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SECOND-ORDER FUNCTIONAL PROBLEMS
WITH A RESONANCE OF DIMENSION ONE

NICKOLAI KOSMATOV AND WEIHUA JIANG

(Communicated by Lingju Kong)

Abstract. We obtain, using the coincidence degree theory, solvability conditions for all possi-
ble resonance scenarios Lu = u” = f(t,u,u’) = Nu, with linear functional conditions Bju =0,
i=1,2 with dimkerL = 1. Our work generalizes and improves the results of Zhao and Liang
[18] and Cui [3] in several directions. We also construct a meaningful example of a nonlin-
ear functional problem for a pendulum equation which not only satisfies the assumptions of an
existence theorem but also has a closed-form solution.

1. Introduction

Resonant boundary value problems have been studied by a broad range of tech-
niques [1,2,3,4,5,6, 10, 11, 12, 15, 17, 18]. To this day, Mawhin’s coincidence degree
theory [14] continues to plays an important role in this active field. Recently, the atten-
tion has shifted to problems with integral boundary conditions and, more generally, to
problems with linear functional conditions [18] and resonance scenarios [3] that have
been completely overlooked in the past. Notably, some interesting results for systems
of equations have also been obtained in [16] for a resonant problem that does not allow
“uncoupling” in the sense that it cannot be treated as a scalar problem at resonance.
We also mention [13], where a higher-order nonlocal problem at one-dimensional res-
onance was studied by reduction to a first order vector equation.

One of most general studies of a resonant problem for the differential operator
L:C'0,1] — L;[0,1], Lx = x” known to us is done by Zhao and J. Liang [18], where
the authors considered the functional differential problem

x//(t) :f(tvx(t)vx/(t )v re (07 1)7 (L
1(x)=0, Ty(x)=0, 2)

—

where T'y,T; are linear functionals on C'[0,1] satisfying the general resonance con-
dition T’y (#)T2(1) =T (1)T2(¢). (The non-resonant scenario subject to the condition
(A1): Ty (1)T2(1) #T1(1)T2(r) was also studied.) Specifically, the authors investigated
the following resonant cases:
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(A2) Ti(2),T1(1),I2(1) =0, Ia(2) # 03
(A3) Ti(2),T1(1),T2(r) =0, T2(1) # 03
(Ag) T1(1),I5(r),T2(1) =0, I'y (1) # 0;
(As) Ti(r),T2(1),T2(r) =0, Ty (1) # 0;
(Ag) T1(1),T1(2),T5(1),2(r) =0.

The cases (Ay) and (A4) result in kerL = {c¢ : ¢ € R} and (A3) and (As) correspond
to kerL = {ct : ¢ € R}. The case (A¢) describes a resonance with kerL = {cit 4¢3 :
c1,c2 € R}. The cases (Az), (A3), and (Ag) were investigated in full detail.

Although [18] generalizes and extends many results for nonlocal second-order
problems at resonance, it does not contain a complete analysis of (1), (2). To see this,
let a,b,0r € R and a,b # 0 and set, for example, I'1(¢) = ab, T'1(1) = aa, Ta(t) = b,
and Fz(l) =a. Then Fl(l)rz(l) = 1“1(1)1"2(t) with

kerL={c(at—b):c€ R}, dimkerL=1.

This case cannot be derived from the results of [18] pertaining to the cases of (Ay) -
(Ag). In [3], Cui considered such “slanted” kernels, which are also the main motivation
of the present paper. To be exact, [3] studied

K1) = f(t,x(¢),x'(t)), t€(0,1), (3)
1 1
x(0) = A x(s)do(s), x(l):/o x(s)dB(s), 4)
where f € C([0,1] x R%,R); & and B are right continuous on [0, 1), left continuous
at 1 =1, and fol u(s)do(s) and fol u(s)dB(s) are Riemann-Stieltjes integrals. The
resonance condition is K] ks — Kpk3 = 0, where

K‘1=1—/ (I—=n)do(r) K‘g—/ tdo(t

"3:/0 (1-1)dB(1), 1<4=1—/0 1dB (o).

We can interpret T';(x) =0, i = 1,2 in [18], as

x(O)—/le(s)d(x(s):O, x(l)—/olx(s)dﬁ(s)z

respectively. In [18], the authors also interpret I';(«) as a linear combination of the
Riemann-Stiltjes integrals of x and x’ defined in terms of measures of bounded varia-
tion. Subsequently, the authors use these representations to obtain uniqueness theorems
and to compare their results to those of [12]. We do not believe that it is necessary to
rely on such a representation of the functionals I';.

