520
119586041

235604880
119586041

)
t2.
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Construction of the projector P: It is noted that

A + =

⎛
⎜⎜⎝

1 0 −1 0
0 1/2 −3/2 0
0 0 1 0
0 0 0 0

⎞
⎟⎟⎠ .

For x(t) = (x1(t),x2(t)), t ∈ [0,1] we have

Px(t) = x′2(0)
((

0
1

)
+
(−2

1

)
t

)
.

The generalized inverse: By the same arguments as above examples we have

KPz(t) = φ(z)
(( −1

−3/2

)
+
(

1
0

)
t

)
+
∫ t

0
(t − s)z(s)ds, t ∈ [0,1], z ∈ ImL .

Claim 3. The equation L x = y with y(t) = (y1(t),y2(t)) , has at least one solution
given by

x(t) =
(

φ(y)(−1+ t)+
∫ t
0(t − s)y1(s)ds

− 3
2φ(y)+

∫ t
0(t− s)y2(s)ds

)
, t ∈ [0,1]

if and only if ∫ 1

0
s2 (y2(s)− y1(s))ds = 0.
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