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SECOND–ORDER FUNCTIONAL PROBLEMS

WITH A RESONANCE OF DIMENSION ONE

NICKOLAI KOSMATOV AND WEIHUA JIANG

Abstract. We obtain, using the coincidence degree theory, solvability conditions for all possi-
ble resonance scenarios Lu = u′′ = f (t,u,u′) = Nu , with linear functional conditions Biu = 0 ,
i = 1,2 with dimkerL = 1 . Our work generalizes and improves the results of Zhao and Liang
[18] and Cui [3] in several directions. We also construct a meaningful example of a nonlin-
ear functional problem for a pendulum equation which not only satisfies the assumptions of an
existence theorem but also has a closed-form solution.

Mathematics subject classification (2010): 34B10, 34B15.
Keywords and phrases: Carathéodory conditions, coincidence degree theory, functional condition,

pendulum equation, resonance.

RE F ER EN C ES
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