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Abstract. In this paper we derive a system of differential equations on time scales of the Solow
type corresponding to a production function depending on several capitals. A sufficient condition
for the exponential stability of the steady-state solution with positive coordinates is proved. The
obtained results are applied to the case of the Cobb-Douglas type production function.

1. Introduction

The neoclassical Solow growth model, suggested by R. M. Solow [23], [24] and
T. W. Swan [25], has many modifications and a great number of papers and books
concerning this model have been published also recently (see e. g. [2], [8], [9], [10],
[11], [12], [13], [30]). The classical Solow models use to be described by differential
or difference equations. So far all dynamic processes were regarded either as solely
continuous or solely discrete. These two dynamic theories were unified by S. Hilger
in 1988 in his Ph.D thesis [15], published later in [16], [17]. Here so called calculus
on time scales is developed. Some elements of time scale calculus and the theory of
differential equations formulated in the framework of this calculus is given in Section 2.
For more details see [1], [3], [4].

The basic notion of the calculus on time scales is the derivative of a function on
a time scale T, which is an arbitrary closed subset of the set R of real numbers. The
special cases of this set are the set of real numbers, the set Z of integers, the set N of
natural numbers or the Cantor set C, very well-known also from the chaos theory. In
the papers [5], [7] and in the recently published paper [6] (see also [14]) Solow models
on time scales with one capital are studied. In this paper we study a Solow model
with several capitals. The approach used in the papers [5] and [6] is convenient for the
multi-capital model and we are using it in this paper.

In this paper we derive a system of differential equations on time scales of the
Solow type corresponding to a production function depending on several capitals. A
sufficient condition for the exponential stability of the steady-state solution with pos-
itive coordinates is proved. The obtained results are applied to the case of the Cobb-
Douglas type production function depending on several capitals. We were motivated by
the papers [28], [29], where Solow growth models with several capitals are discussed
and by the paper [20], where a Solow growth model with a human capital is studied.
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2. Solow multi-capital model on time scales

In Section 2 of the paper [7] some basic definitions and results concerning the
time scales analysis and the theory of differential equations on time scales are given. We
refer the readers to this paper and also to the books [3], [4] [21] for a deeper introduction
to these theories. Let us recall some notions and results necessary for the formulation
of the obtained results and their proofs. We use the notation T for the time scale which
is defined as an arbitrary nonempty closed subset of real numbers R. It is assumed
that the topology on T is induced by the standard topology on R. The forward and
backward jump operators σ ,ρ : T → T are defined by

σ(t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t} (1)

(supplemented by inf /0 = supT and sup /0 = infT).
A point t ∈ T is called right-scattered, right-dense, left-scattered, left-dense, if

σ(t) > t , σ(t) = t , ρ(t) < t , ρ(t) = t holds, respectively. The points that are right-
scattered and left-scattered at the same time are called isolated. The function μ : T→R ,
μ(t) = σ(t)− t is called the forward graininess function of the time scale T .

DEFINITION 1. We say that a function f : T → R is Δ-differentiable at t ∈ Tk

provided

f Δ(t) := lim
s→t

f (σ(t))− f (s)
σ(t)− s

, where s → t, s ∈ T�{σ(t)}

exists. The value f Δ(t) is called the Δ-derivative of the function f at the point t . The
function f is called Δ-differentiable on T if f Δ(t) exists for all t ∈ T .

LEMMA 1. Assume f ,g : T → R are Δ-differentiable functions and t ∈ T . Then
the following assertions hold:

(1) f (σ(t)) = f (t)+ μ(t) f Δ(t);

(2) If α,β ∈ R, then α f + βg : T → R is Δ-differentiable at t ∈ T with

(α f + βg)Δ(t) = α f Δ(t)+ βgΔ(t);

(3) ( f .g) : T → R is Δ-differentiable at t ∈ T with

( f .g)Δ(t) = f Δ(t)g(t)+d(σ(t))gΔ(t) = f (t)gΔ(t)+ f Δ(t)g(σ(t));

(4) If g(t)g(σ(t)) �= 0, then f
g is Δ-differentiable at t and

(
f
g

)Δ
(t) =

f Δ(t)g(t)− f (t)gΔ(t)
g(t)g(σ(t))

.

Throughout this work we use the notation f σ for the function f ◦σ .



