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Abstract. In this paper, we establish the existence, uniqueness and Ulam stability of solutions
for a class of problem for nonlinear implicit fractional differential equations with impulse and
Caputo fractional derivative. The arguments are based upon the Banach contraction principle,
and Schaefer’s fixed point theorem. We present two examples to show the applicability of our
results.

1. Introduction

In this paper, we establish existence, uniqueness and stability results to the follow-
ing nonlinear implicit fractional differential equation with finite delay and impulses

cDα
tk
y(t) = f (t,yt ,

c Dα
tk
y(t)), for each , t ∈ (tk,tk+1], k = 0, . . . ,m, 0 < α � 1, (1.1)

Δy|tk = Ik(yt−k
), k = 1, . . . ,m, (1.2)

y(t) = ϕ(t), t ∈ [−r,0], r > 0, (1.3)

where cDα
tk is the Caputo fractional derivative, f : J × PC([−r,0],R)×R → R is a

given function, Ik : PC([−r,0],R) → R , and ϕ ∈ PC([−r,0],R),0 = t0 < t1 < · · · <
tm < tm+1 = T . PC([−r,0],R) is a space of piecewise functions defined on [−r,0] to
be specified later (see Section 2).

For each function y defined on [−r,T ] and for any t ∈ J , we denote by yt the
element of PC([−r,0],R) defined by:

yt(θ ) = y(t + θ ), θ ∈ [−r,0],

yt(·) represent the history of the state from time t − r up to time t . Here Δy|tk =
y(t+k )− y(t−k ) , where

y(t+k ) = limh→0+ y(tk +h) and y(t−k ) = limh→0− y(tk +h)
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represent the right and left limits of yt at t = tk , respectively.
In recent years, there has been a significant development in the theory of fractional

differential equations. It is caused by its applications in the modeling of many phenom-
ena in various fields of science and engineering such as acoustic, control theory, signal
processing, porous media, electrochemistry, viscoelasticity, rheology, polymer physics,
proteins, optics, economics, astrophysics, chaotic dynamics, statistical physics, thermo-
dynamics, biosciences, bioengineering, etc. See for example [1, 6, 7, 15, 20, 26], and
references therein. On the other hand, impulsive differential equations have received
much attention, we refer the reader to the books [2, 10, 16, 22, 23, 25], and the papers
[13, 19, 28], and the references therein. Very recently, fractional differential equations
have received considerable attention because they occur in the mathematical modeling
of a variety of physical processes; See for example [3, 4, 8, 9, 14, 27, 31]. In [11, 12],
the authors gave some existence and uniqueness results for some classes of implicit
fractional order differential equations.

Motivated by the works mentioned above, we present in this work some existence,
uniqueness and Ulam stability results for a class of problem for implicit fractional dif-
ferential equations. The present paper is organized as follows. In Section 2, some
notations are introduced and we recall some concepts of preliminaries about fractional
calculus and auxiliary results. In Section 3, two results for the problem (1.1)-(1.3) are
presented: the first one is based on the Banach contraction principle, the second one on
Schaefer’s fixed point theorem. In Section 4, we present Ulam-Hyers stability result for
the problem (1.1)-(1.2). Finally, in the last Section, we give two examples to illustrate
the applicability of our main results.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are
used throughout this paper. Let T > 0,J = [0,T ] . By C(J,R) we denote the Banach
space of all continuous functions from J into R with the norm

‖y‖∞ = sup{|y(t)| : t ∈ J}.
Let J0 = [t0, t1] and Jk = (tk,tk+1] where k = 1, . . . ,m .

Consider the set of functions

PC([−r,0],R) = {y : [−r,0] → R : y ∈C((τk,τk+1],R), k = 0, . . . ,m′ and there exist

y(τ−k ) and y(τ+
k ), k = 1, . . . ,m with y(τ−k ) = y(τk)}.

PC([−r,0],R) is a Banach space with the norm

‖y‖PC = sup
t∈[−r,0]

|y(t)|.

PC([−r,T ],R) is a Banach space with the norm

‖y‖PC1 = sup
t∈[−r,T ]

|y(t)|.
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L1(J,R) is the space of Lebesgue-integrable functions w : J → R with the norm

‖w‖1 =
∫ T

0
|w(s)|ds.

ACn(J) = {h : J → R : h,h′, . . .h(n−1) ∈C(J,R) and h(n−1) is absolutely continuous}.
In what follows α > 0.

DEFINITION 1. ([21, 24]). The fractional (arbitrary) order integral of the function
h ∈ L1([0,T ],R+) of order α ∈ R+ is defined by

Iαh(t) =
1

Γ(α)

∫ t

0
(t − s)α−1h(s)ds,

where Γ is the Euler gamma function defined by Γ(α) =
∫ ∞

0
tα−1e−t dt, α > 0.

DEFINITION 2. ([21, 24]). For a function h∈ACn(J) , the Caputo fractional-order
derivative of order α of h , is defined by

(cDα
0 h)(t) =

1
Γ(n−α)

∫ t

0
(t − s)n−α−1h(n)(s)ds,

where n = [α]+1 and [α] denotes the integer part of the real number α .