The authors of [18] make unnecessary respective assumptions I';(#2) # 0 and
' (%) # 0 in Theorems 3.2 and 3.3, which yield existence criteria for the respective
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cases (Ay) and (Az). In [3], such artificial conditions were also deemed necessary. In
particular, for (3), (4) it is assumed that

Kg/olt(l—t)doc(t)—l-lq/olt(l—t)dﬁ(t);EO.

Conditions of this type are only needed to ensure that Q : Z — Z is well-defined and in
our work we propose an approach that allows us to bypass this minor technical difficulty
(see (H) below). Thus, we improve the results of [3] and [18] in that respect as well.
In addition, due to the simplicity of our method, it is clearly preferred to that devised in
[4], and can also be used for higher order problems with functional conditions.

Moreover, in many recent papers devoted to the second order problems (see, e.
g., [12, 18]) the following assumption is imposed: There exists a constant My > O,
such that if |u(r)| + |u/(t)| > Mo, t € [0,1], then ONu # 0. It is used to show that
Q) ={uedomL\kerL: Lu=ANu, A € (0,1)} is bounded. A similar comment can
be made about [3]. In the present paper we also show that the boundedness of €21 can
be shown if |u(t)|+ |u'(t)] > My is replaced with just |u(t)| > My or |u'(t)] > My (see
Theorems 4 and 5 below.) In Section 2 we will further discuss the methodology of a
priori estimates in comparison with [3, 18].

We consider the differential equation

W'(t) = f(t,u(t), (1)), 1€(0,1), (5)
together with the functional conditions
Bi(u) = By(u) = 0. (6)
We assume the following:

(B1) The linear functionals Bj,B; : X — R satisfy By (t) = ab, Bi(1) = aa, By(t) =
b, By(1) = a, where o,a,b € R.

(B2) The functionals By, B, : X — R are continuous with the respective norms f;, 32,
that is, |B;(u)| < Billu|/x -

Here X = C'[0, 1] with the norm ||u||x = max{||ul|o, ||«|]|o}, where |- ||o is the max-
norm, and Z = L;[0,1] with the usual norm || - [|; .
Let us assume, without loss of generality, that

(H) the function & € Z satisfies
t
(Bi — aB>) (/ (t—s)h(s)ds) —1.
0

The following lemma shows that the assumption (H ) is merely a matter of choice of
such a function.
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LEMMA 1. Assume that (By) and (By) hold. Then there exists h € Z such that
t
wy—a&)Q/U—sM@ﬁh)#O
0

Proof. For convenience, set B= B| — 0B, . Assume, by way of contradiction, that

B(ga—@m@m>=o

for all h € Z. In particular, for every integer n > 0,

(n+1)(n+2)B (/Ot(t —s)s"ds) =B("*?) =0.

By (B»), B(1) =B(t) = 0. Thus, B(p) = 0 for every polynomial p.
Since B # 0 on all of X, there exists vo € X such that B(vy) # 0. Choose a
sequence of polynomials {p,,} such that |[vo — pu||x < L. Then

1
0% [B(vo)| = [B(vo—pm) +B(pm)| = B(vo— pum)| <[Blll[vo— pumllx < (B1 +ex|B2) —
for all m € N, which is a contradiction. [

Define the mapping L:domL C X — Z by

"
Lu=u",

where
domL={ueX:u" €ZandB(u)=B,(u)=0}.
We assume that the function f satisfies the Carathéodory conditions and define N :
X —Z by
Nu(t) = f(t,u(t),u'(1)).
The functional differential problem (5), (6) is now equivalent to the abstract equation
Lu=Nu.

DEFINITION 1. Let X and Z be real normed spaces. A linear mapping L:domL C
X — Z is called a Fredholm mapping if kerL has a finite dimension and ImL is closed
and has a finite co-dimension.

If L is a Fredholm mapping, its (Fredholm) index is the integer Ind L = dim ker L —
codimImL.