Differ. Equ. Appl. 8, No. 3 (2016), 335–348. 337

3. Exponential stability of differential equations on time scales

In this section we recall a definition of the exponential function, exponential sta-
bility of steady-states of differential equations on time scales (see also [3], [4], [19],
[21], [26], [27]) and an exponential stability result, proved in the paper [18]. We will
apply this result in the proof of a stability result for steady-states of our multi-capital
Solow model on time scales.

DEFINITION 2. The function expp(t,t0) , t ∈ T is the solution of the initial value
problem

yΔ = py, y(t0) = 1,

where p is a constant.

DEFINITION 3. We say that a steady-state x of the differential equation

xΔ = f (x), x ∈ D ⊂ R
n, (2)

on a time scale T is exponentially stable if there exist δ > 0, λ > 0, β > 0 such that
if x(t) is a solution a solution of the equation (2) with ‖x(0)− x‖ < δ , then

‖x(t)− x‖ � β exp−λ (t,0)δ .

We also need the following definition.

DEFINITION 4. An n×n matrix-valued function A(t) , t ∈ T , is called regressive
provided I + μ(t)A(t) is invertible for all t ∈ T, where μ(t) is the forward graininess
function on T .

Now we can formulate the Hoffacker-Jackson’s stability theorem (see [18, The-
orem 1.1]).

THEOREM 1. Let T ⊂ R be a time scale with T+ := T∩ [0,∞) unbounded and
μ∗ := limsupt→∞ μ(t) < ∞ . Let f ∈ C1(D,Rn) and x ∈ D be a steady-state of the

differential equation (2). Assume that the Jacobi matrix A = ∂ f (x)
∂x is regressive and

having eigenvalues all within the Hilger imaginary circle

Iμ∗ :=
{

z ∈Cμ∗ :
∣∣z+

1
μ∗
∣∣= 1

μ∗
}

,

if μ∗ �= 0, where Cμ∗ = {z ∈ C : z �= − 1
μ∗ } is the Hilger complex plane and I0 =

{z1 + iz2 ∈ C : z1 < 0} , if μ∗ = 0 . Then the steady-state x is exponentially stable.
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4. Multi-capital model of Solow type

Now we introduce a general Solow multi-capital growth model defined by the
following production function, dynamic equations for capitals, dynamic equations for
a human capital, dynamic equation for a technological progress and dynamic equation
for a labor:

1. Production function

Y = f (K1,K2, . . . ,Km,H,AL), (3)

with L being employment, Ki , i∈ {1,2, . . . ,m} capital of type i,H is a human capital A
and is a variable which can be interpreted as an indicator of the state of the technology,
management or government efficiency etc. The production function f is assumed to
satisfy the condition:

f (λu1,λu2, . . . ,λum,λv,λw) = λ f (u1,u2, . . . ,um,v,w) (4)

for all λ ∈ R+ .

2. Dynamic equations for capitals:

KΔ
i (t) = si(t)Y (t)− δi(t)Ki(t), i = 1,2, . . . ,m, 0 < δi(t) � 1, t ∈ T, (5)

where si(t)Y (t) with si(t) ∈ (0,1) , is a part of the production Y (t) invested in the i-th
capital component and the function δi(t) represents the rate of the depreciation of the
i-th capital.

3. Dynamic Equation for human capital:

HΔ(t) = sH(t)Y (t)− δ (t)H(t), 0 < δ (t) � 1, t ∈ T, (6)

where sH(t)Y (t) with sH(t) ∈ (0,1) , is a part of Y (t) invested in the human capital and
δ (t) is the rate of the depreciation of the human capital.

4. Dynamic equation for technological progress:

AΔ(t) = g(t)A(t), 0 < g(t) � 1, t ∈ T; (7)

5. Dynamic equation for labor:

LΔ(t) = n(t)L(t), 0 < n(t) � 1, t ∈ T. (8)

We will use the notations:

ki(t) =
Ki(t)

A(t)L(t)
, i = 1,2, . . . ,m, h(t) =

H(t)
A(t)L(t)

. (9)
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THEOREM 2. Let the functions g,n : T → R be regressive and assume (3))–((8).
If ki(t) , i = 1,2, . . . ,m and h are defined as in (9), then

kΔ
i (t) =

si

(1+ μ(t)g(t))(1+ μ(t)n(t))
Φ(k1(t),k2(t), . . . ,km(t),h(t))

