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Abstract. We obtain, using the coincidence degree theory, solvability conditions for all possi-
ble resonance scenarios Lu = u′′ = f (t,u,u′) = Nu , with linear functional conditions Biu = 0 ,
i = 1,2 with dimkerL = 1 . Our work generalizes and improves the results of Zhao and Liang
[18] and Cui [3] in several directions. We also construct a meaningful example of a nonlin-
ear functional problem for a pendulum equation which not only satisfies the assumptions of an
existence theorem but also has a closed-form solution.

1. Introduction

Resonant boundary value problems have been studied by a broad range of tech-
niques [1, 2, 3, 4, 5, 6, 10, 11, 12, 15, 17, 18]. To this day, Mawhin’s coincidence degree
theory [14] continues to plays an important role in this active field. Recently, the atten-
tion has shifted to problems with integral boundary conditions and, more generally, to
problems with linear functional conditions [18] and resonance scenarios [3] that have
been completely overlooked in the past. Notably, some interesting results for systems
of equations have also been obtained in [16] for a resonant problem that does not allow
“uncoupling” in the sense that it cannot be treated as a scalar problem at resonance.
We also mention [13], where a higher-order nonlocal problem at one-dimensional res-
onance was studied by reduction to a first order vector equation.

One of most general studies of a resonant problem for the differential operator
L : C1[0,1] → L1[0,1] , Lx = x′′ known to us is done by Zhao and J. Liang [18], where
the authors considered the functional differential problem

x′′(t) = f (t,x(t),x′(t)), t ∈ (0,1), (1)

Γ1(x) = 0, Γ2(x) = 0, (2)

where Γ1,Γ2 are linear functionals on C1[0,1] satisfying the general resonance con-
dition Γ1(t)Γ2(1) = Γ1(1)Γ2(t) . (The non-resonant scenario subject to the condition
(A1 ): Γ1(t)Γ2(1) �= Γ1(1)Γ2(t) was also studied.) Specifically, the authors investigated
the following resonant cases:
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(A2 ) Γ1(t),Γ1(1),Γ2(1) = 0, Γ2(t) �= 0;

(A3 ) Γ1(t),Γ1(1),Γ2(t) = 0, Γ2(1) �= 0;

(A4 ) Γ1(1),Γ2(t),Γ2(1) = 0, Γ1(t) �= 0;

(A5 ) Γ1(t),Γ2(1),Γ2(t) = 0, Γ1(1) �= 0;

(A6 ) Γ1(1),Γ1(t),Γ2(1),Γ2(t) = 0.

The cases (A2 ) and (A4 ) result in kerL = {c : c ∈ R} and (A3 ) and (A5 ) correspond
to kerL = {ct : c ∈ R} . The case (A6 ) describes a resonance with kerL = {c1t + c2 :
c1,c2 ∈ R} . The cases (A2 ), (A3 ), and (A6 ) were investigated in full detail.

Although [18] generalizes and extends many results for nonlocal second-order
problems at resonance, it does not contain a complete analysis of (1), (2). To see this,
let a,b,α ∈ R and a,b �= 0 and set, for example, Γ1(t) = αb , Γ1(1) = αa , Γ2(t) = b ,
and Γ2(1) = a . Then Γ1(t)Γ2(1) = Γ1(1)Γ2(t) with

kerL = {c(at−b) : c ∈ R} , dimkerL = 1.

This case cannot be derived from the results of [18] pertaining to the cases of (A2 ) -
(A6 ). In [3], Cui considered such “slanted” kernels, which are also the main motivation
of the present paper. To be exact, [3] studied

x′′(t) = f (t,x(t),x′(t)), t ∈ (0,1), (3)

x(0) =
∫ 1

0
x(s)dα(s), x(1) =

∫ 1

0
x(s)dβ (s), (4)

where f ∈ C([0,1]×R
2,R) ; α and β are right continuous on [0,1) , left continuous

at t = 1, and
∫ 1
0 u(s)dα(s) and

∫ 1
0 u(s)dβ (s) are Riemann-Stieltjes integrals. The

resonance condition is κ1κ4−κ2κ3 = 0, where

κ1 = 1−
∫ 1

0
(1− t)dα(t), κ2 =

∫ 1

0
tdα(t),

κ3 =
∫ 1

0
(1− t)dβ (t), κ4 = 1−

∫ 1

0
tdβ (t).