DEFINITION 3. ([21, 24]). Let a ∈ [0,T ],δ > 0,a + δ � T , for a function h ∈
ACn[a,T ] , the Caputo fractional-order derivative of order α of h , is defined by

(cDα
a h)(t) =

1
Γ(n−α)

∫ t

a
(t − s)n−α−1h(n)(s)ds,

where n = [α]+1 and [α] denotes the integer part of the real number α .

LEMMA 1. ([21, 24]) Let α � 0 and n = [α]+1. Then

Iα(cDα
0 f (t)) = f (t)−

n−1

∑
k=0

f k(0)
k!

tk.

We need the following auxiliary lemmas.

LEMMA 2. ([21]) Let α > 0 , then the differential equation

cDα
0 k(t) = 0

has solutions k(t) = c0 + c1t + c2t2 + · · ·+ cn−1tn−1,ci ∈ R , i = 0,1,2, . . . ,n−1 , n =
[α]+1 .
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LEMMA 3. ([21]) Let α > 0 , then

Iα cDα
0 k(t) = k(t)+ c0 + c1t + c2t

2 + · · ·+ cn−1t
n−1

for some ci ∈ R , i = 0,1,2, . . . ,n−1 , n = [α]+1 .

LEMMA 4. [30] Let υ : [0,T ] −→ [0,+∞) be a real function and ω(·) is a non-
negative, locally integrable function on [0,T ] and there are constants a > 0 and
0 < α � 1 such that

υ(t) � ω(t)+a
∫ t

0
(t− s)−αυ(s)ds.

Then, there exists a constant K = K(α) such that

υ(t) � ω(t)+Ka
∫ t

0
(t − s)−αω(s)ds, for every t ∈ [0,T ].

Bainov and Hristova [5] introduced the following integral inequality of Gronwall type
for piecewise continuous functions which can be used in the sequel.

LEMMA 5. Let for t � t0 � 0 the following inequality hold

x(t) � a(t)+
∫ t

t0
g(t,s)x(s)ds+ ∑

t0<tk<t
βk(t)x(tk),

where βk(t)(k ∈ N) are nondecreasing functions for t � t0 , a ∈ PC([t0,∞),R+) , a
is nondecreasing and g(t,s) is a continuous nonnegative function for t,s � t0 and
nondecreasing with respect to t for any fixed s � t0 . Then, for t � t0 , the following
inequality is valid:

x(t) � a(t) ∏
t0<tk<t

(1+ βk(t))exp

(∫ t

t0
g(t,s)ds

)
.

Here, we adopt the concepts in Wang et al. [29] and introduce Ulam’s type stability
concepts for the problem (1.1)-(1.2).
Let z ∈ PC(J,R),ε > 0,ψ > 0 and ω ∈ PC(J,R+) is nondecreasing. We consider the
set of inequalities{

|cDαz(t)− f (t,zt ,c Dαz(t))| � ε, t ∈ (tk,tk+1],k = 1, . . . ,m

|Δz|tk − Ik(zt−k )| � ε, k = 1, . . . ,m;
(2.1)

the set of inequalities{
|cDαz(t)− f (t,zt ,c Dαz(t))| � ω(t), t ∈ (tk,tk+1],k = 1, . . . ,m

|Δz|tk − Ik(zt−k )| � ψ , k = 1, . . . ,m;
(2.2)

and the set of inequalities{
|cDαz(t)− f (t,zt ,c Dαz(t))| � εω(t), t ∈ (tk,tk+1],k = 1, . . . ,m

|Δz|tk − Ik(zt−k )| � εψ , k = 1, . . . ,m.
(2.3)
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DEFINITION 4. The problem (1.1)-(1.2) is Ulam-Hyers stable if there exists a
real number c f ,m > 0 such that for each ε > 0 and for each solution z ∈ PC(J,R) of
the inequality (2.1) there exists a solution y ∈ PC(J,R) of the problem (1.1)-(1.2)
with

|z(t)− y(t)|� c f ,mε, t ∈ J.

DEFINITION 5. The problem (1.1)-(1.2) is generalized Ulam-Hyers stable if there
exists θ f ,m ∈ C(R+,R+),θ f ,m(0) = 0 such that for each solution z ∈ PC(J,R) of the
inequality (2.1) there exists a solution y ∈ PC(J,R) of the problem (1.1)-(1.2) with

|z(t)− y(t)| � θ f ,m(ε), t ∈ J.

DEFINITION 6. The problem (1.1)-(1.2) is Ulam-Hyers-Rassias stable with re-
spect to (ω ,ψ) if there exists c f ,m,ω > 0 such that for each ε > 0 and for each solution
z ∈ PC(J,R) of the inequality (2.3) there exists a solution y ∈ PC(J,R) of the problem
(1.1)-(1.2) with

|z(t)− y(t)| � c f ,m,ωε(ω(t)+ ψ), t ∈ J.

DEFINITION 7. The problem (1.1)-(1.2) is generalized Ulam-Hyers-Rassias sta-
ble with respect to (ω ,ψ) if there exists c f ,m,ω > 0 such that for each solution z ∈
PC(J,R) of the inequality (2.2) there exists a solution y ∈ PC(J,R) of the problem
(1.1)-(1.2) with

|z(t)− y(t)|� c f ,m,ω (ω(t)+ ψ), t ∈ J.

REMARK 1. It is clear that: (i) Definition 4 implies Definition 5; (ii) Definition 6
implies Definition 7; (iii) Definition 6 for ω(t) = ψ = 1 implies Definition 4.