− δ (t)+n(t)+g(t)(1+ μ(t)n(t))
(1+ μ(t)g(t))(1+ μ(t)n(t))

ki(t), i = 1,2, . . . ,m
(10)

hΔ(t) =
sH

(1+ μ(t)g(t))(1+ μ(t)n(t))
Φ(k1(t),k2(t), . . . ,km(t),h(t))

− δ (t)+n(t)+g(t)(1+ μ(t)n(t))
(1+ μ(t)g(t))(1+ μ(t)n(t))

h(t),
(11)

where Φ(k1,k2, . . . ,km,h)) = f (k1,k2, . . . ,km,h,1) , t ∈ T .

Proof. For the simplicity we omit the argument t . Using Lemma 1 we obtain:

kΔ
i =

(
Ki

AL

)Δ
=

KΔ
i AL−Ki[AΔLσ +ALΔ]

ALAσ Lσ

=
Ki

Aσ Lσ − KiAΔLσ

ALAσLσ − KiALΔ

ALAσ Lσ

=
KΔ

i

Aσ Lσ − Kig(1+ μL)AL
AL(1+ μg)(1+ μn)

− KiAnL
AL(1+ μg)(1+ μn)AL

=
KΔ

i

Aσ Lσ − g
1+ μg

ki − n
(1+ μg)(1+ μn)

ki

=
si f (K1,K2, . . . ,Km,H,AL)− δiKi

(1+ μg)(1+ μn)AL
− g

1+ μg
ki − n

(1+ μg)(1+ μn)
ki

=
si

(1+ μg)(1+ μn)
f (k1,k2, . . . ,km,h,1)−

(
δi +n

(1+ μg)(1+ μn)
+

g
1+ μg

)
ki

=
si

(1+ μg)(1+ μn)
Φ(k1,k2, . . . ,km,h)− δi +n+g(t)(1+ μn)

(1+ μg)(1+ μn)
ki,

i. e., we have obtained the equation (10). The proof of the formula (11) is analogous.
The right-hand side of the system (10), (11) is continuously differentiable and one

can show using the Lagrange mean value theorem that it is locally Lipschitz and by [4,
Theorem 8.2] and also by the result from [26] the local existence and uniqueness of
solutions of the initial value problem for this system is guaranteed.

5. Stability of steady-state solutions

In this section we assume that the system (10), (11) is autonomous, i. e., g(t)≡ g ,
n(t) ≡ n , si(t) ≡ si , δi(t) ≡ δi , i = 1,2, . . . ,m , δH(t) ≡ δH , δ (t) ≡ δ , μ(t) ≡ μ are
constant. Let us write this system in the form

kΔ
i (t) = si(μ)Φ(k1(t),k2(t), . . . ,km(t),h(t))−ψi(μ)ki(t), i = 1,2, . . . ,m (12)
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hΔ(t) = sH(μ)Φ(k1(t),k2(t), . . . ,km(t),h(t))−ψH(μ)h(t), (13)

where

si(μ) =
si

(1+ μg)(1+ μn)
, sH(μ) =

sH

(1+ μg)(1+ μn)
,

ψi(μ) =
δi +n+g(1+ μn)
(1+ μg)(1+ μn)

,

ψH(μ) =
δ +n+g(1+ μn)
(1+ μg)(1+ μn)

.

Let (k∗,h∗) = (k∗1,k
∗
2, . . . ,k

∗
m,h∗) be a steady-state or equilibrium, respectively, of

the system (12), (13) with k∗1 > 0, k∗2 > 0, . . . , k∗m > 0 , h∗ > 0 and μ(t)≡ μ∗ , g(t)≡ g ,
n(t) ≡ n be constant. The Jacobi matrix of the right-hand side of the system (12), (13)
at the steady-state (k∗,h∗) is the matrix A = A ( f ,k∗,h∗,μ∗,g,n) = (Ai j), where

Ai j = si(μ∗)
∂ f (k∗,h∗,1)

∂k j
−ψi(μ∗)δi j, i, j ∈ {1,2, . . .m}, (14)

where δi j = 1, if i = j and δi j = 0, if i �= j ,

Aim+1 = si(μ∗)
∂ f (k∗,h∗,1)

∂h
, i = 1,2, . . . ,m, (15)

Am+1 j = sH(μ∗)
∂ f (k∗,h∗,1)

∂k j
, j = 1,2, . . . ,m, (16)

Am+1m+1 = sH(μ∗)
∂ f (k∗,h∗,1)

∂h
−ψH(μ). (17)

Since the graininess function μ(t) ≡ μ∗ , the system (12), (13) is autonomous
and we can apply the Hoffacker-Jackson’s stability theorem, i.e., Theorem 1. As a
consequence of this theorem we obtain the following theorem.

