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MULTIPLE SOLUTIONS TO THE NONHOMOGENEOUS KIRCHHOFF

TYPE PROBLEM INVOLVING A NONLOCAL OPERATOR

WENJING CHEN AND JUNHUI XIE

(Communicated by Claudianor O. Alves)

Abstract. This paper examines the nonhomogenous Kirchhoff type equation that involves a non-
local operator. Using Ekeland’s variational principle and the Mountain pass theorem, the exis-
tence of multiple solutions is established.

1. Introduction

In this article, we investigate the multiplicity of solutions to the boundary problem{
−M

(
‖u‖2

X0

)
LKu(x) = λ f (x)|u|q−2u+g(x)|u|p−2u+h(x) in Ω,

u = 0 in R
n\Ω,

(1.1)

where Ω is the complement of a smooth bounded domain D in R
n , n > 2s with s ∈

(0,1) , that is, Ω = R
n\D , and λ > 0. Moreover,

(A1) M(t) = atm +b with a,b > 0, 0 � m < 2
n−2s ;

(A2) 1 < q < 2 < 2(m+1) < p < 2∗s with 2∗s = 2n
n−2s for n > 2s ;

(A3) f ,g,h are continuous functions which may change sign on Ω , and

f (x) ∈ Lq0(Ω)∩L∞(Ω), g(x) ∈ Lp0(Ω)∩L∞(Ω), h(x) ∈ Lr(Ω)

with

q0 =
2∗s

2∗s −q
, p0 =

2∗s
2∗s − p

, r =
2∗s

2∗s −1
,

and there exists a nonempty open domain Ω̃ ⊂ Ω such that g(x) > 0 in Ω̃ .
Furthermore, ‖ · ‖X0 is a functional norm which is defined in (2.2) and LK is a

nonlocal operator defined as follows:

LKu(x) =
1
2

∫
Rn

(u(x+ y)+u(x− y)−2u(x))K(y)dy, x ∈ R
n.
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Here K : R
n\{0}→ (0,+∞) is a measurable function which satisfies⎧⎪⎪⎨

⎪⎪⎩
γK(x) ∈ L1(Rn) with γ(x) = min{|x|2,1};
there exists θ > 0 such that K(x) � θ |x|−(n+2s) for any x ∈ R

n\{0};
K(x) = K(−x) for any x ∈ R

n\{0}.
(1.2)

A typical example for K is given by K(x) = |x|−(n+2s) . In this case

LKu(x) = −(−�)su(x)

is the fractional Laplace operator which (up to normalization factors) can be defined as

− (−Δ)su(x) =
1
2

∫
Rn

u(x+ y)+u(x− y)−2u(x)
|y|n+2s dy, for x ∈ R

n. (1.3)

Recently, Fiscella and Valdinoci [8] have investigated the existence of a nontrivial
solution to the following problem

{
−M

(
‖u‖2

X0

)
LKu(x) = λ f (x,u)+ |u|2∗s−2u in Ω,

u = 0 in R
n\Ω,

(1.4)

where Ω⊂R
n is an open bounded set, M and f are continuous functions. In particular,

the authors gave some motivations for studying fractional Kirchhoff equations.
We remark that, in (1.1) and (1.4), the standard Dirichlet condition u = 0 on ∂Ω is

replaced by the condition that the function u vanishes outside Ω , consistently with the
nonlocal characterization of the operator LK . Problems (1.1) and (1.4) have variational
structures, thus we can construct solutions by finding critical points of the associated
energy functional on some appropriate space. It turns out to work on the homogeneous
fractional Sobolev space Hs

0(Ω)(see [6]). In order to study problems (1.1) and (1.4), it
is important to encode the boundary condition u = 0 in R

n\Ω in the weak formulation,
by considering also that in the norm ‖u‖Hs(Rn) the interaction between Ω and R

n\Ω
gives positive contribution. We will introduce the functional space in the next section.

Some interesting results were obtained by variational methods, which can be found
in [1, 3, 4, 9, 11, 16, 17, 18] for Kirchhoff type problems involving the classical Lapla-
cian operator, and [2, 5, 10] for the p-Laplacian case.

Motivated by these results, we are interested in the multiplicity of solutions to
problem (1.1). Our main result can be stated as follows.

THEOREM 1. Let (A1)− (A3) hold. Then there exist λ0,c0 > 0 such that for
all λ ∈ (0,λ0) , problem (1.1) admits at least two nontrivial weak solutions when
‖h‖Lr(Ω) � c0 .

This paper is organized as follows. In Section 2, we give some notations and
preliminaries. We prove Theorem 1 in Section 3.
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2. Notations and preliminaries

Let us introduce the functional space that we will use in the following, which was
introduced in [14]. For fixed s ∈ (0,1) , n > 2s , Ω ⊂ R

n is an open bounded set, let
X be the linear space of Lebesgue measurable functions from R

n to R such that the
restriction to Ω of function g in X belongs to L2(Ω) and

the map (x,y) 	→ (g(x)−g(y))
√

K(x− y) is in L2(R2n\(C Ω×C Ω),dxdy)

where C Ω = R
n\Ω . Moreover, set

X0 = {g ∈ X : g = 0 a.e. in R
n\Ω} .

