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Abstract. We study the existence of weak solutions for fractional elliptic equations of the type,

(−Δ)
1
2 u+V (x)u = h(u), u > 0 in R,

where h is a real valued function that behaves like eu2
as u → ∞ and V (x) is a positive, con-

tinuous unbounded function. Here (−Δ)
1
2 is the fractional Laplacian operator. We show the

existence of mountain-pass solution when the nonlinearity is superlinear near t = 0 . We also
study the corresponding critical exponent problem for the Kirchhoff equation

m

(∫
R
|(−Δ)

1
4 u|2dx+

∫
R

V (x)u2dx

)(
(−Δ)

1
2 u+V (x)u

)
= f (u) in R,

where f (u) behaves like eu2
as u → ∞ and f (u) ∼ uθ , with θ > 3 , as u → 0 .

1. Introduction

In this article, we study the existence of weak solutions for fractional elliptic equa-
tions of the type,

(P) (−Δ)
1
2 u+V(x)u = h(u),u > 0 in R,

where the nonlinearity h(u) satisfies critical growth of exponential type which will be
stated later.

We also study the corresponding critical exponent problem for the Kirchhoff equa-
tion

(Q)
{

m

(∫
R
|(−Δ)

1
4 u|2dx+

∫
R
V (x)u2dx

)(
(−Δ)

1
2 u+V(x)u

)
= f (u) in R

where m : R+ → R+ and f : R → R+ are continuous functions that satisfy some suit-
able conditions.

The function V (x) is a continuous function satisfying the following assumption:
(V) V (x) � V0 > 0 in R and V (x) → ∞ as |x| → ∞ .
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An example of function satisfying the above assumption is V (x) = |x|p +V0 with p > 0
and V0 > 0.

Here (−Δ)
1
2 is the 1

2 -Laplacian operator defined as

(−Δ)
1
2 u(x) =

1
π

P.V.

∫
R

u(x)−u(y)
|x− y|2 dy for all x ∈ R,

where P.V. denotes the Cauchy principal value (see for instance [8] and [6]). The frac-
tional Laplacian operator has been a classical topic in Fourier analysis and nonlinear
partial differential equations for a long time. Fractional operators are involved in finan-
cial mathematics, where Levy processes with jumps appear in modeling the asset prices
(see [5]). Recently the fractional Laplacian has attracted many researchers. In particu-
lar, concerning nonlinear elliptic equations involving fractional operators, the issues of
existence and properties of solutions (regularity, a priori bounds, asymptotic behavior,
symmetry, etc.) have been discussed in detail (see for instance [7], [8], [10], [13], [15],
[24], [25] and [28]). The critical exponent problems for square root of Laplacian are
studied in [9], [26].

In [26], authors have studied the following Brezis-Nirenberg type critical exponent
problem on bounded domains Ω ⊂ Rn, n � 2:

(−Δ)
1
2 u = λu+u

2n
n−1 , u > 0 in Ω, u = 0 in Rn\Ω,

by studying its harmonic extension problem. The idea of these harmonic extensions
was initially introduced and studied in the beautiful work of Caffarelli and Silvestre
[8]. The critical exponent problems in the limiting case n = 1 and with nonlinearities
with exponential growth are studied in [13]. Here the exponential type nonlinearity is
motivated by fractional Moser-Trudinger embedding due to Ozawa [22].

In [19], authors considered the problem in the whole space R :

(−Δ)1/2u+u = K(x)g(u) in R,

where K is a real valued positive function and g has a critical exponential growth and
is super-quadratic near 0. Here authors proved the existence of solutions by studying
the corresponding harmonic extension problem under suitable conditions on K and g .
In section 3, we improve this result by identifying more accurately the first critical level
under which the Palais-Smale condition holds. To achieve this, we extend the sharp
Trudinger-Moser inequality proved for bounded domains in [20] to the whole space
case (see Theorem 2.2). For that, we use some extensions of Adams type inequalities
proved in [17]. Next, using this new Trudinger-Moser inequality, we show the existence
of a Palais-Smale sequence that concentrates on the boundary R×{0} in the spirit of
[4] and whose energy level is strictly below the first critical level. We highlight that the
assumption (h4) (see section 3) plays an important role in proving such compactness
of the exhibited Palais-Smale sequence. Furthermore, in the local setting (see [4], [3],
[14]), (h4) appears to be the sharp condition on the asymptotic behaviour of nonlinearity
h to ensure the existence of nontrivial solutions for critical problems in two dimensions.
We show that it still holds for more general non local problems as (Q) investigated in
section 4.
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Elliptic problems with exponential growth nonlinearities are motivated by the
Moser-Trudinger inequality [21], namely

sup
‖u‖

H1
0 (Ω)�1

∫
Ω

eαu2
dx < ∞, if and only if α � 4π ,

where Ω ⊂ R2 is a bounded domain. The existence of solutions for critical exponent
problem was initiated and studied in [2, 4, 11]. Subsequently, these results were gener-
alized to unbounded domains in [18, 23].

The space H
1
2 (R) is the Hilbert space with the norm defined as

‖u‖2
1/2 = ‖u‖2

L2(R) +
∫

R
|(−Δ)

1
4 u|2dx.

The space H
1
2
0 (R) is the completion of C∞

0 (R) under [u] =
(∫

R |(−Δ)
1
4 u|2dx

) 1
2

.

The problems of the type (P) with exponential growth nonlinearities are motivated
from the fractional Trudinger-Moser inequality [20], which gives the optimal constant
and improves the former results of Ozawa [22] and Kozono, Sato and Wadade [16].
Precisely, let I be a bounded interval of R . Set X(I) := {u ∈ H

1
2 (R) : u ≡ 0 in R\I} .

Then,

THEOREM 1.1. For u ∈ H
1
2 (I) , eβu2 ∈ L1(I) for any β > 0 . Moreover there

exists a constant C > 0 such that

sup

u∈X(I),‖(−Δ)
1
4 u‖L2(I)�1

∫
I
eαu2

dx � C|I| for all α � π .