THEOREM 3. Let f ∈ C1(D,Rn),D ⊂ R+
n is an open set,where R+ = [0,∞) ,

(k∗,h∗) = (k∗1,k
∗
2, . . . ,k

∗
m,h∗) ∈ D be a steady-state or equilibrium, respectively, of the

system (12), (13) with k∗1 > 0, k∗2 > 0, . . . , k∗m > 0 , h∗ > 0 and μ(t) ≡ μ∗ , g(t) ≡ g,
n(t) ≡ n be constant. Let A = A ( f ,k∗,h∗,μ ,g,n) = (Ai j) be the matrix defined by
(14), (15), (16), (17) and let this matrix is regressive. Assume that the matrix A has
eigenvalues all within the Hilger imaginary circle Iμ∗ := {z ∈ Cμ∗ :

∣∣z + 1
μ∗
∣∣ = 1

μ∗ } ,

if μ∗ �= 0 , where Cμ∗ = {z ∈ C : z �= − 1
μ∗ } is the Hilger complex plane and I0 =

{z1 + iz2 ∈C : z1 < 0} , if μ∗ = 0 . Then the steady-state (k∗,h∗) is exponentially stable.

REMARK 1. If ‖A ‖ < 1, then the matrix A is regressive and (I + A )−1 =
∑∞

i=0(−1)iA .
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6. Solow multi-capital model on time scales
with Cobb-Douglas type production function

In this section we apply Theorem 2 to the case of the Cobb-Douglas type produc-
tion function with multi-capital, considered in the papers [28] and [29]. This function
has the form

Y =
(
AL
)1−∑m

i=1 αi
m

∏
i=1

Kαi
i ,

m

∑
i=1

αi < 1, αi ∈ (0,1], i = 1,2, . . . ,m, (18)

with L being employment, Ki is capital of type i , as a government, human or private
capital, A is a variable representing other, currently unspecified, economic “environ-
ment” conditions that may be important to the production process, e. g., a technological
progress. The constants αi reflect the respective shares of the production factor in total
output. This production function leads to the system of differential equations

dki

d t
= siy− (n+g+ δi)ki, i = 1,2, . . . ,m, (19)

where ki = ki(t) = Ki(t)
A(t)L(t) , y = y(t) = Y (t)

A(t)L(t) . Obviously

y(t) = k1(t)α1k2(t)α2 . . .km(t)αm . (20)

The formula

k̃i =
[(

si

n+g+ δi

)1−∑m
j=1, j �=i αi m

∏
r=1,r �=i

(
sr

n+g+ δr

)αr
] 1

1−∑m
j=1 α j

. (21)

for the steady-state values of this system is presented in [29]. Its proof is given in [28].
If this steady-state is asymptotically stable then we can see from this formula that

lim
t→∞

y(t) = lim
t→∞

k1(t)α1k2(t)α2 . . .km(t)αm = k̃α1
1 k̃α2

2 . . . k̃αm
m .

EXAMPLE 1. Let Y = KαHβ (AL)1−α−β . We have m = 1, K1 = K , k1 = k ,
k2 = h , α1 = α , α2 = β . We assume δ1 = δ2 = δ and denote s1 = sK , s2 = sK . Then
the system (19) has the form

dk
d t

= sKkαhβ − [n+g+ δ ]k (22)

dh
d t

= sHkαhβ − [n+g+ δ ]h. (23)

From the formula (21) it follows the formulae for the steady-state (k∗,h∗) of the system
(22), (23):

k∗ =
(

sK

n+g+ δ

) 1−β
1−α−β

(
sH

n+g+ δ

) β
1−α−β

(24)
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h∗ =
(

sH

n+g+ δ

) 1−α
1−α−β

(
sK

n+g+ δ

) α
1−α−β

. (25)

If F = (F1,F2) is the right-hand side of the system (22), (23), then the Jacobi matrix
J(k∗,h∗)F of F at (k∗,h∗) has the form

J(k∗,h∗)F =

(
sKαkα−1∗ hβ

∗ − [n+g+ δ ] sKβkα∗ hβ−1
∗

sHαkα−1
α hβ

∗ sHβkα∗ hβ−1
∗ − [n+g+ δ ]

)
.