Define continuous projectors P: X — X and Q : Z — Z so that
ImP =kerL, kerQ=1ImL, X =kerLdkerP, Z=ImL®ImQ.
For a Fredholm mapping L of index zero, the inverse of the map
L|domLrkerp : domLNkerP — ImL

is denoted by Kp : ImL — domLNkerP. The generalized inverse of L denoted by
Kpo : Z — domLNkerP is defined by Kpp = Kp(I — Q).
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DEFINITION 2. Let L:domL C X — Z be a Fredholm mapping, E be a metric
space, and N : E — Z be a mapping. We say that N is L-compacton E if ON:E — Z
and KppN : E — X are continuous and compact on E. In addition, we say, that N is
L-completely continuous if it is L-compact on every bounded E C X .

The following is the Kolmogorov-Riesz criterion (see, for example, [7]):

THEOREM 1. For 1 < p <eo, E C L,[0,1] is compact if
(a) E is bounded;
(b) the limit
1
lim [ |g(s+¢€)—g(s)|Pds=0
e—0.J0
is uniform in E.

The compactness of KpgN : E — X and ON : E — Z will follow from the Arzela-
Ascoli theorem and the Kolmogorov-Riesz criterion, respectively. However, we will
omit the corresponding details as straightforward.

The equation Lu = Nu will be shown to have a solution by means of Theorem
IV.13 [14]:

THEOREM 2. Let Q C X be open and bounded, L be a Fredholm mapping of
index zero and N be L-compact on Q. Assume that the following conditions are satis-

fied:
(i) Lu+# ANu forevery (u,A) € ((domL\kerL)NdQ) x (0,1);
(ii) Nu ¢ ImL for every u € kerLNJQ;

(iii) deg(ONlierinoq,NkerL,0) # 0, with Q : Z — Z a continuous projector such
that kerQ =ImL.

Then the equation Lu = Nu has at least one solution in domLN Q.

REMARK 1. The condition (B;) incorporates the cases I'j(t) = I'2(tr) =0 and
I'1 (1) =T»(1) = 0 considered in [18]. In this form, it is needed for Theorem 3. Fur-
thermore, in order to prove Theorems 4 and 5 we will assume, in addition, that a # 0
and IE’ ¢ (0,1), respectively.

We will demonstrate now that (B;) is a critical condition, that is, the functional
problem (5), (6) is at resonance and, moreover, dim kerL = 1.

LEMMA 2. Let (By) with > +b* #0, (By) and (H) hold. Then the mapping
L:domL C X — Z is a Fredholm mapping of index zero.
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Proof. If u € domL and Lu =0, we have u = ¢t + ¢, and
Bi(cit+¢3) = c1B1(t) + c2B1(1) = abey + oacy = 0,

By(cit+c¢3) = c1Ba(t) + 2By (1) = bey +acp, = 0.

Therefore,
kerL={c(at—b):c€R}, dimkerL=1.

ImL— {g €Z: (B — aB) (/Ot(t —s)g(s)ds> :o}.

Let g € ImL, then there exists u € domL such that g = Lu, that is,

Now we verify

u—/ t—5)g(s)ds+u'(0)t +u(0)

and Biu = Bou = 0. Hence,

0=Bu=B; (/Ot(t - s)g(s)ds) +u'(0)B;(t) +u(0)Bi(1), i=1,2,

and, using the resonance condition (B ),
B (/Ot(t —5)g(s) ds) +u/(0)By(t) +u(0)B (1)
=B (/Ot (t—15)g(s) ds) + b’ (0) + otau(0) =0,
B, (/Ot(t —5)g(s) ds) +u'(0)Ba(t) +u(0)B(1)
=B (/Ot(t —s)g(s) ds) +bu'(0) + au(0) = 0.
Hence g € {g € Z: (B1 — 0By) (Jo(t —s)g(s)ds) = 0} . That is,

Ing{gEZ:(Bl—(sz) (/0

If ge{geZ: (B —aBy)([o(t—s)g(s)ds) =0}, take

t

(=9ls)ds) <o}

u(t) = bti‘Zsz (/t(t —9)g(s) ds) + /Ot (r—s)g(s)ds.

Itis clear that Lu = g and Biu = Bou = 0. That s,

{g €Z: (B aBy) ( / ’(z—s>g<s>ds) - o} C mL.

(N
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Combining the above we obtain (7).

‘We consider |

a4 b?
It is easy to check that P>u = Pu, u € X. It is also elementary to confirm the identity
Im P = ker L. Moreover, choose u = c(at —b) € ImP. If, in addition, c(at — b) € ker P,
then 0 = au'(0) — bu(0) = c(a*> + b*). Now, since a® + b> # 0, we must have ¢ = 0.
That is, kerL® kerP = X.