Our approach in the present paper is based on the Caffarelli-Silvestre approach to
fractional Laplacians in [8]. In [8] it was shown that for any v ∈ H

1
2 (R), the unique

function w(x,y) that minimizes the weighted integral

E 1
2
(w) def=

∫ ∞

0

∫
R
|∇w(x,y)|2dxdy

over the set
{
w(x,y) : E 1

2
(w) < ∞,w

∣∣
y=0 = v

}
satisfies

∫
R |(−Δ)

1
4 v|2 = E 1

2
(w). More-

over w(x,y) solves the boundary value problem

−div(∇w) = 0 in R×R+, w
∣∣
y=0 = v

∂w
∂ν

= (−Δ)1/2v(x), (1.1)

where ∂w
∂ν =− lim

y→0+

∂w
∂y

(x,y) . We denote the upper half space in R2 as R2
+ = {(x,y) ∈

R2| y > 0} . The space X1(R2
+) is defined as the completion of C∞

0 (R2
+) under the

semi-norm

‖w‖X1 =
(∫

R2
+

|∇w|2 dxdy

) 1
2

.
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For a function u ∈ H
1
2
0 (R) , the solution w

def= E 1
2
(u) ∈ X1(R2

+) of the problem (1.1) is

called harmonic extension of u . The map E 1
2

: H
1
2
0 (R) → X1(R2

+) is an isometry. We
look for solutions in the Hilbert space EV defined as

EV
def=

{
w ∈ X1(R2

+) :
∫

R
V (x)|w(x,0)|2dx < ∞

}
equipped with the norm

‖w‖ =
(∫

R2
+

|∇w|2dxdy+
∫

R
V (x)|w(x,0)|2dx

) 1
2

.

From the assumption (V) and the continuous embedding of EV into Lq(R) for q ∈
[2,∞) , it follows that the embedding EV � u 	→ |u|r ∈ L1(R) is compact for all r ∈
[2,∞) . Moreover, the minimization problem

λ1 = min
w∈EV

{∫
R2

+

|∇w|2 +
∫

R
V (x)|w(x,0)|2dx :

∫
R
|w(x,0)|2dx = 1

}

admits a non-negative minimizer and λ1 � V0 > 0.
In this paper, first we discuss the Adimurthi [2] type existence result for the frac-

tional Laplacian equation in (P) with nonlinearity h(u) that has superlinear growth
near zero and critical exponential growth near ∞ . To prove our result we analyze the
first critical level using the Moser functions which are dilations and truncations of fun-
damental solutions in R2 and study the compactness of Palais-Smale sequences below
this level. In the second part, we discuss the Kirchhoff fractional Laplacian equation
in (Q) with critical exponential nonlinearity that behaves like uθ with θ > 3 near the
origin and eu2

at ∞. Here, using the critical level obtained in the section 3, we study the
critical level for the Kirchhoff problems and we use the Moser functions concentrating
on the boundary along with Lion’s Lemma on higher integrability to show the strong
convergence of Palais-Smale sequences below the critical level.

We now give the organization of the paper. In section 2, we present a version of
Moser-Trudinger inequality which is the central idea of the proof of existence result
in section 3. In section 3, we consider the critical exponent problem with positive
nonlinearity and prove Adimurthi’s type existence result. In section 4, we consider the
problem (Q) and study the existence result.

2. A Moser-Trudinger inequality

In this section we prove the Moser-Trudinger inequality on R2
+ . We first recall the

following result due to LAM-LU [17] (see Theorem 1.7 page 308).

THEOREM 2.1. Let 0 < γ < n be an arbitrary real positive number, p = n
γ and

τ > 0 . There holds

sup
u∈W γ,p(Rn),‖(τI−Δ)

γ
2 u‖p�1

∫
Rn

φ(β0(nγ)|u|p′)dx < ∞,
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where

p′ =
p

p−1
, β0(n,γ) =

n
ωn−1

[
πn/22γΓ(γ/2)

Γ( n−γ
2 )

]p′

and

φ(t) = et −
jp−2

∑
j=0

t j

j!
, jp = min{ j ∈ N : j � p} � p.

Furthermore this inequality is sharp, i.e., if β0(n,γ) is replaced by any β > β0(n,γ) ,
then the supremum is infinite.

Now we will prove the following theorem:

THEOREM 2.2. There exists a constant C > 0 such that

sup
w∈EV ,‖w‖�1

∫
R
(eα |w(x,0)|2 −1)dx � C, for all 0 � α � π . (2.1)

PROOF OF THEOREM 2.2 :. We use Theorem 2.1 in the case n = 1, γ = 1
2 and

τ > 0 small enough. Precisely, we have

sup

u∈W1/2,2(R),‖(τI−Δ)
1
4 u‖2�1

∫
R
(eπ |u|2 −1)dx < ∞. (2.2)

Now, observing that

‖(τI−Δ)
1
4 u‖2

L2(R) = ‖ ̂(τI−Δ)
1
4 u‖2

L2(R)

= ‖(τ + |ξ |2) 1
4 û‖2

L2(R)

=
∫

R
(τ + |ξ |2) 1

2 |û|2dx

�
∫

R
(τ

1
2 + |ξ |)|û|2dx. (2.3)

In the other hand, let w ∈ EV , we have from the harmonic extension property that∫
R2

+

|∇w|2dx = ‖(−Δ)
1
4 (w(x,0))‖2

L2(R).

Therefore, from (V) and (2.3), we infer that for τ
1
2 � V0

‖w‖2 �
∫

R
|(−Δ)

1
4 w(x,0)|2 +V0 ·w(x,0)2dx � ‖(τI−Δ)

1
4 w(x,0)‖2

L2(R).

Hence, from (2.2), (2.1) follows. This completes the proof of Theorem 2.2.

In addition, we have the following lemma.
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LEMMA 2.1. For any u ∈ H
1
2 (R) and any α > 0 , we have

∫
R(eαu2 −1)dx < ∞ .

Proof. We use some ideas from [27] (see also [15] for the bounded domain case).
Let u ∈ H

1
2 (R) and α > 0. From Proposition 1 in [22] page 261, there exists M > 0

such that for any q � 2 and any f ∈ H
1
2 (R) ,

‖ f‖Lq(R) � Mq1/2‖(−Δ)1/4 f‖1−2/q
L2(R) ‖ f‖2/q

L2(R).

Therefore, for k � 1

‖u‖2k
L2k(R) � M2k(2k)k‖(−Δ)1/4u‖2k−2

2 ‖u‖2
L2(R).