The formulae (24), (25) yield

αkα−1
∗ hβ

∗ =
n+g+ δ

sK
, βkα

∗ hβ−1
∗ =

n+g+ δ
sH

and thus we have

J(k∗,h∗)F = [n+g+ δ ]
(

α −1 − sK
sH

β
− sH

sK
α β −1

)
.

The eigenvalues of the matrix J(k∗,h∗)F are γ1 = [n + g + δ ]λ1 , γ2 = [n + g + δ ]λ2 ,
where λ1,λ2 are roots of the polynomial

P(λ ) = λ 2− [α + β −2]λ +[1−α −β ].

Since
D = [α + β −2]2−4[1−α−β ] = (α + β )2,

λ1 = α + β −1 < 0, λ2 = −1

and thus

γ1 = [n+g+ δ ](α + β −1) < 0, γ2 = −[n+g+ δ ] < 0. (26)

This means that the steady-state (k∗,h∗) is the stable node (see, e. g. [22]).

Now let us study this model in the framework of mathematical analysis on time
scales.

Y = Kα1
1 Kα2

2 . . .Kαm
m Hβ(AL

)1−β−∑m
i=1 αi , (27)

where Ki is capital of type i , H is a human capital and A is as in the above mentioned
model on R . We consider the human capital separately, because authors of many papers
are studying the production function with one capital K and a human capital H . Then
the Solow system (10), (11) has the form

kΔ
i (t) =

si

(1+ μ(t)g(t))(1+ μ(t)n(t))
kα(t)h(t)β

− δi(t)+n(t)+g(t)(1+ μ(t)n(t))
(1+ μ(t)g(t))(1+ μ(t)n(t))

ki(t), (28)

i = 1,2, . . . ,m ,
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hΔ(t) =
sH

(1+ μ(t)g(t))(1+ μ(t)n(t))
kα (t)h(t)β

− δ (t)+n(t)+g(t)(1+ μ(t)n(t))
(1+ μ(t)g(t))(1+ μ(t)n(t))

h(t), (29)

where kα(t) = k1(t)α1k2(t)α2 . . .km(t)αm , k = (k1,k2, . . . ,km) , α = (α1,α2, . . . ,αm) is
a multi-index with the norm |α| = α1 + α2 + . . .+ αm , αi � 0, i = 1,2, . . . ,m .

If μ(t) ≡ μ∗ , we can obtain formulas for steady-state values by using their form
(21) for the Solow system system (19) in the following way. In the formula (21) we
put instead of the coefficients of the system (19) the corresponding coefficients of the
system (28), (29):

m � m+1;

si � si(μ∗) =
si

(1+ μ∗g)(1+ μ∗n)
, i = 1,2, . . . ,m,

sm+1 � sH(μ∗) =
sH

(1+ μ∗g)(1+ μ∗n)
;

ki � ki, i = 1,2, . . . ,m, km+1 � h =
H
AL

;

n+g+ δi � ψi(μ∗) =
n+ δi +g(1+ μ∗n)
(1+ μ∗g)(1+ μ∗n)

, i = 1,2, . . . ,m,

n+g+ δi � ψH(μ∗) =
n+ δ +g(1+ μ∗n)
(1+ μ∗g)(1+ μ∗n)

, i = m+1;

si

n+g+ δi
� si(μ∗)

ψi(μ∗)
=

si

n+ δi +g(1+ μ∗n)
, i = 1,2, . . . ,m,

si

n+g+ δi
� sH

n+ δ +g(1+ μ∗n)
, i = m+1.