We can interpret Γi(x) = 0, i = 1,2 in [18], as

x(0)−
∫ 1

0
x(s)dα(s) = 0, x(1)−

∫ 1

0
x(s)dβ (s) = 0,

respectively. In [18], the authors also interpret Γi(u) as a linear combination of the
Riemann-Stiltjes integrals of x and x′ defined in terms of measures of bounded varia-
tion. Subsequently, the authors use these representations to obtain uniqueness theorems
and to compare their results to those of [12]. We do not believe that it is necessary to
rely on such a representation of the functionals Γi .

The authors of [18] make unnecessary respective assumptions Γ1(t2) �= 0 and
Γ1(t3) �= 0 in Theorems 3.2 and 3.3, which yield existence criteria for the respective
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cases (A2 ) and (A3 ). In [3], such artificial conditions were also deemed necessary. In
particular, for (3), (4) it is assumed that

κ3

∫ 1

0
t(1− t)dα(t)+ κ1

∫ 1

0
t(1− t)dβ (t) �= 0.

Conditions of this type are only needed to ensure that Q : Z → Z is well-defined and in
our work we propose an approach that allows us to bypass this minor technical difficulty
(see (H ) below). Thus, we improve the results of [3] and [18] in that respect as well.
In addition, due to the simplicity of our method, it is clearly preferred to that devised in
[4], and can also be used for higher order problems with functional conditions.

Moreover, in many recent papers devoted to the second order problems (see, e.
g., [12, 18]) the following assumption is imposed: There exists a constant M0 > 0,
such that if |u(t)|+ |u′(t)| > M0 , t ∈ [0,1] , then QNu �= 0. It is used to show that
Ω1 = {u ∈ domL\kerL : Lu = λNu, λ ∈ (0,1)} is bounded. A similar comment can
be made about [3]. In the present paper we also show that the boundedness of Ω1 can
be shown if |u(t)|+ |u′(t)| > M0 is replaced with just |u(t)| > M0 or |u′(t)| > M0 (see
Theorems 4 and 5 below.) In Section 2 we will further discuss the methodology of á
priori estimates in comparison with [3, 18].

We consider the differential equation

u′′(t) = f (t,u(t),u′(t)), t ∈ (0,1), (5)

together with the functional conditions

B1(u) = B2(u) = 0. (6)

We assume the following:

(B1 ) The linear functionals B1,B2 : X → R satisfy B1(t) = αb , B1(1) = αa , B2(t) =
b , B2(1) = a , where α,a,b ∈ R .

(B2 ) The functionals B1,B2 : X → R are continuous with the respective norms β1,β2 ,
that is, |Bi(u)| � βi‖u‖X .

Here X = C1[0,1] with the norm ‖u‖X = max{‖u‖0,‖u′‖0} , where ‖ · ‖0 is the max-
norm, and Z = L1[0,1] with the usual norm ‖ · ‖1 .

Let us assume, without loss of generality, that

(H) the function h ∈ Z satisfies

(B1 −αB2)
(∫ t

0
(t− s)h(s)ds

)
= 1.

The following lemma shows that the assumption (H ) is merely a matter of choice of
such a function.
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LEMMA 1. Assume that (B1) and (B2) hold. Then there exists h ∈ Z such that

(B1−αB2)
(∫ t

0
(t− s)h(s)ds

)
�= 0.

Proof. For convenience, set B = B1−αB2 . Assume, by way of contradiction, that

B

(∫ t

0
(t− s)h(s)ds

)
= 0

for all h ∈ Z . In particular, for every integer n � 0,

(n+1)(n+2)B
(∫ t

0
(t − s)sn ds

)
= B(tn+2) = 0.

By (B2 ), B(1) = B(t) = 0. Thus, B(p) = 0 for every polynomial p .
Since B �= 0 on all of X , there exists v0 ∈ X such that B(v0) �= 0. Choose a

sequence of polynomials {pm} such that ‖v0− pm‖X < 1
m . Then

0 �= |B(v0)|= |B(v0− pm)+B(pm)|= |B(v0− pm)|� ||B||‖v0− pm‖X < (β1 + |α|β2)
1
m

for all m ∈ N , which is a contradiction. �
Define the mapping L : domL ⊂ X → Z by

Lu = u′′,

where
domL = {u ∈ X : u′′ ∈ Z and B1(u) = B2(u) = 0}.

We assume that the function f satisfies the Carathéodory conditions and define N :
X → Z by

Nu(t) = f (t,u(t),u′(t)).
The functional differential problem (5), (6) is now equivalent to the abstract equation
Lu = Nu .