Define an operator Q : Z — Z as

Pu(t) (au' (0) — bu(0))(at — b)

1
0g(t) = (B — aBy) ( /0 (i — s)g(s)ds> h(t).
Then, by (By) and (H), Q:Z — Z is a continuous linear projector such that ImL =

kerQ and ImQ = {ch(t) : c € R}. Itis clear that Z=ImL@®ImQ and dimkerL =
codimImLZ, that is, L is a Fredholm mapping of index zero. [

LEMMA 3. The map Kp : Z — domLNXkerP defined by

bt+a 4 4
Kralt) =~ pigats [ 1 =9s)as ) + [ t=s)ets)as
is the inverse of L.

Proof. Obviously, LK,g = g forall g € Z. For u € domLNkerP,

(Koa(0) = (e 6) =~ 3B ([ = 0)as) + [ (o= s)as
= Bl (O) — u(0) +u(r) ~ (0~ (0)
- % (bl (0) + au(0)) + u(t) — /(0)t — u(0)
= )~ G (l (0) ~ bu(0))

(1) = (Pu)(1)

Thus,
KP = (L|domLﬁkerP)_1 . g

The next lemma provides norm-estimates needed for the main results.
LEMMA 4. For g€ Z,

b
IKps)lo <Allgl, A=1+0p, ®
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and

bt+a0
Kyelo < Blgll, B=1+12" 4, ©)

Moreover,

ﬁ

IKpgllx < IKpIlllgll, [IKpll =1+~ zl\bf+a\|x (10)

Proof. Observe that due to |By(u)| < Bol|ullx,

|bt +al t
Kesto) < ol [0 eas| +| [6-swas]
< (Bam 1) el

B,
~ (Etor+alo+ 1) el

and we arrive at (9). Similarly,

(Keg) (O] < 3B | [0~ s)gts)as

]
| 5—5bh+1 ,
<a2+b2ﬁ2 Hng

which implies (8). Finally, (10) follows from (9) and (8) since ||br + a||x = max{||bt +
allo.[]}. O

+ H/Otg(S)ds

2. Main results

THEOREM 3. Let f:[0,1] x R? — R be a Carathéodory function. Assume that
(By) with a*+b>#0, (B,), (H) and the following conditions hold:

(A1) There exists a constant My > 0, such that if |u(t)|+ |u/(¢)| > My, then
t
(Bi — aB>) (/ (t —s)f(s,u(s)m/(s))ds) 20,
0

(A2) There exist nonnegative functions o, 3,y € L;[0,1] with

lecll+ 1Bl <1 (1)

such that
If(t,u,v)| < y(t)+oult)|ul +B()|v], aere]0,1], u,veR.

(A3) There exists a constant My > 0, such that if |c| > M\, then

¢(B1 — aBy) (/Ot(t —s)f(s,c(as—b),ca)ds) > 0. (12)
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Then the boundary value problem (5), (6) has at least one solution.

REMARK 2. The inequality (12) may be replaced by

1
¢(By — aBs) (/ (t—s)f(s7c(as—b)7ca)ds) <0. (13)
0
The proof of Theorem 3 will be based on the next three lemmas.

LEMMA 5. Assume that (By) with a*+b>#0, (B,), (H), (A1), and (A;) hold.
Then
Q ={uecdomL\kerL: Lu=ANu,A € (0,1)}

is bounded.

Proof. If u € Qp, thenby (A;), there exists a constant 7y € [0, 1] such that
lu(to) |, [u' (10)] < Mo.

Since

u(t) = /,[ W (s)ds -+ u(ty),

0
we get
u(t)] < Mo+ 1[lo, ¢ €[0,1]. (14)

By Lu = ANu, we obtain

t
u’(z)zx/ Fls,uls),d (s)) ds -+ (10)
]
and thus
| (1)| < || Nul|y + Mo.
By (A;) and (14), we have

' (@) <117l + lleelallaello+ 1Bl 12’ llo + Mo
< Mo+ [lelliMo + [[7ll1 + (el + 1Bl ' llo-

So,
711 +Mo(l|ec]|1 + 1)

L—{lofli =Bl
This, together with (14), shows that € is bounded. [l

lllo <

LEMMA 6. Assume (By) with a> +b>#0, (B,), (H), and (A3) hold. Then
Q ={uckerL:NueclmL}

is bounded.
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Proof. Let u € Q. Then u = c(at — b) for some ¢ € R and

ONu(t) = (B, — aB>) ( /O (= 5)f(s,clas— b),ca)ds) h(r) = 0.