Hence,

∫
R
(eαu2 −1)dx =

∞

∑
k=1

αk‖u‖2k
L2k(R)

(k)!
�

∞

∑
k=1

αk

(k)!
M2k(2k)k‖(−Δ)1/4u‖2k−2

2 ‖u‖2
L2(R),

which is a convergent sequence for 0 < α � α0 small enough. Furthermore, we infer
that there exists C0 > 0 such that∫

R

(
eα0u

2 −1
)
dx � C0‖u‖2

L2(R), (2.4)

for every u ∈ H
1
2 (R) with [u] � 1. Let Φ the function defined as Φ(t) = eα0t2−1

C0
and

consider the corresponding Orlicz class and Orlicz space KΦ(R) , LΦ(R) respectively
(see [1] page 232 and 233 for definitions). LΦ(R) , equipped with the Luxemburg norm
‖ · ‖Φ is defined as

‖u‖Φ
def= inf

{
k > 0 :

∫
R

Φ
( |u(x)|

k

)
dx � 1

}
.

We first prove that H
1
2 (R) is continuously imbedded in LΦ(R) . For that, let u ∈

H
1
2 (R) . Then we define w

def= u
‖u‖1/2

which satisfies [w] � 1. Thus, in virtue of (2.4),

∫
R

Φ(w) � ‖w‖L2(R) � 1.

Hence, we obtain that .

‖w‖Φ � ‖w‖1/2.

This proves that (H
1
2 (R),‖ · ‖1/2) is continuously imbedded in (LΦ(R),‖ · ‖Φ) . Con-

sider EΦ(R) , the closure of the space functions u which are bounded and have a com-
pact support in R . It is easy to prove that EΦ(R) ⊂ KΦ(R) (see [1] page 236). Fur-

thermore from the fact that H
1
2 (R) ↪→ LΦ(R) continuously and the density of C∞

c (R)



Differ. Equ. Appl. 8, No. 3 (2016), 295–317. 301

in H
1
2 (R) (see [1]), we deduce that H

1
2 (R) ⊂ EΦ(R) ⊂ KΦ(R) . Therefore, for any

u ∈ H
1
2 (R) ,

∫
R

Φ
(

α 1
2 u

α
1
2
0

)
dx < ∞.

This ends the proof of the lemma.

3. Critical growth problem

In this section we study the existence of positive solutions for the problem

(P) (−Δ)1/2u+V(x)u = h(u) in R,

where V (x) satisfies the assumption (V) and h(u) satisfies the following critical growth
conditions:

(h1) h ∈C1(R), h(t) = 0 for t � 0, h(t) > 0 for t > 0 and h satisfies for any ε > 0,

lim
t→∞

h(t)e−(1+ε)t2 = 0.

(h2) There exists μ > 2 such that for all u > 0,

0 � μH(u) � uh(u), where H(u) =
∫ u

0
h(s)ds.

(h3) There exist positive constants t0 , M such that

H(t) � Mh(t) for all t ∈ [t0,+∞).

(h4) lim
t→∞

th(t)e−t2 = ∞.

(h5) limsup
u→0

2H(u)
u2 < λ1.

REMARK 3.1. Prototype examples of h satisfying (h1)-(h5) are t pet2 with p >

1 and t p(etβ − 1)et2 with p > 1 and β ∈ (0,2) . Nonlinearities of the form t peβ t2

(β > 0, p > 1) can be also dealt with according modifications in the assumptions and
minor changes in the proofs. Note in this case that the first critical level of the energy
functional I is π

2β .

The variational functional associated to the problem (P) is given as

Ĩ(u) =
1
2

∫
R
|(−Δ)

1
4 u|2dx+

1
2

∫
R
V (x)|u|2dx−

∫
R

H(u)dx.

The harmonic extension problem corresponding to (P) is

(PE)

{
Δw = 0, w > 0 in R2

+,

− ∂w
∂y = −w(x,0)V (x)+h(w(x,0)) on R.
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The variational functional I : EV → R related to the problem (PE) is given as

I(w) =
1
2

∫
R2

+

|∇w|2dxdy+
1
2

∫
R
V (x)|w(x,0)|2dx−

∫
R

H(w(x,0))dx.

Any positive function w ∈ E is called the weak solution of the problem (PE) if for any
φ ∈ EV∫

R2
+

∇w.∇φdxdy+
∫

R
V (x)w(x,0)φ(x,0)dx−

∫
R

h(w(x,0))φ(x,0)dx = 0. (3.1)

It is clear that critical points of I in EV correspond to the critical points of Ĩ in H
1
2 (R) .

Thus if w solves (PE) then u = trace(w) = w(x,0) is the solution of problem (P) and
vice versa.

With this introduction we state the main result of this section.

THEOREM 3.1. Suppose (h1)-(h5) are satisfied. Then the problem (P) has a weak
solution, u �= 0 . If V ∈C1,γ

loc (R) , with γ ∈ (0,1) , then u ∈C2(R) .

3.1. Mountain-pass solution

We will use the mountain pass lemma to show the existence of a solution in the
critical case. The assumption (V) implies that u 	→ ∫

R |u|qdx is weakly continuous for
q ∈ [2,∞) . Next we have the following:

LEMMA 3.1. Assume that the conditions (h1)-(h5) hold. Then I satisfies the
mountain pass geometry around 0 .

Proof. Using assumption (h2) , we get

H(s) � C1|s|μ −C2

for some C1,C2 > 0 and μ > 2. Hence for function w ∈ EV with compact support, we
get

I(tw) � t2

2
‖w‖2−C1t

μ
∫

R
|w(x,0)|μdx+C2| supp w(x,0)|.

Hence I(tw) →−∞ as t → ∞ . Next we will show that there exists α,ρ > 0 such that
I(w) > α for all ‖w‖ = ρ . From (h1) and (h5), for ε > 0,r > 2 there exists C1 > 0
such that

|H(s)| � λ1− ε
2

s2 +C1|s|r(e(1+ε)s2 −1).

Hence, using Hölder’s inequality, we get for t > 1 and t ′ = t
t−1 ,

∫
R
|H(w(x,0))| � λ1− ε

2

∫
R
|w(x,0)|2dx+C1

∫
R
|w(x,0)|r

(
e(1+ε)w(x,0)2 −1

)
dx
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� λ1− ε
2

‖w(·,0)‖2
L2(R) +C2‖w(·,0)‖r

Lt′ (R)

(∫
R

(
e(1+ε)tw(x,0)2 −1

)
dx

) 1
t

� λ1− ε
2

‖w(·,0)‖2
L2(R) +C2‖w(·,0)‖r

Lt′ (R)

(∫
R

(
e
(1+ε)t‖w‖2

(
w(x,0)

‖w(x,0)‖
)2

−1
)
dx

) 1
t

.