DEFINITION 1. Let X and Z be real normed spaces. A linear mapping L : domL⊂
X → Z is called a Fredholm mapping if kerL has a finite dimension and ImL is closed
and has a finite co-dimension.

If L is a Fredholm mapping, its (Fredholm) index is the integer IndL = dim kerL−
codimImL .

Define continuous projectors P : X → X and Q : Z → Z so that

ImP = kerL, kerQ = ImL, X = kerL⊕kerP, Z = ImL⊕ ImQ.

For a Fredholm mapping L of index zero, the inverse of the map

L|domL∩kerP : domL∩kerP → ImL

is denoted by KP : ImL → domL∩kerP . The generalized inverse of L denoted by
KP,Q : Z → domL∩kerP is defined by KP,Q = KP(I−Q) .
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DEFINITION 2. Let L : domL ⊂ X → Z be a Fredholm mapping, E be a metric
space, and N : E → Z be a mapping. We say that N is L -compact on E if QN : E → Z
and KP,QN : E → X are continuous and compact on E . In addition, we say, that N is
L -completely continuous if it is L -compact on every bounded E ⊂ X .

The following is the Kolmogorov-Riesz criterion (see, for example, [7]):

THEOREM 1. For 1 � p < ∞ , E ⊂ Lp[0,1] is compact if

(a) E is bounded;

(b) the limit

lim
ε→0

∫ 1

0
|g(s+ ε)−g(s)|p ds = 0

is uniform in E .

The compactness of KP,QN : E → X and QN : E → Z will follow from the Arzela-
Ascoli theorem and the Kolmogorov-Riesz criterion, respectively. However, we will
omit the corresponding details as straightforward.

The equation Lu = Nu will be shown to have a solution by means of Theorem
IV.13 [14]:

THEOREM 2. Let Ω ⊂ X be open and bounded, L be a Fredholm mapping of
index zero and N be L-compact on Ω . Assume that the following conditions are satis-
fied:

(i) Lu �= λNu for every (u,λ ) ∈ ((domL\kerL)∩∂Ω)× (0,1);

(ii) Nu /∈ ImL for every u ∈ kerL∩∂Ω;

(iii) deg(QN|kerL∩∂Ω,Ω∩kerL,0) �= 0 , with Q : Z → Z a continuous projector such
that kerQ = ImL.

Then the equation Lu = Nu has at least one solution in domL∩Ω .

REMARK 1. The condition (B1) incorporates the cases Γ1(t) = Γ2(t) = 0 and
Γ1(1) = Γ2(1) = 0 considered in [18]. In this form, it is needed for Theorem 3. Fur-
thermore, in order to prove Theorems 4 and 5 we will assume, in addition, that a �= 0
and b

a /∈ (0,1) , respectively.

We will demonstrate now that (B1 ) is a critical condition, that is, the functional
problem (5), (6) is at resonance and, moreover, dim kerL = 1.

LEMMA 2. Let (B1) with a2 + b2 �= 0 , (B2) and (H) hold. Then the mapping
L : domL ⊂ X → Z is a Fredholm mapping of index zero.
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Proof. If u ∈ domL and Lu = 0, we have u = c1t + c2 and

B1(c1t + c2) = c1B1(t)+ c2B1(1) = αbc1 + αac2 = 0,

B2(c1t + c2) = c1B2(t)+ c2B2(1) = bc1 +ac2 = 0.

Therefore,
kerL = {c(at−b) : c ∈ R} , dimkerL = 1.

Now we verify

ImL =
{

g ∈ Z : (B1−αB2)
(∫ t

0
(t − s)g(s)ds

)
= 0

}
. (7)

Let g ∈ ImL , then there exists u ∈ domL such that g = Lu , that is,

u =
∫ t

0
(t − s)g(s)ds+u′(0)t +u(0)

and B1u = B2u = 0. Hence,

0 = Biu = Bi

(∫ t

0
(t − s)g(s)ds

)
+u′(0)Bi(t)+u(0)Bi(1), i = 1,2,

and, using the resonance condition (B1 ),

B1

(∫ t

0
(t− s)g(s)ds

)
+u′(0)B1(t)+u(0)B1(1)

= B1

(∫ t

0
(t− s)g(s)ds

)
+ αbu′(0)+ αau(0) = 0,

B2

(∫ t

0
(t− s)g(s)ds

)
+u′(0)B2(t)+u(0)B2(1)

= B2

(∫ t

0
(t− s)g(s)ds

)
+bu′(0)+au(0) = 0.