REMARK 2. A function z ∈ PC(J,R) is a solution of the inequality (2.3) if and
only if there is σ ∈ PC(J,R) and a sequence σk,k = 1, . . . ,m (which depend on z) such
that

i) |σ(t)| � εω(t), t ∈ (tk,tk+1],k = 1, . . . ,m and |σk| � εψ ,k = 1, . . . ,m;

ii) cDαz(t) = f (t,zt ,c Dαz(t))+ σ(t), t ∈ (tk,tk+1],k = 1, . . . ,m ;

iii) Δz|tk = Ik(zt−k )+ σk, k = 1, . . . ,m.

One can have similar remarks for inequalities 2.2 and 2.1.

THEOREM 1. [18] (theorem of Ascoli-Arzela). Let A ⊂ C(J,R), A is relatively
compact (i.e A is compact) if:

1. A is uniformly bounded i.e, there exists M > 0 such that

| f (x)| < M for every f ∈ A and x ∈ J.

2. A is equicontinuous i.e, for every ε > 0, there exists δ > 0 such that for each
x,x ∈ J, |x− x| � δ implies | f (x)− f (x)| � ε , for every f ∈ A.
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THEOREM 2. ([17]) (Banach’s fixed point theorem). Let C be a non-empty closed
subset of a Banach space X , then any contraction mapping T of C into itself has a
unique fixed point.

THEOREM 3. ([17]) (Schaefer’s fixed point theorem) Let X be a Banach space,
and N : X −→ X completely continuous operator.
If the set E = {y ∈ X : y = λNy, f orsome λ ∈ (0,1)} is bounded, then N has fixed
points.

3. Existence of Solutions

DEFINITION 8. A function y∈ PC([−r,T ],R) whose α -derivative exists on Jk is
said to be a solution of (1.1)-(1.3) if y satisfies the equation cDα

tk
y(t)= f (t,yt ,

c Dα
tk
y(t))

on Jk , and satisfy the conditions

Δy|t=tk = Ik(yt−k
), k = 1, . . . ,m,

y(t) = ϕ(t), t ∈ [−r,0].

To prove the existence of solutions to (1.1)-(1.3) , we need the following auxiliary
Lemma.

LEMMA 6. Let 0 < α � 1 and let σ : J → R be continuous. A function y is a
solution of the fractional integral equation

y(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ(0)+
1

Γ(α)

∫ t

0
(t− s)α−1σ(s)ds if t ∈ [0,t1]

ϕ(0)+
k

∑
i=1

Ii(yt−i
)+

1
Γ(α)

k

∑
i=1

∫ ti

ti−1

(ti − s)α−1σ(s)ds

+
1

Γ(α)

∫ t

tk
(t− s)α−1σ(s)ds, if t ∈ (tk,tk+1],

ϕ(t), t ∈ [−r,0],

(3.1)

where k = 1, . . . ,m, if and only if y is a solution of the following fractional problem

cDαy(t) = σ(t), t ∈ Jk, (3.2)

Δy|t=tk = Ik(yt−k
), k = 1, . . . ,m, (3.3)

y(t) = ϕ(t), t ∈ [−r,0]. (3.4)

Proof. Assume y satisfies (3.2)-(3.4) . If t ∈ [0,t1] then

cDαy(t) = σ(t).
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Lemma 3 implies

y(t) = ϕ(0)+ Iασ(t) = ϕ(0)+
1

Γ(α)

∫ t

0
(t − s)α−1σ(s)ds.

If t ∈ (t1, t2] then Lemma 3 implies

y(t) = y(t+1 )+
1

Γ(α)

∫ t

t1
(t− s)α−1σ(s)ds

= Δy|t=t1 + y(t−1 )+
1

Γ(α)

∫ t

t1
(t − s)α−1σ(s)ds

= I1(yt−1
)+

[
ϕ(0)+

1
Γ(α)

∫ t1

0
(t1− s)α−1σ(s)ds

]
+

1
Γ(α)

∫ t

t1
(t− s)α−1σ(s)ds.

= ϕ(0)+ I1(yt−1
)+

1
Γ(α)

∫ t1

0
(t1 − s)α−1σ(s)ds

+
1

Γ(α)

∫ t

t1
(t− s)α−1σ(s)ds.

If t ∈ (t2, t3] , then from Lemma 3, we get

y(t) = y(t+2 )+
1

Γ(α)

∫ t

t2
(t− s)α−1σ(s)ds

= Δy|t=t2 + y(t−2 )+
1

Γ(α)

∫ t

t2
(t − s)α−1σ(s)ds

= I2(yt−2
)+

[
ϕ(0)+ I1(yt−1

)+
1

Γ(α)

∫ t1

0
(t1− s)α−1σ(s)ds

+
1

Γ(α)

∫ t2

t1
(t2− s)α−1σ(s)ds

]
+

1
Γ(α)

∫ t

t2
(t− s)α−1σ(s)ds.

= ϕ(0)+
[
I1(yt−1

)+ I2(yt−2
)
]
+

[
1

Γ(α)

∫ t1

0
(t1 − s)α−1σ(s)ds

+
1

Γ(α)

∫ t2

t1
(t2− s)α−1σ(s)ds

]
+

1
Γ(α)

∫ t

t2
(t− s)α−1σ(s)ds.