Now let w such that ‖w‖ = ρ for sufficiently small ρ and t close to 1 such that
(1+ ε)t‖w‖2 � π . Then using Moser-Trudinger inequality in (2.1), we get

I(w) � 1
2
‖w‖2− λ1− ε

2
‖w(·,0)‖2

L2(R) −C3‖w(·,0)‖r
Lt′ (R)

� 1
2

(
1− λ1− ε

λ1

)
‖w‖2−C3‖w(·,0)‖r

Lt′ (R)
.

Hence there exists α > 0 such that I(w) > α for all ‖w‖ = ρ for sufficiently small ρ .
Next we show the boundedness of Palais-Smale sequences.

LEMMA 3.2. Every Palais-Smale sequence of I is bounded in EV .

Proof. Let {wk} be a (PS)c sequence, that is

I(wk) = c+o(1) and I′(wk) = o(1). (3.2)

Then,

1
2
‖wk‖2−

∫
R

H(wk(x,0))dx = c+o(1),

‖wk‖2−
∫

R
h(wk(x,0))wk(x,0)dx = o(‖wk‖).

Therefore,(
1
2
− 1

μ

)
‖wk‖2− 1

μ

∫
R

(
μH(wk(x,0))−h(wk(x,0))wk(x,0)

)
dx = c+o(‖wk‖).

Using assumption (h2), we get ‖wk‖ � C for some C > 0.
We have the following version of Compactness Lemma that is derived from the

Vitali’s convergence theorem:

LEMMA 3.3. For any (PS)c sequence {wk} of I , there exists w0 ∈ EV such that,
up to subsequence, h(wk(·,0))→ h(w0(·,0)) in L1

loc(R) and H(wk(·,0))→H(w0(·,0))
in L1(R) .

Proof. From Lemma 3.2, we get that the sequence {wk} is bounded in EV . There-
fore, up to subsequence, wk ⇀ w0 weakly in EV , for some w0 ∈ EV . Also from equa-
tion (3.2), we get C > 0 such that∫

R
h(wk(x,0))wk(x,0)dx � C and

∫
R

H(wk(x,0))dx � C.
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Now using Vitali’s convergence theorem, we get

h(wk(·,0)) → h(w0(·,0)) in L1
loc(R).

Now to show second part of the above Lemma, we use (h3) and generalized Lebesgue
dominated convergence theorem to get

H(wk(·,0)) → H(w0(·,0)) in L1
loc(R). (3.3)

Now by assumption (h3) for R , A > 0 large enough,

∫
|x| > R
|wk(·,0)|> A

H(wk(x,0))dx � C
A

∫
|x| > R
|wk| > A

h(wk(x,0))wk(x,0)dx.

Since sequence wk is bounded, for any δ > 0, we can choose A sufficiently large such
that ∫

|x| > R
|wk| > A

H(wk(x,0))dx <
δ
2

. (3.4)

Next, note that from (h5) there exists CA > 0 only depending on A such that
∫
|x| > R
|wk(·,0)| � A

H(wk(x,0))dx � CA

∫
|x| > R
|wk(·,0)|� A

|wk(x,0)|2dx

� 2CA

∫
|x| > R
|wk(·,0)| � A

|wk(x,0)−w0(x,0)|2dx

+2CA

∫
|x| > R
|wk(·,0)| � A

|w0(x,0)|2dx.

Using the compact embedding of EV into Lr(R),r � 2, we can choose R such that

∫
|x| > R
|wk| � A

H(wk(x,0))dx <
δ
2

. (3.5)

Hence combining equations (3.3), (3.4), (3.5), the proof follows.
We use the following version of ”Moser functions concentrated on the boundary”

in the spirit of [4]:

LEMMA 3.4. There exists a sequence {φk} ⊂ EV satisfying

(1) φk � 0 , supp(φk) ⊂ B(0,1)∩R2
+ ,

(2) ‖φk‖ = 1 ,

(3) φk is constant in B(0, 1
k )∩R2

+ , and φ2
k = 1

π logk+O(1) .
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Proof. Let

ψk(x,y) =
1√
2π

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
logk 0 �

√
x2 + y2 � 1

k
log 1√

x2+y2√
logk

1
k �

√
x2 + y2 � 1

0
√

x2 + y2 � 1.

Then ∫
R2

|∇ψk|2dxdy = 1 and
∫

R2
|ψk|2dxdy = O

(
1

logk

)
.

Let ψk = ψk|R2
+

and φk =
ψk

‖ψk‖
. Then φk � 0 and ‖φk‖ = 1. Also

∫
R2

+

|∇ψk|2dxdy =
1
2

and
∫

R
|ψk|2dxdy = O

(
1

logk

)
.

Therefore φ2
k =

1
π

logk+O(1) .
Define

Γ = {γ ∈C([0,1];EV ) : γ(0) = 0 and I(γ(1)) < 0}
and mountain pass level as

c = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)). (3.6)

LEMMA 3.5. Let c be defined as in (3.6). Then c < π
2 .

Proof. We prove by contradiction. Suppose c � π
2 . Then we have

sup
t�0

I(tφk) = I(tkφk) � π
2

, (3.7)

where functions φk are given by Lemma 3.4. From equation (3.7), we get

t2k � π. (3.8)

Now as tk is point of maximum, we get d
dt I(tφk)|t=tk = 0. Therefore

t2k ‖φk‖2 =
∫

R
h(tkφk)tkφkdx. (3.9)

Now we estimate the right hand side of equation (3.9) using assumption (h4) as

t2k =
∫

R
h(tkφk)tkφkdx �

∫
B(0, 1

k )
h(tkφk)tkφkdx

� 2
k
h(tkφk(0,0))tkφk(0,0)
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� Ce
1
π (t2k−π)(logk+O(1)) h(tkφk(0,0))tkφk(0,0)

et2k φ2
k (0,0)

. (3.10)

Now since tk is bounded we have that t2k → π . Thus, (3.10) together with assumption
(h4) contradict equation (3.8).

Next we prove Theorem 3.1 using the above Lemmas.