Hence g ∈ {
g ∈ Z : (B1−αB2)

(∫ t
0(t − s)g(s)ds

)
= 0

}
. That is,

ImL ⊆
{

g ∈ Z : (B1−αB2)
(∫ t

0
(t− s)g(s)ds

)
= 0

}
.

If g ∈ {
g ∈ Z : (B1 −αB2)

(∫ t
0(t − s)g(s)ds

)
= 0

}
, take

u(t) = − bt +a
a2 +b2 B2

(∫ t

0
(t− s)g(s) ds

)
+

∫ t

0
(t− s)g(s)ds.

It is clear that Lu = g and B1u = B2u = 0. That is,{
g ∈ Z : (B1−αB2)

(∫ t

0
(t− s)g(s)ds

)
= 0

}
⊆ ImL.
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Combining the above we obtain (7).
We consider

Pu(t) =
1

a2 +b2 (au′(0)−bu(0))(at−b)

It is easy to check that P2u = Pu , u ∈ X . It is also elementary to confirm the identity
ImP = kerL . Moreover, choose u = c(at−b)∈ ImP . If, in addition, c(at−b)∈ kerP ,
then 0 = au′(0)− bu(0) = c(a2 + b2) . Now, since a2 + b2 �= 0, we must have c = 0.
That is, kerL⊕kerP = X .

Define an operator Q : Z → Z as

Qg(t) = (B1−αB2)
(∫ t

0
(t− s)g(s)ds

)
h(t).

Then, by (B2) and (H) , Q : Z → Z is a continuous linear projector such that ImL =
kerQ and ImQ = {ch(t) : c ∈ R} . It is clear that Z = ImL⊕ ImQ and dim kerL =
codimImL , that is, L is a Fredholm mapping of index zero. �

LEMMA 3. The map KP : Z → domL∩kerP defined by

KPg(t) = − bt +a
a2 +b2 B2

(∫ t

0
(t− s)g(s)ds

)
+

∫ t

0
(t − s)g(s)ds

is the inverse of L.

Proof. Obviously, LKpg = g for all g ∈ Z . For u ∈ domL∩kerP ,

(KPLu)(t) = (KPu′′)(t) = − bt +a
a2 +b2 B2

(∫ t

0
(t− s)u′′(s)ds

)
+

∫ t

0
(t− s)u′′(s)ds

= − bt +a
a2 +b2 B2(u−u′(0)t−u(0))+u(t)−u′(0)t−u(0)

=
bt +a
a2 +b2 (bu′(0)+au(0))+u(t)−u′(0)t−u(0)

= u(t)− at−b
a2 +b2 (au′(0)−bu(0))

= u(t)− (Pu)(t)
= u(t).

Thus,
KP = (L|domL∩kerP)−1 . �

The next lemma provides norm-estimates needed for the main results.

LEMMA 4. For g ∈ Z ,

‖(Kpg)′‖0 � A‖g‖1, A = 1+
|b|

a2 +b2 β2, (8)
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and

‖Kpg‖0 � B‖g‖1, B = 1+
||bt +a||0
a2 +b2 β2. (9)

Moreover,

‖KPg||X � ‖KP‖‖g‖1, ‖KP‖ = 1+
β2

a2 +b2 ||bt +a||X . (10)

Proof. Observe that due to |B2(u)| � β2‖u‖X ,

|KPg(t)| � |bt +a|
a2 +b2 β2

∥∥∥∥
∫ t

0
(t − s)g(s)ds

∥∥∥∥
X

+
∥∥∥∥
∫ t

0
(t − s)g(s)ds

∥∥∥∥
0

�
( |bt +a|

a2 +b2 β2 +1

)
‖g‖1

=
(

β2

a2 +b2‖bt +a‖0 +1

)
‖g‖1,

and we arrive at (9). Similarly,

|(KPg)′(t)| � |b|
a2 +b2 β2

∥∥∥∥
∫ t

0
(t − s)g(s)ds

∥∥∥∥
X

+
∥∥∥∥
∫ t

0
g(s)ds

∥∥∥∥
0

�
( |b|

a2 +b2 β2 +1

)
‖g‖1,

which implies (8). Finally, (10) follows from (9) and (8) since ‖bt +a‖X = max{‖bt +
a‖0, |b|} . �

2. Main results

THEOREM 3. Let f : [0,1]×R
2 → R be a Carath éodory function. Assume that

(B1) with a2 +b2 �= 0 , (B2) , (H) and the following conditions hold:

(A1) There exists a constant M0 > 0, such that if |u(t)|+ |u′(t)| > M0 , then

(B1 −αB2)
(∫ t

0
(t − s) f (s,u(s),u′(s))ds

)
�= 0.