Repeating the process in this ways, the solution y(t) for t ∈ (tk, tk+1] where k =
1, . . . ,m , can be written as

y(t) = ϕ(0)+
k

∑
i=1

Ii(yt−i
)+

1
Γ(α)

k

∑
i=1

∫ ti

ti−1

(ti − s)α−1σ(s)ds

+
1

Γ(α)

∫ t

tk
(t− s)α−1σ(s)ds.
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Conversely, assume that y satisfies the impulsive fractional integral equation (3.1). If
t ∈ [0, t1] then y(0) = ϕ(0) and using the fact that cDα is the left inverse of Iα we get

cDαy(t) = σ(t) for each t ∈ [0,t1].

If t ∈ (tk, tk+1] , k = 1, . . . ,m and using the fact that cDαC = 0, where C is a constant,
we get

cDαy(t) = σ(t) for each t ∈ (tk,tk+1].

Also, we can easily show that

Δy|t=tk = Ik(yt−k
), k = 1, . . . ,m.

We are now in a position to state and prove our existence result for the problem
(1.1)− (1.3) based on Banach’s fixed point.

THEOREM 4. Assume

(H1) The function f : J×PC([−r,0],R)×R→ R is continuous.

(H2) There exist constants K > 0 and 0 < L < 1 such that

| f (t,u,v)− f (t, u, v)| � K‖u− u‖PC +L|v− v|
for any u, u ∈ PC([−r,0],R), v, v ∈ R and t ∈ J .

(H3) There exists a constant l̃ > 0 such that

|Ik(u)− Ik(u)| � l̃‖u−u‖PC,

for each u,u ∈ PC([−r,0],R) and k = 1, . . . ,m.

If

ml̃ +
(m+1)KTα

(1−L)Γ(α +1)
< 1, (3.5)

then there exists a unique solution for the problem (1.1)-(1.3) on J .

Proof. Transform the problem (1.1)-(1.3) into a fixed point problem. Consider the
operator N : PC([−r,T ],R) → PC([−r,T ],R) defined by

Ny(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ϕ(0)+ ∑
0<tk<t

Ik(yt−i
)+

1
Γ(α) ∑

0<tk<t

∫ tk

tk−1

(tk − s)α−1g(s)ds

+
1

Γ(α)

∫ t

tk
(t − s)α−1σ(s)ds, t ∈ [0,T ],

ϕ(t), t ∈ [−r,0],

(3.6)

where g ∈C(J,R) be such that

g(t) = f (t,yt ,g(t)).
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Clearly, the fixed points of operator N are solutions of problem (1.1)-(1.3) .
Let u,w ∈ PC([−r,T ],R) . If t ∈ [−r,0], then

|N(u)(t)−N(w)(t)| = 0.

For t ∈ J, we have

|N(u)(t)−N(w)(t)| � 1
Γ(α) ∑

0<tk<t

∫ tk

tk−1

(tk − s)α−1|g(s)−h(s)|ds

+
1

Γ(α)

∫ t

tk
(t− s)α−1|g(s)−h(s)|ds

+ ∑
0<tk<t

|Ik(ut−k
)− Ik(wt−k

)|,

where g,h ∈C(J,R) be such that

g(t) = f (t,ut ,g(t)),

and
h(t) = f (t,wt ,h(t)).

By (H2) we have

|g(t)−h(t)| = | f (t,ut ,g(t))− f (t,wt ,h(t))|
� K‖ut −wt‖PC +L|g(t)−h(t)|.

Then

|g(t)−h(t)|� K
1−L

‖ut −wt‖PC.

Therefore, for each t ∈ J

|N(u)(t)−N(w)(t)| � K
(1−L)Γ(α)

m

∑
k=1

∫ tk

tk−1

(tk − s)α−1‖us−ws‖PCds

+
K

(1−L)Γ(α)

∫ t

tk
(t− s)α−1‖us−ws‖PCds

+
m

∑
k=1

l̃‖ut−k
−wt−k

‖PC.

�
[
ml̃ +

mKT α

(1−L)Γ(α +1)

+
KT α

(1−L)Γ(α +1)

]
‖u−w‖PC1.

Thus

‖N(u)−N(w)‖PC1 �
[
ml̃ +

(m+1)KTα

(1−L)Γ(α +1)

]
‖u−w‖PC1.
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By (3.5), the operator N is a contraction. Hence, by Banach’s contraction principle, N
has a unique fixed point which is a unique solution of the problem (1.1)-(1.3) .

Our second result is based on Schaefer’s fixed point theorem.

THEOREM 5. Assume (H1), (H2) and

(H4) There exist p,q,r ∈C(J,R+) with r∗ = sup
t∈J

r(t) < 1 such that

| f (t,u,w)| � p(t)+q(t)‖u‖PC + r(t)|w| for t ∈ J, u ∈ PC([−r,0],R) and w ∈ R.

(H5) The functions Ik : PC([−r,0],R) → R are continuous and there exist constants
M∗,N∗ > 0 with mM∗ < 1 such that

|Ik(u)| � M∗‖u‖PC +N∗ for each u ∈ PC([−r,0],R), k = 1, . . . ,m.

Then the problem (1.1)-(1.3) has at least one solution.