By (A3), we have |c| < M. So, ||u|lx < Mi||at —b||x, thatis, Q, is bounded. I

Since L is a Fredholm map of index zero, there exists an isomorphism J : ImQ —
ker L. For example, define

I3(0) = (B1 - ) /(6= 5)g(5)ds) ar ).
Obviously, J: Z — kerL. If g € ImQ, then g = ch, where h is introduced in (H ), and
Jg(t) = J(ch)(t)
— (Bi—aBy) ( /O "= $)eh(s) ds> (at —b)
=c(at—b)
by the property of 4 in (H). Thus, J : ImQ — kerL is an isomorphism.
LEMMA 7. Assume (By) with > +b>#0, (By), (H), and (A3) hold. Then
Q3 ={u:pAlu+(1—A)JONu=0,uckerL, A €[0,1]}

is bounded, where J : ImQ — kerL is defined above and

)1, if(12)holds,
P=Y 21 i (13) holds.

Proof. Suppose that (12) holds and let u € Q3. Then u(r) = c(at —b), c € R,
and Au+(1—A)JONu=0. If A =1, then u =0, thatis, c =0. If L =0, then
JONu = JON[c(at — b)] = 0. In this case, by Lemma 6, ||u||x < M,|lat — b||x. For
A €(0,1),

Ac(at —b) = —(1—A)(B; — oBy) (/Ot(t—s)f(s7c(as—b)7ac)ds) (at —b).

Hence
t

A = —(1—1)e(B — aB)) (/0 (t—s)f(sm(as—b),ac)ds) :

If |c| > M, , by the definition of p and (12), we get ¢2 < 0, which is a contradiction.
The treatment of the case p = —1 subject to (13) is similar. [J

Now we are in position to prove Theorem 3.
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Proof. Lemma 2 establishes that L is a Fredholm mapping of index zero. Let €
be open and bounded such that U?: 1§i C Q, where Q;, i =1,2,3, are as in Lemmas
5, 6, 7, respectively. Then the assumptions (i) and (ii) of Theorem 2 are fulfilled.
The compactness of KpgN : E — X and ON : E — Z follows from the Arzela-Ascoli
theorem and the Kolmogorov-Riesz criterion, respectively. Hence, N is L-compact on
Q.

Using the identity map [ : ker L — kerL, we define (in the appropriate case) the
homotopy

H(u,A)=+AIu+ (1—A1)JONu.

By the degree property of invariance under a homotopy, if u € ker LN d<2, then

deg(‘]QN|kerLﬁaQa Qn kCI'L, 0) = deg(H(a O)a Qn kCI'L,O)
=deg(H(-,1),QNkerL,0)
=deg(+I,QNkerL,0) # 0.

Finally, the assumption (iii) of Theorem 2 is fulfilled and the proof is completed. [

REMARK 3. Here we compare our result to Theorem 3.2 [18]. Specifically, we
discuss the part that deals with the boundedness of €. The authors rely on the hy-
potheses that are very similar to ours (with 71,79 =0):

(H;) There exist functions p,a,f3,71,%» € L[0,1], 61,6, € [0,1) such that for all
(.Xl,xz) € R2, te [0,1],

f(t,x1,:2) < p () + () |+ B ) ol + 71 () et | + 10 o |-

(H,) There exists a constant A > 0 such that for x € dom L, if |x(¢)|+ |x(r)| > A for
all 7 € [0,1], then

r ( [[e=9s6x0X ) as) £0

(H3) is identical to our (Az).

Then it is shown that (1), (2) has at least one solution provided

Ta(1)]

Jecl[s + 1B < D> (2) |+ 2|Ta(1)]

Note that
T2(2)] 1

D ()] +2[0(0)] 2
In our method of proof of Lemma 5, we have achieved an improved upper bound given
by (11). This is due to the fact that if we rely (H; ), then u € Q; immediately implies
that there exists 7o € [0, 1] such that |x(z)], |x'(f0)] <A (or My in our notation). There
is no need, in this case, to separately consider Pu and (I — P)u as it is originally done in




360 NICKOLAI KOSMATOV AND WEIHUA JIANG

[12] whose method [ 18] reproduces. However, the decomposition of u € Q; as the sum
of Pu and (I — P)u could not be avoided if |u(z)| + |u/(t)| > My is replaced with either
lu(z)| > My or |u/(t)| > Mp. Also, in [3] using the notations of [18], this assumption is
phrased as follows: there exists a constant A > 0 such that for x € dom L, if |x(¢)| > A
or |x'(r)] > A forall 1 € [0,1], then

([ -9 o)) 2o

Again, this directly leads to 7y € [0,1] such that |x(fp)] <A and |[x'(fp)] < A, which
makes the use of x = Px+ (I — P)x unnecessary in showing that € is bounded.