(A2) There exist nonnegative functions α,β ,γ ∈ L1[0,1] with

‖α‖1 +‖β‖1 < 1 (11)

such that

| f (t,u,v)| � γ(t)+ α(t)|u|+ β (t)|v|, a.e. t ∈ [0,1], u,v ∈ R.

(A3) There exists a constant M1 > 0, such that if |c| > M1 , then

c(B1 −αB2)
(∫ t

0
(t − s) f (s,c(as−b),ca)ds

)
> 0. (12)
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Then the boundary value problem (5), (6) has at least one solution.

REMARK 2. The inequality (12) may be replaced by

c(B1−αB2)
(∫ t

0
(t− s) f (s,c(as−b),ca)ds

)
< 0. (13)

The proof of Theorem 3 will be based on the next three lemmas.

LEMMA 5. Assume that (B1) with a2 +b2 �= 0 , (B2) , (H) , (A1) , and (A2) hold.
Then

Ω1 = {u ∈ domL\kerL : Lu = λNu, λ ∈ (0,1)}
is bounded.

Proof. If u ∈ Ω1 , then by (A1) , there exists a constant t0 ∈ [0,1] such that

|u(t0)|, |u′(t0)| � M0.

Since

u(t) =
∫ t

t0
u′(s)ds+u(t0),

we get
|u(t)| � M0 +‖u′‖0, t ∈ [0,1]. (14)

By Lu = λNu , we obtain

u′(t) = λ
∫ t

t0
f (s,u(s),u′(s))ds+u′(t0)

and thus
|u′(t)| < ‖Nu‖1 +M0.

By (A2) and (14), we have

|u′(t)| < ‖γ‖1 +‖α‖1‖u‖0 +‖β‖1‖u′‖0 +M0

< M0 +‖α‖1M0 +‖γ‖1 +(‖α‖1 +‖β‖1)‖u′‖0.

So,

‖u′‖0 <
‖γ‖1 +M0(‖α‖1 +1)

1−‖α‖1−‖β‖1
< ∞.

This, together with (14), shows that Ω1 is bounded. �

LEMMA 6. Assume (B1) with a2 +b2 �= 0 , (B2) , (H) , and (A3) hold. Then

Ω2 = {u ∈ kerL : Nu ∈ ImL}

is bounded.
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Proof. Let u ∈ Ω2 . Then u = c(at−b) for some c ∈ R and

QNu(t) = (B1 −αB2)
(∫ t

0
(t − s) f (s,c(as−b),ca)ds

)
h(t) = 0.

By (A3) , we have |c| � M1 . So, ‖u‖X � M1‖at−b‖X , that is, Ω2 is bounded. �
Since L is a Fredholm map of index zero, there exists an isomorphism J : ImQ→

kerL . For example, define

Jg(t) = (B1−αB2)
(∫ t

0
(t − s)g(s)ds

)
(at−b).

Obviously, J : Z → kerL . If g ∈ ImQ , then g = ch , where h is introduced in (H ), and

Jg(t) = J(ch)(t)

= (B1−αB2)
(∫ t

0
(t− s)ch(s)ds

)
(at−b)

= c(at−b)

by the property of h in (H ). Thus, J : ImQ → kerL is an isomorphism.

LEMMA 7. Assume (B1) with a2 +b2 �= 0 , (B2) , (H) , and (A3) hold. Then

Ω3 = {u : ρλu+(1−λ )JQNu = 0, u ∈ kerL, λ ∈ [0,1]}

is bounded, where J : ImQ → kerL is defined above and

ρ =

{
1, if (12)holds,

−1, if (13)holds.

Proof. Suppose that (12) holds and let u ∈ Ω3 . Then u(t) = c(at − b) , c ∈ R ,
and λu + (1− λ )JQNu = 0. If λ = 1, then u = 0, that is, c = 0. If λ = 0, then
JQNu = JQN[c(at − b)] = 0. In this case, by Lemma 6, ‖u‖X � M1‖at − b‖X . For
λ ∈ (0,1) ,

λc(at−b) = −(1−λ )(B1−αB2)
(∫ t

0
(t− s) f (s,c(as−b),ac)ds

)
(at−b).

Hence

λc2 = −(1−λ )c(B1−αB2)
(∫ t

0
(t− s) f (s,c(as−b),ac)ds

)
.