Applying the formula (21) we obtain the following formula for the steady-state (k∗,h∗)=
(k∗1,k

∗
2, . . . ,k

∗
m,h∗) of the system (28), (29):

k∗i =
[(

si

n+ δi +g(1+ μ∗n)

)1−∑m+1
j=1, j �=i αi

(30)

×
m+1

∏
r=1,r �=i

(
sr(1+ μ∗g)(1+ μ∗n)
n+ δr +g(1+ μ∗n)

)αr
] 1

1−∑m+1
j=1 α j , i = 1,2, · · · ,m,

h∗ =
[(

si

n+ δi +g(1+ μ∗n)

)(1−∑m+1
j=1, j �=i αi

)
(31)

×
m+1

∏
r=1,r �=i

(
sr

n+ δr +g(1+ μ∗n)

)αr
] 1

1−∑m+1
j=1 α j ,

sm+1 = sH , δm+1 = δ , αm+1 = β , km+1 = h.
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The Jacobi-matrix ACOB = (Ai j) of the derivative of the right-hand side the system
(30), (31) has the coefficients of the form:

Ai j = si(μ∗)α j k̂
∗α j h∗−ψiδi j, i, j ∈ {1,2, . . .m}, (32)

where k̂∗α j = k∗α1
1 k∗α2

2 · · ·k∗α j−1
j−1 k

∗α j−1
j k

∗α j+1
j+1 · · ·k∗αm

m ,δi j = 1, if i = j and δi j = 0,
if i �= j ,

Am+1 j = sH(μ∗)α j k̂
∗α j h∗, j = 1,2, . . . ,m, (33)

A jm+1 = s jβk∗αhβ−1, j = 1,2, . . . ,m, (34)

Am+1m+1 = sHβk∗αhβ−1−ψH(μ∗). (35)

Now we can formulate the following stability theorem as a consequence of Theorem 3.

THEOREM 4. Let (k∗,h∗) = (k∗1,k
∗
2, . . . ,k

∗
m,h∗) be a steady-state or equilibrium,

respectively, of the system (28), (29) with k∗1 > 0,k∗2 > 0, . . . ,k∗m > 0 , h∗ > 0 and
μ(t) ≡ μ∗ , g(t) ≡ g, n(t) ≡ n be constant. Let ACOB = (Ai j) be the matrix defined
by (32)–(35) and let the matrix ACOB be regressive. Assume that the matrix ACOB has
eigenvalues all within the Hilger imaginary circle Iμ∗ := {z ∈ Cμ∗ :

∣∣z + 1
μ∗
∣∣ = 1

μ∗ } ,

if μ∗ �= 0 , where Cμ∗ = {z ∈ C : z �= − 1
μ∗ } is the Hilger complex plane and I0 =

{z1 + iz2 ∈ C : z1 < 0} , if μ∗ = 0 . Then the steady-state solution (k∗,h∗) is exponen-
tially stable.

For the steady-state (k∗,h∗) satisfying the conditions of this theorem we have

lim
t→∞

y(t) = lim
t→∞

k1(t)α1k2(t)α2 · · ·km(t)αm = k∗α1
1 k∗α2

2 · · ·k∗αm
m ,

where

y(t) =
Y (t)

A(t)L(t)
= k1(t)α1k2(t)α2 · · ·km(t)αm .

From this value and the formulas (30), (31) one can see how it depends on the rates si ,
i ∈ {1,2, . . . ,m},sH of the production invested in the physical capitals and the human
capital, respectively. Of course, this value depends also on the coefficients n,g of the
dynamic equation for the labor L and the technological progress A , respectively, and on
depreciation factors δi , i ∈ {1,2, . . . ,m} (see the dynamic equations (5) for the capitals
Ki ) and on the forward graininess μ of the time scale T , which is equal 0, if T = R

– the set of all real numbers, μ = 1, for T = Z – the set of all integers and μ = h
for T = hZ = {hz : z ∈ Z} , where h > 0. In the first case the equations (5)–(8) are
differential and in the case Z and hZ these are difference.