Proof. Let the operator N defined in (3.6) . We shall use Schaefer’s fixed point theorem
to prove that N has a fixed point. The proof will be given in several steps.

Step 1: N is continuous.
Let {un} be a sequence such that un → u in PC([−r,T ],R) . If t ∈ [−r,0], then

|N(un)(t)−N(u)(t)| = 0.

For t ∈ J, we have

|N(un)(t)−N(u)(t)| � 1
Γ(α) ∑

0<tk<t

∫ tk

tk−1

(tk − s)α−1|gn(s)−g(s)|ds

+
1

Γ(α)

∫ t

tk
(t− s)α−1|gn(s)−g(s)|ds

+ ∑
0<tk<t

|Ik(unt−k
)− Ik(ut−k

)|,
(3.7)

where gn,g ∈C(J,R) such that

gn(t) = f (t,unt ,gn(t)),

and
g(t) = f (t,ut ,g(t)).

By (H2) , we have

|gn(t)−g(t)| = | f (t,unt ,gn(t))− f (t,ut ,g(t))|
� K‖unt −ut‖PC +L|gn(t)−g(t)|.
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Then

|gn(t)−g(t)|� K
1−L

‖unt −ut‖PC.

Since un → u , then we get gn(t) → g(t) as n → ∞ for each t ∈ J. And let η > 0 be
such that, for each t ∈ J , we have |gn(t)| � η and |g(t)| � η . Then, we have

(t − s)α−1|gn(s)−g(s)| � (t− s)α−1[|gn(s)|+ |g(s)|]
� 2η(t− s)α−1,

and

(tk − s)α−1|gn(s)−g(s)| � (tk − s)α−1[|gn(s)|+ |g(s)|]
� 2η(tk − s)α−1.

For each t ∈ J , the functions s → 2η(t − s)α−1 and s → 2η(tk − s)α−1 are integrable
on [0, t] , then the Lebesgue Dominated Convergence Theorem and (3.7) imply that

|N(un)(t)−N(u)(t)| → 0 as n → ∞,

and hence
‖N(un)−N(u)‖PC1 → 0 as n → ∞.

Consequently, N is continuous.

Step 2: N maps bounded sets into bounded sets in PC([−r,T ],R) .
Indeed, it is enough to show that for any η∗ > 0, there exists a positive constant � such
that for each u ∈ Bη∗ = {u ∈ PC([−r,T ],R) : ||u||PC1 � η∗} , we have ‖N(u)‖PC1 � � .
We have for each t ∈ J ,

N(u)(t) = ϕ(0)+
1

Γ(α) ∑
0<tk<t

∫ tk

tk−1

(tk − s)α−1g(s)ds

+
1

Γ(α)

∫ t

tk
(t− s)α−1g(s)ds+ ∑

0<tk<t

Ik(ut−k
),

(3.8)

where g ∈C(J,R) be such that

g(t) = f (t,ut ,g(t)).

By (H4), we have for each t ∈ J,

|g(t)| = | f (t,ut ,g(t))|
� p(t)+q(t)‖ut‖PC + r(t)|g(t)|
� p(t)+q(t)‖u‖PC1 + r(t)|g(t)|
� p(t)+q(t)η∗+ r(t)|g(t)|
� p∗ +q∗η∗ + r∗|g(t)|,
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where p∗ = sup
t∈J

p(t), and q∗ = sup
t∈J

q(t).

Then

|g(t)| � p∗ +q∗η∗

1− r∗
:= M.

Thus (3.8) implies

|N(u)(t)| � |ϕ(0)|+ mMT α

Γ(α +1)
+

MT α

Γ(α +1)
+m(M∗‖ut−k

‖PC +N∗)

� |ϕ(0)|+ (m+1)MTα

Γ(α +1)
+m(M∗‖u‖PC1 +N∗)

� |ϕ(0)|+ (m+1)MTα

Γ(α +1)
+m(M∗η∗ +N∗) := R.

And if t ∈ [−r,0], then

|N(u)(t)| � ‖ϕ‖PC,

thus

‖N(u)‖PC1 � max {R,‖ϕ‖PC} := �.

Step 3: N maps bounded sets into equicontinuous sets of PC([−r,T ],R) .
Let τ1,τ2 ∈ (0,T ] , τ1 < τ2 , Bη∗ be a bounded set of PC([−r,T ],R) as in Step 2, and
let u ∈ Bη∗ . Then

|N(u)(τ2)−N(u)(τ1)|
� 1

Γ(α)

∫ τ1

0
|(τ2 − s)α−1− (τ1− s)α−1||g(s)|ds

+
1

Γ(α)

∫ τ2

τ1

|(τ2 − s)α−1||g(s)|ds+ ∑
0<tk<τ2−τ1

|Ik(ut−k
)|

� M
Γ(α +1)

[2(τ2 − τ1)α +(τα
2 − τα

1 )]+ (τ2− τ1)(M∗‖ut−k
‖PC +N∗)

� M
Γ(α +1)

[2(τ2 − τ1)α +(τα
2 − τα

1 )]+ (τ2− τ1)(M∗‖u‖PC1 +N∗)

� M
Γ(α +1)

[2(τ2 − τ1)α +(τα
2 − τα

1 )]+ (τ2− τ1)(M∗η∗ +N∗).