THEOREM 4. Let f:[0,1] x R? — R be a Carathéodory function. Assume that
(By) with a# 0, (B,), (H), and (A3) (of Theorem 3) and the following conditions
hold:

(As) There exists a constant My > O such that if [u/(t)| > My, then
1
wrﬂwg</@—gﬂ&mmw@»m>¢o
0

(As) There exist nonnegative functions o, 3,y € L1[0,1] with
|f(t,u,v)| < y(e)+olt)|u] +B()|v], t€][0,1], uyveR,
where
(K[| + |l = b/allx (A+ 1)) (el +|[Bll) < 1
and A and ||Kp|| are given by (8) and (10), respectively.

Then the boundary value problem (5), (6) has at least one solution.

Proof. Asin the proof of Lemma 5, u € Q) implies, by (A4), there exist a constant
1o € [0,1] such that |« (f9)| < Mp.

REMARK 4. Note that we do not readily have |u(zy)| < My, which follows directly
from (A1) of Theorem 3.

Since .
wwz/wwm+ﬂm,
To
we have
| ()| < Mo + || Lully < Mo+ ||Nul|y, t€][0,1]. (15)

Write u = u; +uy, where u; = (I — P)u € domLNkerP and up = Pu € ImP. Then
since u; = (I — P)u € domLNkerP, u; = KpLu; = KpL(I — P)u = KpLu = AKpNu.
As in the proof of (8),

iy (1)| < |(KpNu)' ()| < A||Nul|y (16)
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and, as in (10),
l[ur|lx <[|Kp|[[|Nul]1. (17)

Now, up =u—uy, so uh =u’' —u} and
s (1) < [ (1) |+ |ud) (1)] < Mo+ [[Nul |1 +A|[Nul|1,
by (15), (16). Recall that uy(r) = Pu(t) = c(u)(at — b), where

1

m(au’(o) —bu(0))

c(u)=
is introduced for the sake of brevity. Hence

s (1)] = le(u)al < Mo+ [|Nul|1 + A[|Nul|;.

That is,
1
le(u)] < H(MoJr(AJrl)HNqu)
Thus,
luzl[x = le(u)|llat = blx <t —b/ally (Mo + (A+ 1)[[Null1), (18)
for u € domL\ kerL.
By (17) and (18),

ullx < [lurllx +[luallx < C1+Cal[Nully < Ci+Cal[Ylli +Ca([|ex][y + [IB]]1) [lullx,

where
C = ||Kp[|+ [l = b/allx (A+1).
By (As), Q1 is bounded. The rest of the proof repeats that of Theorem 3. [

We now provide an example that satisfies the assumptions of Theorem 4. Consider
a kind of pendulum equation

1 1
" _ o 4
u (t)_YO() 1681nu(t)+16u (t)7 t6(071>7 (19)
where
1 . 3 2 2
yO(t):R(sm(IO —9t” — 12¢+ 13) — 30¢* + 9781 — 276) ,
satisfying

1
By (u) = u' (0) +2u (5) =0, By(u 2/ =0. (20)

It is easy to see that By(t) =2, By(1) =2, By(t) = —1, Bi(l) = —1, so that
o= —2 a=b=—1 and kerL = {c(t — 1) : ¢ € R}. It is not difficult to verify that
=-= 2 satisfies (H).
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Also,
1
B2 (u)| < [u(0)] +2/0 u(s)| ds < 3[ul|x,

thatis, B, =3. Witha=b=—1, A= 3 and ||[Kp|| =4, and |t —b/a|y = 1.
The right side of the differential equation satisfies the inequality

[f(u)| < y(0) + (@) |ul +B@)Iv], 1€(0,1),

where ¥(r) = ()], el = |[Bll = 7. an

15
(HKPH+||t_b/aux(A+l))(Ha”1+HﬁHl):E<1»
which verifies (A4).
Note that ¥ () > 0 is [0, 1], and thus
1 69 1
—18<Es1n13—z\)@() Rsm2+42<43
Let My = 689. If u/(¢t) > 689, then
Nu(t) = () — - sinu(t) + (1)
u(t) =1 Tg sinult) + zu
1 1
—18—R+16M0
>0,
and, if /(1) < —689, then
Nu(t) = () — = sinu(t) + (1)
u(t) =1 T sinu T
cp3r Ly
16 16 °
< 0.