If |c| > M1 , by the definition of ρ and (12), we get c2 < 0, which is a contradiction.
The treatment of the case ρ = −1 subject to (13) is similar. �

Now we are in position to prove Theorem 3.
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Proof. Lemma 2 establishes that L is a Fredholm mapping of index zero. Let Ω
be open and bounded such that ∪3

i=1Ωi ⊂ Ω , where Ωi , i = 1,2,3, are as in Lemmas
5, 6, 7, respectively. Then the assumptions (i) and (ii) of Theorem 2 are fulfilled.
The compactness of KP,QN : E → X and QN : E → Z follows from the Arzela-Ascoli
theorem and the Kolmogorov-Riesz criterion, respectively. Hence, N is L -compact on
Ω .

Using the identity map I : kerL → kerL , we define (in the appropriate case) the
homotopy

H(u,λ ) = ±λ Iu+(1−λ )JQNu.

By the degree property of invariance under a homotopy, if u ∈ kerL∩∂Ω , then

deg(JQN|kerL∩∂Ω,Ω∩kerL,0) = deg(H(·,0),Ω∩kerL,0)
= deg(H(·,1),Ω∩kerL,0)
= deg(±I,Ω∩kerL,0) �= 0.

Finally, the assumption (iii) of Theorem 2 is fulfilled and the proof is completed. �

REMARK 3. Here we compare our result to Theorem 3.2 [18]. Specifically, we
discuss the part that deals with the boundedness of Ω1 . The authors rely on the hy-
potheses that are very similar to ours (with γ1,γ2 ≡ 0):

(H1 ) There exist functions ρ ,α,β ,γ1,γ2 ∈ L1[0,1] , θ1,θ2 ∈ [0,1) such that for all
(x1,x2) ∈ R

2 , t ∈ [0,1] ,

f (t,x1,x2) � ρ(t)+ α(t)|x1|+ β (t)|x2|+ γ1(t)|x1|θ1 + γ2(t)|x2|θ2 .

(H2 ) There exists a constant A > 0 such that for x ∈ dom L , if |x(t)|+ |x′(t)| > A for
all t ∈ [0,1] , then

Γ1

(∫ t

0
(t− s) f (s,x(s),x′(s))ds

)
�= 0,

(H3 ) is identical to our (A3 ).

Then it is shown that (1), (2) has at least one solution provided

‖α‖1 +‖β‖1 <
|Γ2(t)|

|Γ2(t2)|+2|Γ2(t)| .

Note that |Γ2(t)|
|Γ2(t2)|+2|Γ2(t)| <

1
2
.

In our method of proof of Lemma 5, we have achieved an improved upper bound given
by (11). This is due to the fact that if we rely (H1 ), then u ∈ Ω1 immediately implies
that there exists t0 ∈ [0,1] such that |x(t0)|, |x′(t0)| � A (or M0 in our notation). There
is no need, in this case, to separately consider Pu and (I−P)u as it is originally done in
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[12] whose method [18] reproduces. However, the decomposition of u∈ Ω1 as the sum
of Pu and (I−P)u could not be avoided if |u(t)|+ |u′(t)| > M0 is replaced with either
|u(t)| > M0 or |u′(t)| > M0 . Also, in [3] using the notations of [18], this assumption is
phrased as follows: there exists a constant A > 0 such that for x ∈ dom L , if |x(t)|> A
or |x′(t)| > A for all t ∈ [0,1] , then

Γ1

(∫ t

0
(t − s) f (s,x(s),x′(s))ds

)
�= 0.

Again, this directly leads to t0 ∈ [0,1] such that |x(t0)| � A and |x′(t0)| � A , which
makes the use of x = Px+(I−P)x unnecessary in showing that Ω1 is bounded.

THEOREM 4. Let f : [0,1]×R
2 → R be a Carath éodory function. Assume that

(B1) with a �= 0 , (B2) , (H) , and (A3) (of Theorem 3) and the following conditions
hold:

(A4) There exists a constant M0 > 0 such that if |u′(t)| > M0 , then

(B1 −αB2)
(∫ t

0
(t − s) f (s,u(s),u′(s))ds

)
�= 0.

(A5) There exist nonnegative functions α,β ,γ ∈ L1[0,1] with

| f (t,u,v)| � γ(t)+ α(t)|u|+ β (t)|v|, t ∈ [0,1], u,v ∈ R,

where
(||KP||+‖t−b/a‖X (A+1))(‖α‖1 +‖β‖1) < 1

and A and ||KP|| are given by (8) and (10), respectively.