As τ1 → τ2 , the right-hand side of the above inequality tends to zero. As a conse-
quence of Steps 1 to 3 together with the Ascoli-Arzela theorem, we can conclude that
N : PC([−r,T ],R) → PC([−r,T ],R) is completely continuous.

Step 4: A priori bounds. Now it remains to show that the set

E = {u ∈ PC([−r,T ],R) : u = λN(u) for some 0 < λ < 1}
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is bounded. Let u ∈ E , then u = λN(u) for some 0 < λ < 1. Thus, for each t ∈ J we
have

u(t) = λ ϕ(0)+
λ

Γ(α) ∑
0<tk<t

∫ tk

tk−1

(tk − s)α−1g(s)ds

+
λ

Γ(α)

∫ t

tk
(t− s)α−1g(s)ds+ λ ∑

0<tk<t

Ik(ut−k
).

(3.9)

And, by (H4), we have for each t ∈ J,

|g(t)| = | f (t,ut ,g(t))|
� p(t)+q(t)‖ut‖PC + r(t)|g(t)|
� p∗ +q∗‖ut‖PC + r∗|g(t)|.

Thus

|g(t)| � 1
1− r∗

(p∗ +q∗‖ut‖PC).

This implies, by (3.9) and (H5), that for each t ∈ J we have

|u(t)| � |ϕ(0)|+ 1
(1− r∗)Γ(α) ∑

0<tk<t

∫ tk

tk−1

(tk − s)α−1(p∗ +q∗‖us‖PC)ds

+
1

(1− r∗)Γ(α)

∫ t

tk
(t− s)α−1(p∗ +q∗‖us‖PC)ds

+ m(M∗‖ut−k
‖PC +N∗).

Consider the function ν defined by

ν(t) = sup{|u(s)| : −r � s � t},0 � t � T,

then, there exists t∗ ∈ [−r,T ] such that ν(t)= |u(t∗)| . If t∗ ∈ [0,T ] ,then by the previous
inequality, we have for t ∈ J

ν(t) � |ϕ(0)|+ 1
(1− r∗)Γ(α) ∑

0<tk<t

∫ tk

tk−1

(tk − s)α−1(p∗ +q∗ν(s))ds

+
1

(1− r∗)Γ(α)

∫ t

tk
(t− s)α−1(p∗ +q∗ν(s))ds

+ mM∗ν(t)+mN∗.

Thus

ν(t) � |ϕ(0)|+mN∗

1−mM∗ +
1

(1−mM∗)(1− r∗)Γ(α) ∑
0<tk<t

∫ tk

tk−1

(tk − s)α−1(p∗ +q∗ν(s))ds

+
1

(1−mM∗)(1− r∗)Γ(α)

∫ t

tk
(t − s)α−1(p∗ +q∗ν(s))ds
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� |ϕ(0)|+mN∗

1−mM∗ +
(m+1)p∗T α

(1−mM∗)(1− r∗)Γ(α +1)

+
(m+1)q∗

(1−mM∗)(1− r∗)Γ(α)

∫ t

0
(t − s)α−1ν(s)ds.

Applying Lemma 4, we get

ν(t) �
[ |ϕ(0)|+mN∗

1−mM∗ +
(m+1)p∗T α

(1−mM∗)(1− r∗)Γ(α +1)

]
×

[
1+

δ (m+1)q∗T α

(1−mM∗)(1− r∗)Γ(α +1)

]
:= A,

where δ = δ (α) a constant. If t∗ ∈ [−r,0] , then ν(t) = ‖ϕ‖PC, thus for any t ∈
[−r,T ],‖u‖PC1 � ν(t) , we have

‖u‖PC1 � max{‖ϕ‖PC,A}
This shows that the set E is bounded. As a consequence of Schaefer’s fixed point
theorem, we deduce that N has a fixed point which is a solution of the problem (1.1)-
(1.3) .

4. Ulam-Hyers Rassias Stability

Now, we state the following Ulam-Hyers-Rassias stable result.

THEOREM 6. Assume (H1)-(H3) , (3.5) and

(H6) there exists a nondecreasing function ω ∈ PC(J,R+) and there exists λω > 0
such that for any t ∈ J :

Iα ω(t) � λωω(t)

are satisfied, then the problem (1.1)-(1.2) is Ulam-Hyers-Rassias stable with respect
to (ω ,ψ) .

Proof. Let z ∈ PC([−r,T ],R) be a solution of the inequality (2.3). Denote by y
the unique solution of the following problem⎧⎪⎨⎪⎩

cDα
tk y(t) = f (t,yt ,

c Dα
tk y(t)), t ∈ (tk,tk+1],k = 1, . . . ,m ;

Δy|t=tk = Ik(yt−k
), k = 1, . . . ,m ;

y(t) = z(t) = ϕ(t), t ∈ [−r,0].

Using Lemma 6, we obtain for each t ∈ (tk,tk+1]

y(t) = ϕ(0)+
k

∑
i=1

Ii(yt−i
)+

1
Γ(α)

k

∑
i=1

∫ ti

ti−1

(ti − s)α−1g(s)ds

+
1

Γ(α)

∫ t

tk
(t− s)α−1g(s)ds, t ∈ (tk, tk+1],
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where g ∈C(J,R) be such that

g(t) = f (t,yt ,g(t)).