7. Solow model with one physical capital and a human capital

In this section we apply Theorem 4 to the Solow model with the production func-
tion Y = KαHβ (AL)1−α−β . In this case the system (28), (29) has the form

kΔ = sK(μ)kαhβ −ψK(μ)k (36)
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hΔ = sH(μ)kαhβ −ψH(μ)h, (37)

where

sK(μ) =
sK

(1+ μg)(1+ μn)
, ψK(μ) =

δ1 +n+g(1+ μn)
(1+ μg)(1+ μn)

, (38)

sH(μ) =
sH

(1+ μg)(1+ μn)
, ψH(μ) =

δ2 +n+g(1+ μn)
(1+ μg)(1+ μn)

. (39)

Here we have m = 1, K1 = K,α1 = α , s1 = sK . The steady-state of the system (36),
(37) has the coordinates:

k∗ =
(

sK

n+ δ1 +g(1+ μn)

) 1−β
1−α−β

(
sH

n+ δ2 +g(1+ μn)

) β
1−α−β

, (40)

h∗ =
(

sH

n+ δ2 +g(1+ μn)

) 1−α
1−α−β

(
sK

n+ δ1 +g(1+ μn)

) α
1−α−β

. (41)

From (40), (41) it follows that

k∗α−1h∗β =
δ1 +n+g(μ +n)

sK
, k∗αh∗β−1 =

δ2 +n+g(μ +n)
sH

and (38), (39) yield

sK(μ)
sK

=
sH(μ)

sH
=

1
(1+ μg)(1+ μn)

. (42)

Applying the equalities (38), (39) and (42) we obtain that the Jacobi matrix ACOB of
the right-hand side of (36), (37) at the steady-state (k∗,h∗) has the form

ACOB(μ) =
(

sK(μ)αk∗α−1h∗β −ψK(μ) sK(μ)βk∗αh∗β−1

sH(μ)αk∗α−1h∗β sH(μ)βk∗αh∗β−1−ψH(μ)

)

=

⎛
⎝ α(δ1+n+g(μ+n))

(1+μg)(1+μn) −ψK(μ) β (δ1+n+g(μ+n))
(1+μg)(1+μn)

α(δ2+n+g(μ+n))
(1+μg)(1+μn)

β (δ2+n+g(μ+n))
(1+μg)(1+μn) −ψH(μ)

⎞
⎠ .

Now let us consider the case δ1 = δ2 = δ . Then ψK(μ) = ψH(μ) = ψ(μ) and the
matrix ACOB(μ) has the form

ACOB(μ) = ψ(μ)
(

α −1 −β
−α β −1

)
. (43)

The eigenvalues of this matrix are

λ1(μ) = ψ(μ)[α + β −1] =
δ +n+g(μ +n)
(1+ μg)(1+ μn)

[α + β −1],

λ2(μ) = −ψ(μ) = − δ +n+g(μ +n)
(1+ μg)(1+ μn)

.
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If the forward graininess μ(t) = μ �= 0 is constant, then λ1(μ) (λ2(μ)) is within the
Hilger circle Iμ∗ if and only if

∣∣∣1+
δ +n+g(μ +n)
(1+ μg)(1+ μn)

[α + β −1]
∣∣∣< 1 (44)

(∣∣∣1− δ +n+g(μ +n)
(1+ μg)(1+ μn)

∣∣∣< 1
)
. (45)

Since the eigenvalues λ1(μ) , λ2(μ) depend continuously on δ we can formulate
the following theorem for the system with different rates of depreciation which is a
consequence of Theorem 4.

THEOREM 5. Let the conditions (44), (45) be satisfied. Then there exists an ε > 0
such that if δ1 > 0 , δ2 > 0 with |δi − δ | < ε , i = 1,2 , then the equilibrium (k∗,h∗) ,

k∗ =
(

sK

n+ δ1 +g(1+ μn)

) 1−β
1−α−β

(
sH

n+ δ1 +g(1+ μn)

) β
1−α−β

, (46)

h∗ =
(

sH

n+ δ2 +g(1+ μn)

) 1−α
1−α−β

(
sK

n+ δ2 +g(1+ μn)

) α
1−α−β

(47)

of the system (36), (37) is exponentially stable.

If the conditions of this theorem are satisfied then

y∗ = lim
t→∞

y(t) = lim
t→∞

Y (t)
A(t)L(t)

= lim
t→∞

k(t)αh(t)β = k ∗α h∗β ,

where k∗,h∗ are given by the formulas (40), (41). In the special case δ1 = δ2 = δ , we
have

y∗ =
(

sK

n+ δ +g(1+ μn)

) α
1−α−β

(
sH

n+ δ +g(1+ μn)

) β
1−α−β

.

This formula shows how effective is to invest parts sKY (t),sHY (t) of the production
Y (t) in the component of the physical capital and in the component of the human capi-
tal, respectively.
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