Then the boundary value problem (5), (6) has at least one solution.

Proof. As in the proof of Lemma 5, u∈Ω1 implies, by (A4) , there exist a constant
t0 ∈ [0,1] such that |u′(t0)| � M0 .

REMARK 4. Note that we do not readily have |u(t0)|� M0 , which follows directly
from (A1 ) of Theorem 3.

Since

u′(t) =
∫ t

t0
u′′(s)ds+u′(t0),

we have
|u′(t)| � M0 +‖Lu‖1 < M0 +‖Nu‖1, t ∈ [0,1]. (15)

Write u = u1+u2 , where u1 = (I−P)u∈ domL∩kerP and u2 = Pu∈ ImP . Then
since u1 = (I −P)u ∈ domL∩ kerP , u1 = KPLu1 = KPL(I −P)u = KPLu = λKPNu .
As in the proof of (8),

|u′1(t)| < |(KPNu)′(t)| � A‖Nu‖1 (16)
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and, as in (10),
‖u1‖X < ||KP||||Nu||1. (17)

Now, u2 = u−u1 , so u′2 = u′ −u′1 and

|u′2(t)| � |u′(t)|+ |u′1(t)| < M0 +‖Nu‖1 +A||Nu||1,

by (15), (16). Recall that u2(t) = Pu(t) = c(u)(at−b) , where

c(u) =
1

a2 +b2 (au′(0)−bu(0))

is introduced for the sake of brevity. Hence

|u′2(t)| = |c(u)a| < M0 +‖Nu‖1 +A||Nu||1.

That is,

|c(u)| � 1
|a| (M0 +(A+1)||Nu||1).

Thus,
‖u2‖X = |c(u)|||at−b||X < ‖t−b/a‖X (M0 +(A+1)||Nu||1) , (18)

for u ∈ domL\kerL .
By (17) and (18),

‖u‖X � ||u1||X + ||u2||X < C1 +C2||Nu||1 < C1 +C2||γ||1 +C2 (||α||1 + ||β ||1)‖u‖X ,

where
C2 = ||KP||+‖t−b/a‖X (A+1).

By (A5 ), Ω1 is bounded. The rest of the proof repeats that of Theorem 3. �

We now provide an example that satisfies the assumptions of Theorem 4. Consider
a kind of pendulum equation

u′′(t) = γ0(t)− 1
16

sinu(t)+
1
16

u′(t), t ∈ (0,1), (19)

where

γ0(t) =
1
16

(
sin(103−9t2−12t +13)−30t2 +978t−276

)
,

satisfying

B1(u) = u′(0)+2u

(
1
2

)
= 0, B2(u) = u(0)−2

∫ 1

0
u(s)ds = 0. (20)

It is easy to see that B1(t) = 2, B1(1) = 2, B2(t) = −1, B1(1) = −1, so that
α = −2, a = b = −1 and kerL = {c(t − 1) : c ∈ R} . It is not difficult to verify that
h ≡− 12

5 satisfies (H) .
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Also,

|B2(u)| � |u(0)|+2
∫ 1

0
|u(s)|ds � 3‖u‖X ,

that is, β2 = 3. With a = b = −1, A = 5
2 and ‖KP‖ = 4, and ‖t−b/a‖X = 1.

The right side of the differential equation satisfies the inequality

| f (t,u,v)| � γ(t)+ α(t)|u|+ β (t)|v|, t ∈ (0,1),

where γ(t) = |γ0(t)| , ‖α‖1 = ‖β‖1 = 1
16 , and

(||KP||+‖t−b/a‖X (A+1))(‖α‖1 +‖β‖1) =
15
16

< 1,

which verifies (A4) .
Note that γ ′0(t) > 0 is [0,1] , and thus

−18 <
1
16

sin13− 69
4

� γ0(t) � 1
16

sin2+42 < 43.

Let M0 = 689. If u′(t) > 689, then

Nu(t) = γ0(t)− 1
16

sinu(t)+
1
16

u′(t)

> −18− 1
16

+
1
16

M0

> 0,

and, if u′(t) < −689, then

Nu(t) = γ0(t)− 1
16

sinu(t)+
1
16

u′(t)

< 43+
1
16

− 1
16

M0

< 0.