Since z solution of the inequality (2.3) and by Remark 2, we have{
cDα

tk
z(t) = f (t,zt ,c Dα

tk
z(t))+ σ(t), t ∈ (tk,tk+1],k = 1, . . . ,m ;

Δz|t=tk = Ik(zt−k )+ σk, k = 1, . . . ,m .
(4.1)

Clearly, the solution of (4.1) is given by

z(t) = ϕ(0)+
k

∑
i=1

Ii(zt−i )+
k

∑
i=1

σi +
1

Γ(α)

k

∑
i=1

∫ ti

ti−1

(ti − s)α−1h(s)ds

+
1

Γ(α)

k

∑
i=1

∫ ti

ti−1

(ti − s)α−1σ(s)ds+
1

Γ(α)

∫ t

tk
(t− s)α−1h(s)ds

+
1

Γ(α)

∫ t

tk
(t − s)α−1σ(s)ds, t ∈ (tk,tk+1],

where h ∈C(J,R) be such that

h(t) = f (t,zt ,h(t)).

Hence for each t ∈ (tk,tk+1], it follows that

|z(t)− y(t)| �
k

∑
i=1

|σi|+
k

∑
i=1

|Ii(zt−i )− Ii(yt−i
)|

+
1

Γ(α)

k

∑
i=1

∫ ti

ti−1

(ti − s)α−1|h(s)−g(s)|ds

+
1

Γ(α)

k

∑
i=1

∫ ti

ti−1

(ti − s)α−1|σ(s)|ds

+
1

Γ(α)

∫ t

tk
(t− s)α−1|h(s)−g(s)|ds

+
1

Γ(α)

∫ t

tk
(t− s)α−1|σ(s)|.

Thus

|z(t)− y(t)| � mεψ +(m+1)ελωω(t)+
k

∑
i=1

l̃‖zt−i − yt−i
‖PC

+
1

Γ(α)

k

∑
i=1

∫ ti

ti−1

(ti − s)α−1|h(s)−g(s)|ds

+
1

Γ(α)

∫ t

tk
(t − s)α−1|h(s)−g(s)|ds.
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By (H2), we have

|h(t)−g(t)| = | f (t,zt ,h(t))− f (t,yt ,g(t))|
� K‖zt − yt‖PC +L|g(t)−h(t)|.

Then

|h(t)−g(t)|� K
1−L

‖zt − yt‖PC.

Therefore, for each t ∈ J

|z(t)− y(t)| � mεψ +(m+1)ελωω(t)+
k

∑
i=1

l̃‖zt−i − yt−i
‖PC

+
K

(1−L)Γ(α)

k

∑
i=1

∫ ti

ti−1

(ti − s)α−1‖zs− ys‖PCds

+
K

(1−L)Γ(α)

∫ t

tk
(t− s)α−1‖zs− ys‖PCds.

Thus

|z(t)− y(t)| � ∑
0<ti<t

l̃‖zt−i − yt−i
‖PC + ε(ψ + ω(t))(m+(m+1)λω)

+
K(m+1)

(1−L)Γ(α)

∫ t

0
(t− s)α−1‖zs− ys‖PCds.

We consider the function ν1 defined by

ν1(t) = sup{|z(s)− y(s)| : −r � s � t} ,0 � t � T,

then, there exists t∗ ∈ [−r,T ] such that ν1(t) = |z(t∗)− y(t∗)| .
If t∗ ∈ [−r,0] , then ν1(t) = 0.
If t∗ ∈ [0,T ] , then by the previous inequality, we have

ν1(t) � ∑
0<ti<t

l̃ν1(t−i )+ ε(ψ + ω(t))(m+(m+1)λω)

+
K(m+1)

(1−L)Γ(α)

∫ t

0
(t − s)α−1ν1(s)ds.

Applying Lemma 5, we get

ν1(t) � ε(ψ + ω(t))(m+(m+1)λω)

×
[

∏
0<ti<t

(1+ l̃)exp

(∫ t

0

K(m+1)
(1−L)Γ(α)

(t− s)α−1ds

)]
� cωε(ψ + ω(t)),

where

cω = (m+(m+1)λω)

[
m

∏
i=1

(1+ l̃)exp

(
K(m+1)Tα

(1−L)Γ(α +1)

)]
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= (m+(m+1)λω)
[
(1+ l̃)exp

(
K(m+1)Tα

(1−L)Γ(α +1)

)]m

.

Thus, the problem (1.1)-(1.2) is Ulam-Hyers-Rassias stable with respect to (ω ,ψ) .
The proof is complete.

Next, we present the following Ulam-Hyers stable result.

THEOREM 7. Assume that (H1)-(H3) and (3.5) are satisfied, then, the problem
(1.1)-(1.2) is Ulam-Hyers stable.

Proof. Let z ∈ PC([−r,T ],R) be a solution of the inequality (2.1). Denote by y the
unique solution of the problem⎧⎪⎨⎪⎩

cDα
tk
y(t) = f (t,yt ,

c Dα
tk
y(t)), t ∈ (tk,tk+1],k = 1, . . . ,m ;

Δy|t=tk = Ik(yt−k
), k = 1, . . . ,m ;

y(t) = z(t) = ϕ(t), t ∈ [−r,0].