PROOF OF THEOREM 3.1: Using Lemma 3.2, we get a bounded (PS)c sequence.
So there exists w0 ∈ EV such that, up to subsequence, wk ⇀ w0 in EV and wk(x,0) →
w0(x,0) a.e. in R . We first prove that w0 solves the problem, then we show that w0 is
non zero. From Lemma 3.2 and equation (3.2), there exists C > 0 such that∫

R
h(wk(x,0))wk(x,0)dx�C and

∫
R

H(wk(x,0))dx�C.

Now from Lemma 3.3, we get h(wk(·,0)) → h(w0(·,0)) in L1(R) . So for φ ∈C∞
c the

equation (3.1) holds. Hence from the density of C∞
c (R2

+) in EV , w0 is weak solution
of (PE) .

Next we claim that w0 �≡ 0. Suppose not. Then from Lemma 3.3, we get

H(wk(x,0)) → 0 in L1(R) .

Hence from equation (3.2), we get 1
2‖wk‖2 → c as k→∞ which implies ‖wk‖2 � π−ε

for some ε > 0. Let

0 < δ <
ε
π

and q =
π

(1+ δ )(π − ε)
> 1.

Using sh(s) � C(e(1+δ )s2 −1) for some C > 0 large enough and (es −1)q � (esq −1)
for q � 1 and Moser-Trudinger inequality (2.1) we get

∫
R
|h(wk(x,0))wk(x,0)|qdx � C

∫
R
(eq(1+δ )wk(x,0)2 −1)dx

� C
∫

R
(e

q(1+δ )‖wk‖2 w2
k (x,0)

‖wk‖2 −1)dx < ∞.

Therefore by Vitali’s convergence theorem,
∫
R h(wk(x,0))wk(x,0)dx → 0 and from

equation (3.2), we get lim
k
‖wk‖2 = 0, which is a contradiction. Hence w0 is a nontrivial

solution of the problem (PE) . Now by Theorem 5.2 of [7], we get w0 ∈ L∞
loc(R

2
+) .

To show the positivity and regularity of the solution (in case V ∈ C1,γ
loc ), w e take

the cylinder Ca = (−a,a)× (0,∞) for a > 0. Then w0 satisfies the elliptic problem⎧⎨
⎩

−Δv = 0, v � 0 in Ca

v = w0 on {−a,a}× (0,∞),
∂v
∂ν = h(w0)−V(x)w0 on (−a,a)×{0}

Now by taking odd extension to the whole cylinder (−a,a)×R as in [7] and noting
that w0,h(w0)∈ L∞(Ca) we get w0 ∈C2,α(Ca) for some 0 < α < 1. Therefore, u(x) =
w0(x,0) ∈C2(R). The positivity of the solution follows from Lemma 4.2 of [7].
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REMARK 3.2. We remark that Theorem 3.1 holds for the weighted problem

(−Δ)1/2u+u = K(x)h(u) in R

with h(u) ∼ |u|p, p > 1 is super-quadratic near 0 and K(x) satisfies the assumption
introduced in [19]: (K) K ∈ L∞(R)∩C(R) . Further, for any sequence {An} of Borel
sets of R with |An| � R for some R > 0,

lim
r→∞

∫
An

⋂
R\[−r,r]

K(x)dx = 0 uniformly for all n.

In this case the embedding E1 into L1(R;K) is compact for r ∈ (2,∞) . If K ∈ L1(R)
then the embedding is compact for r ∈ [2,∞) .

REMARK 3.3. We remark that the methods and ideas applied in the present sec-
tion can be used to show the existence of two solutions (for small λ ) for the following
problem with convex-concave nonlinearity:

(−Δ)
1
2 u+V(x)u = λuq +h(u),u > 0 in R,

where 0 < q < 1. The harmonic extension w(x,y) of u(x) satisfies the problem:

Δw = 0 in R2
+,

− ∂w
∂y (·,0) = (λuq +h(u)−Vu)(·) in R.

The variational functional Jλ : EV → R is defined as

Jλ (w) =
1
2
‖w‖2− λ

q+1

∫
R
|w(x,0)|q+1dx−

∫
R

H(w(x,0))dx.

Then it is not difficult to show that Jλ satisfies

Jλ (w) �
(

1
2
− λ1− ε

λ1

)
‖w‖2− λ

q+1
‖w‖q+1−C‖w‖p,

for some p > 2. So by taking ‖w‖ small enough we can show that there exists ρ ,R0,λ0

such that for all λ < λ0

Jλ (w) � ρ > 0 on ‖w‖ = R0.

Also, for a fixed φ with compact support in R2
+ , for all small t Jλ (tφ) < 0. So, we

can consider the minimization problem:

min
‖w‖�R0

Jλ (w).

This minimum is clearly negative and so one can follow Lemma 3.5 and Theorem 3.1
to show the existence of a solution wλ . Also, wλ is strict local minimum of Jλ for
λ ∈ (0,λ0) .
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To show the existence of second solution, we can translate the problem to the
origin. In other words, a second solution can be obtained as vλ = wλ + v where v
satisfies{−Δv = 0 , v � 0 in R2

+,
∂v
∂ν = λg(v+wλ )+h(v+wλ)−λg(wλ )−h(wλ )−V(v+wλ )+Vwλ on R,

where g(s) = sq . The corresponding functional J̃λ : EV → R is defined by

J̃t
λ (v) =

1
2
‖v‖2−λ

∫
R

G̃(v(x,0))−
∫

R
H̃(v(x,0)),

where

G̃(v) =
∫ v

0
(g(s+wλ )−g(wλ ))ds and H̃(v) =

∫ v

0
(h(s+wλ )−h(wλ ))ds.

Since wλ is a strict local minimum and lim
t→∞

J̃λ (tv) =−∞ for fixed v , we can fix e∈ EV

such that J̃λ (e) < 0. Let

Γ = {γ : [0,1] → EV : γ continuous on [0,1],γ(0) = 0,γ(1) = e}.
Define the mountain pass level

ρ0 = inf
γ∈Γ

sup
t∈[0,1]

J̃λ (γ(t)).

Now using the growth assumptions on g and h , one can show as in Lemma 3.5 that
there exists a Palais-Smale sequence below the mini-max level ρ0 and the existence of
a positive solution v follows similar arguments as in the proof of Theorem 3.1.