Observe that

1) ([ 1= vuts)as )

:2/5 (1—s)Nu(s)ds—2/l(l—s)zNu(s)ds

1

:—/ (1 —2s+25%)Nu(s ds—Z/ (1—s5)*Nu(s)ds

—/,%/ )Nu(s
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where

b

p— D=

<
—2—1—4s—2527 % s <

Obviously, 2 (s) <0 in [0, 1]. Therefore,

—1425—25% 0<
e%/(s):{ +S S7 <s

(Bi — aBy) ( /O "= $)Nu(s) ds> £0

provided u € domL \ kerL satisfies |u'(1)| > My = 689. This shows that (As) holds.
Finally, for u € kerL, u. = c¢(1 —1),

Nut) = 1l0) = 3¢ sinueld) + 1.0

16
= 10(0) — = sin(e(1 1)) — =
—')/() 16 1 C 16C

Consequently,
t
c(Bi — aBy) ( / (1 — 5)Nue(s) ds)
0

= /lﬁ(s)cNuc(s)ds
—/ A (s <cy0 )~ sin(c (l—t))—11—6c2> ds

since ¢ (s) <0 in [0, 1] and
c 1 1 1
— —si — - < - —
c(t) T sin(c(1—1)) 16C 43|c| + \c\ 16C <0

provided |c| > 689. That is, (A3) of Theorem 3, which carries over to the assumption
set of Theorem 4, is also fulfilled.
At last, notice that
u(t) =108 -9 — 121+ 13

is a solution of (19) and (20).

THEOREM 5. Let f:[0,1] x R? — R be a Carathéodory function. Assume that
(B1) with s <0 or s > 1, (B2), (H), and (A3z) (of Theorem 3) and the following
conditions hold:

(Ag) There exists a constant My > 0 such that if |u(t)| > Mo, then

(B — aB>) (/(: (i — s)f(s7u(s)7u/(s))ds) £0.
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(A7) There exist nonegative functions o, 3,y € L,[0,1] such that
[f (@ u ) <v(@)+a()|ul+ By, 1€[0,1], uveR,

where
max{|a —b|,|b[}

K, —— B <1
(1 -+ =208 ) (e -+ 1Bl
and B and ||Kp|| are given by (9) and (10), respectively.

Then the boundary value problem (5), (6) has at least one solution.

Proof. As in the proof of Lemma 5, u € | means QNu =0. By (Ag), there exist
a constant 7o € [0, 1] such that |u(zp)| < Mp.

REMARK 5. Similar to Remark 4, in this case |u/(1p)] < My does not come for
free.

As in the proof of Theorem 4, u = uj + uy, where u; = (I — P)u € domLNkerP
and up = Pu € ImP. Similarly, u; = (I — P)u € domLNkerP, so that u; = KpLu; =
KpL(I — P)u = KpLu = AKpNu. As in the proof of (9),

ur ()] < [(KpNu)(1)| < B||Nul1- 21

Again, (17) holds.
Now, uy =u—uy, so, by (21),

|ua(t0)| < [u(to)] + [u1 (t0)| < Mo+ B|[Null,.
As in the proof of Theorem 4, u,(¢) = Pu(t) = c(u)(at — b). Hence
|ua(t0)| = |e(u)]ato — b] < Mo + B||Nul|1.
Since ato—b #0 in [0,1],
1 1

()] € ——————— (Mo +B||Nul|1) = ———————— (Mo + B||Nul|1).
0] < gy (Mo BN = e o+ BN
Thus,
luallx = leG)lllar —bllx < — 9 =Clx vy, @
min{|a — b|,|b|}

for u € domL\kerL.
By (17) and (22),

([l x < [Jur|[x +[|u2]|x < C1+Cal[Nully < C1+Col|yl[1 + Ca([lexl 1+ |[BI]1) el x

where
lar—blly
min{|a — bl,|b|}

By (A7), Q; is bounded and the rest of proof is identical to those above. [J

C, = ||Kp||+
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