From the proof of Theorem 6, we get the inequality

ν1(t) � ∑
0<ti<t

l̃ν1(t−i )+mε +
T α ε(m+1)

Γ(α +1)

+
K(m+1)

(1−L)Γ(α)

∫ t

0
(t− s)α−1ν1(s)ds.

Applying Lemma 5, we get

ν1(t) � ε
(

mΓ(α +1)+Tα(m+1)
Γ(α +1)

)
×

[
∏

0<ti<t

(1+ l̃)exp

(∫ t

0

K(m+1)
(1−L)Γ(α)

(t− s)α−1ds

)]
� cωε,

where

cω =
(

mΓ(α +1)+Tα(m+1)
Γ(α +1)

)[
m

∏
i=1

(1+ l̃)exp

(
K(m+1)Tα

(1−L)Γ(α +1)

)]

=
(

mΓ(α +1)+Tα(m+1)
Γ(α +1)

)[
(1+ l̃)exp

(
K(m+1)Tα

(1−L)Γ(α +1)

)]m

.

Which completes the proof of the Theorem.

Moreover, if we set γ(ε) = cωε;γ(0) = 0, then, the problem (1.1)-(1.2) is gen-
eralized Ulam-Hyers stable.
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5. Examples

Example 1. Consider the following impulsive problem

cD
1
2
tk y(t) =

e−t

(11+ et)

⎡⎣ yt

1+ yt
−

cD
1
2
tk y(t)

1+c D
1
2
tk y(t)

⎤⎦ , for each, t ∈ J0∪ J1. (5.1)

Δy|t= 1
2

=
y( 1

2
−)

10+ y( 1
2
−)

. (5.2)

y(t) = ϕ(t), t ∈ [−r,0],r > 0, (5.3)

where ϕ ∈ PC([−r,0],R), J0 = [0, 1
2 ], J1 = ( 1

2 ,1], t0 = 0, and t1 = 1
2 .

Set

f (t,u,v) =
e−t

(11+ et)

[
u

1+u
− v

1+ v

]
, t ∈ [0,1], u ∈ PC([−r,0],R) and v ∈ R.

Clearly, the function f is jointly continuous.
For each u, u ∈ PC([−r,0],R),v, v ∈ R and t ∈ [0,1] :

| f (t,u,v)− f (t, u, v)| � e−t

(11+ et)
(‖u− u‖PC + |v− v|)

� 1
12

‖u− u‖PC +
1
12

|v− v| .

Hence condition (H2) is satisfied with K = L = 1
12 .

And let
I1(u) =

u
10+u

, u ∈ PC([−r,0],R).

Let u,v ∈ PC([−r,0],R) . Then we have

|I1(u)− I1(v)| =
∣∣∣∣ u
10+u

− v
10+ v

∣∣∣∣ � 1
10

‖u− v‖PC.

Thus condition

ml̃ +
(m+1)KTα

(1−L)Γ(α +1)
=

[
1
10

+
2
12

(1− 1
12)Γ( 3

2 )

]

=
4

11
√

π
+

1
10

< 1,

is satisfied with T = 1,m = 1 and l̃ = 1
10 . It follows from Theorem 4 that the problem

(5.1)–(5.3) has a unique solution on J .
Set for any t ∈ [0,1] , ω(t) = t,ψ = 1. Since

I
1
2 ω(t) =

1

Γ
( 1

2

) ∫ t

0
(t− s)

1
2−1sds � 2t√

π
,
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then, condition (H6) is satisfied with λω = 2√
π . It follows that the problem (5.1)-(5.2)

is Ulam-Hyers-Rassias stable with respect to (ω ,ψ).

Example 2. Consider the following impulsive problem

cD
1
2
tk y(t) =

2+ |yt|+ |cD
1
2
tk y(t)|

108et+3(1+ |yt|+ |cD
1
2
tk y(t)|)

, for each, t ∈ J0 ∪ J1. (5.4)

Δy|t= 1
3

=
|y( 1

3
−)|

6+ |y( 1
3
−)|

, (5.5)

y(t) = ϕ(t), t ∈ [−r,0],r > 0, (5.6)

where ϕ ∈ PC([−r,0],R) J0 = [0, 1
3 ], J1 = ( 1

3 ,1], t0 = 0, and t1 = 1
3 .

Set

f (t,u,v) =
2+ |u|+ |v|

108et+3(1+ |u|+ |v|), t ∈ [0,1], u ∈ PC([−r,0],R),v ∈ R.

Clearly, the function f is jointly continuous.
For any u, u ∈ PC([−r,0],R),v, v ∈ R and t ∈ [0,1] :

| f (t,u,v)− f (t, u, v)| � 1
108e3 (‖u− u‖PC + |v− v |).

Hence condition (H2) is satisfied with K = L = 1
108e3 .

We have, for each t ∈ [0,1] ,

| f (t,u,v)| � 1
108et+3 (2+‖u‖PC + |v|).

Thus condition (H4) is satisfied with

p(t) = 1
54et+3 and q(t) = r(t) = 1

108et+3 .

Let

I1(u) =
|u|

6+ |u| , u ∈ PC([−r,0],R).

We have, for each u ∈ PC([−r,0],R),

|I1(u)| � 1
6
‖u‖PC +1

Thus condition (H5) is satisfied with M∗ = 1
6 and N∗ = 1. It follows from Theorem 5

that the problem (5.4)–(5.6) has at least one solution on J .
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