4. Kirchhoff type equation with critical nonlinearity

In this section we study the problem

(Q) m

(∫
R
|(−Δ)

1
4 u|2dx+

∫
R
V (x)u2dx

)(
(−Δ)

1
2 u+V(x)u

)
= f (u) in R,

where V ∈C0,γ
loc (R) with 0 < γ < 1 verifies (V) and m : R+ → R+ and f : R → R are

continuous functions that satisfy the following assumptions:

(m1) There exists m0 > 0 such that m(t) � m0 for all t � 0 and

M(t + s) � M(t)+M(s) for all s, t � 0,

where M(t) =
∫ t
0 m(s)ds , the primitive of m .

(m2) There exists constants a1,a2 > 0 and t0 > 0 such that for some σ ∈ R

m(t) � a1+a2t
σ , for all t � t0.
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(m3) m(t)
t is decreasing for t > 0.

A typical example of a function satisfying (m1)-(m3) is m(t) = m0 + at , where
m0 > 0 and a � 0. Also, from (m3) one can deduce that

1
2
M(t)− 1

4
m(t)t � 0 for all t � 0.

The nonlinearity f satisfies

(f1) f ∈C1(R), f (t) = 0 for t � 0, f (t) > 0 for t > 0 and f satisfies for any ε > 0,

lim
t→∞

f (t)e−(1+ε)t2 = 0. Moreover, lim
t→0

f (t)
t3

= 0,
f (t)
t3

is increasing in (0,∞) and
F(t)
tθ

is increasing in (0,∞) for some θ > 4 and where F(t) =
∫ t
0 f (s)ds .

(f2) There exist positive constants t0,K0 such that

F(t) � K0 f (t), for all t � t0.

(f3) lim
t→∞

t f (t)e−t2 = ∞.

REMARK 4.1. Note that the assumption f (t)/tθ−1 is increasing in (0,∞) with
θ > 4 implies f (t)/t3 is increasing in (0,∞) and F(t)/tθ is increasing in (0,∞) .

REMARK 4.2. Prototype examples of f satisfying (f1)-(f3) are t pet2 with p �
θ −1 and t p(etβ −1)et2 with p � θ −1 and β ∈ (0,2) .

Let w(x,y) be the harmonic extension of u(x) . Then w(x,y) satisfies the problem

Δw = 0 in R2
+

− ∂w
∂y (·,0) = −V(·)w(·,0)+ f (w(·,0))

m(
∫
R |(−Δ)

1
4 u|2dx+

∫
RVu2dx)

on R. (4.1)

From the definition of E 1
2
, we have

E 1
2
(u) =

∫
R
|(−Δ)

1
4 u|2dx =

∫
R2

+

|∇w(x,y)|2dxdy and w(x,0) = u(x).

Therefore, the problem in (4.1) is equivalent to

−m
(
‖w‖2

)
Δw = 0 in R2

+,

m
(
‖w‖2

)(
∂w
∂y (·,0)+V(·)w(·,0)

)
= f (w(·,0)) on R,

(4.2)

where ‖w‖ :=
(∫

R2
+
|∇w|2dx+

∫
RV (x)w(x,0)2dx

) 1
2

.
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DEFINITION 4.1. We say that w ∈ EV is a weak solution of (4.2) if

m
(
‖w‖2

)(∫
R2

+

∇w∇φdxdy+
∫

R
V (x)w(x,0)φ(x,0)dx

)
−

∫
R

f (w(x,0))φ(x,0)dx = 0

holds for all φ ∈ EV .

The variational functional corresponding to (4.2) is defined as J : EV → R as

J(w) =
1
2
M

(
‖w‖2

)
−

∫
R

F(w(x,0))dx.

Then the trace of critical points of the functional J are weak solutions to (Q) . We
prove the following theorem in this section.

THEOREM 4.1. Suppose (m1)-(m3) and (f1)-(f3) are satisfied. Then the problem
(Q) has a positive weak solution.

We prove this theorem by using the mountain pass lemma. In the next few lemmas
we study the mountain pass structure and properties of Palais-Smale sequences to the
functional J . Our proofs closely follow [12].

LEMMA 4.1. Assume that the conditions (m1), (f1)-(f3) hold. Then J satisfies
the mountain-pass geometry around 0 .

Proof. From the assumptions (f1)-(f3), for ε > 0, r > 2, there exists C > 0 such
that

|F(t)| � ε|t|2 +C|t|r(e(1+ε)|t|2 −1), for all t ∈ R.

Therefore, using Sobolev and Hölder inequalities, for w ∈ EV , we get∫
R

F(w(x,0)) dx � ε
∫

R
|w(x,0)|2 +C

∫
R
|w(x,0)|r(e(1+ε)|w(x,0)|2 −1)dx

� εC1‖w‖2 +C‖w(·,0)‖r
L2r(R)

(∫
R

(
e
2(1+ε)‖w(·,0)‖2( w

‖w‖ )2 −1
)
dx

)1/2

� εC1‖w‖2 +C2‖w‖r

for ‖w‖ � R1 , where (1+ ε)1/2R1 �
(

π
2

) 1
2

, thanks to Moser-Trudinger inequality in

(2.1). Hence

J(w) � ‖w‖2
(

m0

2
− εC1−C2‖w‖r−2

)
.

Since r > 2, we can choose ε , 0 < R � R1 small such that J(w) � τ for some τ on
‖w‖ = R .

Now by (f1) and (f3), for some θ̃ > max{2,2(σ + 1)} , there exist C1 , C2 > 0
such that

F(t) � C1t
θ̃ −C2 for all t � 0 (4.3)
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and condition (m2) implies that for all t � t0

M(t) �
{

a0 +a1t +
a2

σ+1 t
σ+1, if σ �= −1,

b0 +a1t +a2 ln t, if σ = −1,
(4.4)

where a0 = M(t0)− a1t0 − a2
σ+1 t

σ+1
0 and b0 = M(t0)− a1t0 − a2 ln t0 . Now, choose a

function φ0 ∈ EV with compact support, φ0 � 0 and ‖φ0‖ = 1. Then from (4.3) and
(4.4), for all t � t0 , we obtain

J(tφ0) �
{

a0
2 + a1

2 t2 + a2
2σ+2 t

2σ+2−C1t θ̃‖φ0‖θ̃
θ̃ +C2, if σ �= −1,

b0
2 + a1

2 t2 + a2
2 ln t−C1t θ̃‖φ0‖θ̃

θ̃ +C2, if σ = −1,

from which we conclude that J(tφ0) → −∞ as t → +∞ since θ̃ > max{2,2σ + 2} .
Therefore, J satisfies the mountain-pass geometry near 0.

LEMMA 4.2. Every Palais-Smale sequence of J is bounded in EV .