Observe that

(B1−αB2)
(∫ t

0
(t− s)Nu(s)ds

)

= 2
∫ 1

2

0

(
1
2
− s

)
Nu(s)ds−2

∫ 1

0
(1− s)2Nu(s)ds

= −
∫ 1

2

0
(1−2s+2s2)Nu(s)ds−2

∫ 1

1
2

(1− s)2Nu(s)ds

=
∫ 1

0
K (s)Nu(s)ds,
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where

K (s) =

{
−1+2s−2s2, 0 � s � 1

2 ,

−2+4s−2s2, 1
2 < s � 1.

Obviously, K (s) � 0 in [0,1] . Therefore,

(B1−αB2)
(∫ t

0
(t− s)Nu(s)ds

)
�= 0

provided u ∈ domL\ kerL satisfies |u′(t)| > M0 = 689. This shows that (A5) holds.
Finally, for u ∈ kerL , uc = c(1− t) ,

Nu(t) = γ0(t)− 1
16

sinuc(t)+
1
16

u′c(t)

= γ0(t)− 1
16

sin(c(1− t))− 1
16

c.

Consequently,

c(B1 −αB2)
(∫ t

0
(t− s)Nuc(s)ds

)

=
∫ 1

0
K (s)cNuc(s)ds

=
∫ 1

0
K (s)

(
cγ0(t)− c

16
sin(c(1− t))− 1

16
c2

)
ds

> 0

since K (s) � 0 in [0,1] and

cγ0(t)− c
16

sin (c(1− t))− 1
16

c2 � 43|c|+ 1
16

|c|− 1
16

c2 < 0

provided |c| > 689. That is, (A3) of Theorem 3, which carries over to the assumption
set of Theorem 4, is also fulfilled.

At last, notice that
u(t) = 10t3−9t2−12t +13

is a solution of (19) and (20).

THEOREM 5. Let f : [0,1]×R
2 → R be a Carath éodory function. Assume that

(B1) with b
a < 0 or b

a > 1 , (B2) , (H) , and (A3) (of Theorem 3) and the following
conditions hold:

(A6) There exists a constant M0 > 0 such that if |u(t)| > M0, then

(B1−αB2)
(∫ t

0
(t− s) f (s,u(s),u′(s))ds

)
�= 0.
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(A7) There exist nonegative functions α,β ,γ ∈ L1[0,1] such that

| f (t,u,v)| � γ(t)+ α(t)|u|+ β (t)|v|, t ∈ [0,1], u,v ∈ R,

where (
||KP||+ max{|a−b|, |b|}

min{|a−b|, |b|}B

)
(‖α‖1 +‖β‖1) < 1

and B and ||KP|| are given by (9) and (10), respectively.

Then the boundary value problem (5), (6) has at least one solution.

Proof. As in the proof of Lemma 5, u∈ Ω1 means QNu = 0. By (A6) , there exist
a constant t0 ∈ [0,1] such that |u(t0)| � M0 .

REMARK 5. Similar to Remark 4, in this case |u′(t0)| � M0 does not come for
free.

As in the proof of Theorem 4, u = u1 +u2 , where u1 = (I−P)u ∈ domL∩kerP
and u2 = Pu ∈ ImP . Similarly, u1 = (I −P)u ∈ domL∩kerP , so that u1 = KPLu1 =
KPL(I−P)u = KPLu = λKPNu . As in the proof of (9),

|u1(t)| < |(KPNu)(t)| � B‖Nu‖1. (21)

Again, (17) holds.
Now, u2 = u−u1 , so, by (21),

|u2(t0)| � |u(t0)|+ |u1(t0)| < M0 +B||Nu||1.
As in the proof of Theorem 4, u2(t) = Pu(t) = c(u)(at−b) . Hence

|u2(t0)| = |c(u)|at0−b|< M0 +B||Nu||1.
Since at0−b �= 0 in [0,1] ,

|c(u)| � 1
mint∈[0,1] |at−b|(M0 +B||Nu||1) =

1
min{|a−b|, |b|}(M0 +B||Nu||1).

Thus,

‖u2‖X = |c(u)|||at−b||X <
‖at−b‖X

min{|a−b|, |b|} (M0 +B||Nu||1) , (22)

for u ∈ domL\kerL .
By (17) and (22),

‖u‖X � ||u1||X + ||u2||X < C1 +C2||Nu||1 < C1 +C2||γ||1 +C2 (||α||1 + ||β ||1)‖u‖X ,

where

C2 = ||KP||+ ‖at−b‖X

min{|a−b|, |b|}B.

By (A7 ), Ω1 is bounded and the rest of proof is identical to those above. �
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