Proof. Let {wk} ⊂ EV be a Palais-Smale sequence for J at level c , that is

1
2
M(‖wk‖2)−

∫
R

F(wk(x,0))dx → c (4.5)

and for all φ ∈ EV∣∣∣∣−m
(
‖wk‖2

)(∫
R2

+

∇wk∇φ dxdy+
∫

R
V (x)wk(x,0)φ(x,0)dx

)

−
∫

R
f (wk(x,0))φ(x,0)dx

∣∣∣∣
� εk‖φ‖, (4.6)

where εk → 0 as k → ∞. From (m3), (f1), (4.5) and (4.6), we obtain that there exists
C > 0 independent of k such that

C+ εk‖wk‖ � 1
2
M(‖wk‖2)− 1

θ
m(‖wk‖2)‖wk‖2

−
∫

R

(
F(wk(x,0))− 1

θ
f (wk(x,0))wk(x,0)

)
dx

�
(

1
4
− 1

θ

)
m(‖wk‖2)‖wk‖2.

From this and since θ > 4, we obtain the boundedness of the sequence.

Let Γ =
{

γ ∈C
(
[0,1],EV )

)
: γ(0) = 0, J(γ(1)) < 0

}
and define the mountain-

pass level
c∗ = inf

γ∈Γ
max
t∈[0,1]

J(γ(t)). (4.7)

Then we have,
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LEMMA 4.3. Let c∗ be defined as in (4.7). Then c∗ <
1
2
M(π) .

Proof. Let φk be the sequence of Moser functions as in Lemma 3.4. Assume by
contradiction that c∗ � 1

2M(π) . Then for each k , there exists tk such that

sup
t>0

J(tφk) = J(tkφk) =
1
2
M(‖tkφk‖2)−

∫
R

F(tkφk(x,0))dx � 1
2
M(π). (4.8)

From (4.8), we see that tk is a bounded sequence since J(tkφk) →−∞ as tk → ∞. Also
using the fact that M is monotone increasing and F(tkφk(x,0)) � 0 in (4.8), we obtain

t2k � π . (4.9)

Now since tk is a point of maximum for the one dimensional map t 	→ J(tφk), we have
d
dt J(tφk)|t=tk = 0. From this it follows that

m(t2k )t2k =m(t2k ‖φk‖2)t2k ‖φk‖2 =
∫

R
f (tkφk(x,0))tkφk(x,0)dx (4.10)

�
∫ 1

k

− 1
k

f (tkφk(x,0))tkφk(x,0)dx

=
2
k
tkφk(0,0) f (tkφk(0,0)). (4.11)

Then from the above inequality and (4.9), it follows that t2k → π . Now as in Lemma
3.4, (f3) and (4.10) give the required contradiction. Hence c∗ < 1

2M(π) .
Now we have the following version of Lions’ Lemma. The proof here is an adap-

tation of Lemma 2.3 of [29].

LEMMA 4.4. Let {wk} be a sequence in EV with ‖wk‖= 1 and wk ⇀ w0 weakly
in EV . Then for any p such that 1 < p < 1

1−‖w0‖2 , we have

sup
k

∫
R

(
eα p(wk(x,0))2 −1

)
dx < ∞, for all 0 < α < π .

Proof. First we note that from the Young inequality, for 1
μ + 1

ν = 1,

es+t −1 � 1
μ

(eμs −1)+
1
ν

(eνt −1). (4.12)

Now using again the Young inequality w2
k � (1+ ε)(wk −w0)2 +C(ε)w2

0 and (4.12),
we get

eα pw2
k −1 � e

α p

(
(1+ε)(wk−w0)2+C(ε)w2

0

)
−1
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� 1
μ

(
e

α pμ
(

(1+ε)(wk−w0)2
)
−1

)
+

1
ν

(
e

α pν
(

C(ε)w2
0

)
−1

)
.

Now using the fact that ‖wk −w0‖2 = 1−‖w0‖2 +ok(1) , we get

α pμ
(
(1+ ε)(wk −w0)2

)
=

(
α pμ(1+ ε)(1−‖w0‖2 +ok(1))

)(
(wk −w0)
‖wk −w0‖

)2

.

Hence for any 1 < p < 1
1−‖w0‖2 , and ε > 0 small enough and μ > 1 close to 1, we

have that
α pμ(1+ ε)(1−‖w0‖2) < π

and the proof follows from (2.1) and Lemma 2.1.
From the fact that F(t)

t4
is increasing (since θ � 4), we deduce easily the following

lemma.

LEMMA 4.5. Let condition (f1) holds. Then, s f (s)−4F(s) is increasing for s �
0 . In particular s f (s)−4F(s) � 0 for all s � 0 .

Now we define the Nehari manifold associated to the functional J , as

N := {0 �≡ w ∈ EV : 〈J′(w),w〉 = 0}
and let b := inf

w∈N
J(w) . Then we need the following Lemma that compare c∗ and b .

LEMMA 4.6. c∗ � b.

Proof. Let w ∈ N , define h : (0,+∞) → R by h(t) = J(tw) . Then

h′(t) = 〈J′(tw),w〉 = m(t2‖w‖2)t‖w‖2−
∫

R
f (tw)w dx for all t > 0.

Since 〈J′(w),w〉 = 0, we have

h′(t) = ‖w‖4t3
(

m(t2‖w‖2)
t2‖w‖2 − m(‖w‖2)

‖w‖2

)
+ t3

∫
R

(
f (w)
w3 − f (tw)

(tw)3

)
w4dx.

From (m3) and (f1) , we get h′(1) = 0, h′(t) � 0 for 0 < t < 1 and h′(t) < 0 for t > 1.
Hence J(w) = max

t�0
J(tw) . Now define g : [0,1] → EV as g(t) = (t0w)t , where t0 is such that

J(t0w) < 0. We have g ∈ Γ and therefore

c∗ � max
t∈[0,1]

J(g(t)) � max
t�0

J(tw) = J(w).

Since w ∈ N is arbitrary, c∗ � b and the proof is complete. �

PROOF OF THEOREM 4.1: Let {wk} ∈EV be a Palais-Smale sequence of J at level c∗ > 0.
That is J(wk) → c∗ and J′(wk) → 0. Then by Lemma 4.2, there exists w0 ∈ EV such that
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wk ⇀ w0 weakly in EV . Note that under assumptions (m1)-(m3) and (f1)-(f3), a compactness
result similar to Lemma 3.3 holds, that is

f (wk(·,0)) → f (w0(·,0)) in L1
loc(R) and F(wk(·,0)) → F(w0(·,0)) in L1(R).

Now we claim that w0 is the required positive solution. It is not difficult to see that w0 �≡ 0.
Indeed, if w0 ≡ 0. Then

∫
R F(wk(x,0))dx → 0 and hence

1
2
M(‖wk‖2) → c∗ <

1
2
M(π).

Therefore, there exists β such that ‖wk‖2 < β < π for all k large. So we can find q > 1 and
close to 1 so that q‖wk‖2 < π. Now it is easy to show that

∫
R f (wk(x,0))wk(x,0)dx → 0. Hence

ok(1) = 〈J′(wk),wk〉 = m(‖wk‖2)‖wk‖2 −
∫

R
f (wk(x,0))wk(x,0)dx = m(‖wk‖2)‖wk‖2 +ok(1).

That is, ‖wk‖→ 0 and J(wk) → 0 which provides a contradiction.
To show the positivity of the solution, we see that ‖wk‖ → ρ0 > 0 (up to a subsequence).

So J′(wk) → 0 implies that for all φ ∈ EV , we have

m(ρ2
0 )

(∫
R2

+

∇w0∇φdxdy+
∫

R
V (x)w0(x,0)φ(x,0)dx

)
−

∫
R

f (w0(x,0))φ(x,0)dx = 0.

That is u0(x) = w0(x,0) satisfies the equation

(−Δ)
1
2 u0 +Vu0 =

1

m(ρ2
0 )

f (u0) in R.

Using the growth condition in (f1) of f and Trudinger-Moser inequality, we get f (u0)∈ Lp
loc(R)

for all 1 < p < ∞ . Therefore by regularity result in proposition 3.1, page 21 in [7], u0 ∈C1,γ
loc(R)

and hence by strong maximum principle (see Lemma 4.2 of [7]), we get u0 > 0 in R .

Claim 1: m(‖w0‖2)‖w0‖2 �
∫

R
f (w0(x,0))w0(x,0)dx .

Proof. The proof follows ideas in Lemma 5.1 of [12]. For completeness, we give the de-
tails here. Suppose by contradiction that m(‖w0‖2)‖w0‖2 <

∫
R f (w0(x,0))w0(x,0)dx . That is

〈J′(w0),w0〉 < 0. Using (f1) and the Sobolev imbedding, we can see that 〈J′(tw0),w0〉 > 0 for
t > 0 sufficiently small. Thus there exists σ ∈ (0,1) such that 〈J′(σw0),w0〉 = 0. That is
σw0 ∈ N . Thus according to Lemma 4.5, Lemma 4.6 and (m3),

c∗ � b � J(σw0) = J(σw0)− 1
4
〈J′(σw0),σw0〉

=
M(‖σw0‖2)

2
− m(‖σu0‖2)‖σu0‖2

4
+

∫
R

( f (σw0)σw0−4F(σw0))
4

<
1
2
M(‖w0‖2)− 1

4
m(‖w0‖2)‖w0‖2 +

1
4

∫
R
( f (u0)u0 −4F(u0)).

By the lower semicontinuity of the norm and the Fatou’s Lemma, we get

c∗ < liminf
k→∞

1
2

(
M(‖wk‖2)− 1

2
m(‖wk‖2)‖wk‖2

)
+ liminf

k→∞

1
4

∫
R

(
f (wk)uk −4F(wk)

)
dx
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� lim
k→∞

(
J(wk)−

1
4
〈J′(wk),wk〉

)
= c∗

which is a contradiction and the Claim 1 is proved.

Claim 2: J(w0) = c∗ .

Proof. Using
∫
R F(wk(x,0)) →

∫
R F(w0(x,0)) as k → ∞ and the lower semicontinuity of

the norm we have J(w0) � c∗ . We are going to show that the case J(w0) < c∗ can not occur.
Indeed, if J(w0) < c∗ then ‖w0‖2 < ρ2

0 . Moreover,

1
2
M(ρ2

0 ) = lim
k→∞

1
2
M(‖wk‖2) = c∗ +

∫
R

F(w0)dx (4.13)

which implies

ρ2
0 = M−1(2c∗ +2

∫
R

F(w0)dx).

Next defining vk = wk
‖wk‖ and v0 = w0

ρ0
, we have vk ⇀ v0 in EV and ‖v0‖ < 1.

On the other hand, by Claim 1 and Lemma 4.5, we have

J(w0) � M(‖w0‖2)
2

− m(‖w0‖2)‖w0‖2

4
+

∫
R

( f (w0)w0 −4F(w0))
4

� 0.

Using this together with Lemma 4.3 and the equality: 2(c∗ − J(w0)) = M(ρ2
0 )−M(‖w0‖2) , we

get M(ρ2
0 ) � 2c∗ +M(‖w0‖2) < M(π)+M(‖w0‖2) . Therefore by (m1)

ρ2
0 < M−1

(
M(π)+M(‖w0‖2)

)
� π +‖w0‖2. (4.14)

Since ρ2
0 (1−‖v0‖2) = ρ2

0 −‖w0‖2 , from (4.14) it follows that ρ2
0 (1−‖v0‖2) < π. Thus, there

exists β > 0 such that

‖wk‖2 < β <
π

1−‖v0‖2 for k large.

We can choose q > 1 close to 1 such that q‖wk‖2 � β < π
1−‖v0‖2 and using Lemma 4.4, we

conclude that for k large∫
R

(
eq|wk(x,0)|2 −1

)
dx �

∫
R

(
eβ |vk(x,0)|2 −1

)
�C.

Now by standard calculations, using Hölder’s inequality and weak convergence of {wk} to
w0 , we get

∫
R f (wk(x,0))(wk(x,0)−w0(x,0))dx → 0 as k → ∞ . Since 〈J′(wk),wk −w0〉 → 0,

it follows that
m(‖wk‖2)

∫
R2

+

∇wk(∇wk −∇w0) → 0.

Now by weak convergence of wk and m(t) > 0, we get wk →w0 strongly in EV and J(w0) = c∗ .
This ends the proof of Claim 2.

Now by Claim 2 and (4.13) we can see that M(ρ2
0 ) = M(‖w0‖2) which implies that ρ2

0 =
‖w0‖2 . Hence, w0 is a weak solution of (4.2). �
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