According to the conditions of K , by Lemma 11 in [13], we know that C2
0(Ω) ⊆ X0 ,

so X and X0 are nonempty. The spaces X and X0 are endowed, respectively, with the
norms defined as

‖g‖X = ‖g‖L2(Ω) +
(∫

Q
|g(x)−g(y)|2K(x− y)dxdy

)1/2
, (2.1)

and

‖g‖X0 =
(∫

Q
|g(x)−g(y)|2K(x− y)dxdy

)1/2

, (2.2)

where Q = R
2n \ ((C Ω)× (C Ω)) ⊂ R

2n . Since g ∈ X0 , then the integral in (2.2) can
be extended to all R

2n . Moreover, the norm on X0 given in (2.2) is equivalent to the
usual one defined in (2.1), see [14, Lemmas 6 and 7].

With the norm given in (2.2), X0 is a Hilbert space with scalar product defined as

〈u,v〉X0 =
∫

Q

(
u(x)−u(y)

)(
v(x)− v(y)

)
K(x− y)dxdy , (2.3)

see [14, Lemma 7]. For further details on X and X0 and also for their properties we
refer to [14, 15] .

In the following, Hs(Ω) denotes the usual fractional Sobolev space endowed with
the norm (so-called Gagliardo norm)

‖g‖Hs(Ω) = ‖g‖L2(Ω) +
(∫

Ω×Ω

|g(x)−g(y)|2
|x− y|n+2s dxdy

)1/2
. (2.4)

We remark that, even in the model case K(x) = |x|−(n+2s) , the norms in (2.1) and
(2.4) are not the same, because Ω×Ω is strictly contained in Q . From [14] we have
that the embedding X0 ↪→ L2∗s (Ω) is continuous where 2∗s = 2n

n−2s . Let K : R
n\{0}→

(0,∞) satisfy assumptions (1.2), if u ∈ X0 , then u ∈ Hs(Rn) . Moreover ‖u‖Hs(Ω) �
‖u‖Hs(Rn) � c(θ )‖u‖X0. Using this fact and Sobolev inequality, there is a constant S > 0
such that for every u ∈ X0 ,

S

(∫
Ω
|u|2∗s

) 1
2∗s � ‖u‖X0 . (2.5)
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We say that u is a weak solution of problem (1.1), if u satisfies

(
a‖u‖2m

X0
+b
)〈u,φ〉X0 =

∫
Ω

(
λ f (x)|u|q−2u+g(x)|u|p−2u+h(x)

)
φ(x)dx (2.6)

for all φ ∈ X0 . u is a weak solution, which is equivalent to be a critical point of the
functional Jλ : X0 → R defined as

Jλ (u) =
a

2(m+1)
‖u‖2(m+1)

X0
+

b
2
‖u‖2

X0

− λ
q

∫
Ω

f (x)|u|qdx− 1
p

∫
Ω

g(x)|u|pdx−
∫

Ω
h(x)udx. (2.7)

We can see that Jλ ∈C1(X0,R) and for any φ ∈ X0 , there holds

〈J′λ (u),φ〉X0 =
(
a‖u‖2m

X0
+b
)〈u,φ〉X0

−
∫

Ω

(
λ f (x)|u|q−2u+g(x)|u|p−2u+h(x)

)
φ(x)dx. (2.8)

3. Proof of Theorem 1

We first prove that Jλ satisfies the geometric conditions of the Mountain pass
Lemma.

LEMMA 1. Suppose that (A1),(A2) and (A3) hold. Then
(i) there exist some constants ρ ,α,λ0,c0 > 0 such that for λ ∈ (0,λ0) and ‖h‖r �

c0 , Jλ (u) � α when ‖u‖X0 = ρ .
(ii) there exists a function v ∈ X0 with ‖v‖X0 > ρ such that Jλ (v) < 0 .

Proof. (i) It follows from Hölder’s inequality and (2.5) that
∫

Ω
| f (x)||u|qdx � ‖ f‖q0‖u‖q

2∗s � S−q‖ f‖q0‖u‖q
X0

with q0 =
2∗s

2∗s −q
. (3.1)

Similarly,∫
Ω
|g(x)||u|pdx � ‖g‖p0‖u‖p

2∗s � S−p‖g‖p0‖u‖p
X0

with p0 =
2∗s

2∗s − p
, (3.2)

and by Young inequality, we have∫
Ω
|h(x)||u|dx � ‖h‖r‖u‖2∗s � S−1‖h‖r‖u‖X0 � ε‖u‖2

X0
+Cε‖h‖2

r (3.3)

with r = 2∗s
2∗s−1 , ε > 0,Cε > 0. Thus

Jλ (u) � a
2(m+1)

‖u‖2(m+1)
X0

+
b
2
‖u‖2

X0
−λC1‖u‖q

X0
−C2‖u‖p

X0
− ε‖u‖2

X0
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−Cε‖h‖2
r

� ‖u‖2(m+1)
X0

(
a

2(m+1)
−λC1‖u‖q−2(m+1)

X0
−C2‖u‖p−2(m+1)

X0

)
−Cε‖h‖2

r (3.4)

with 0 < ε < b
2 and C1 = 1

qS−q‖ f‖q0 , C2 = 1
pS−p‖g‖p0 . Let

ψ(t) = λC1t
q−2(m+1) +C2t

p−2(m+1), t > 0. (3.5)

To complete the proof of (i) , it is sufficient to show that ψ(t0) < a
4 for some t0 =

‖u‖X0 > 0. Indeed, note that ψ(t) → +∞ whenever t → 0+ and t → +∞ , then ψ(t)
has a minimum at

t0 = λ
1

p−q

(
C1(2(m+1)−q)
C2(p−2(m+1))

) 1
p−q

.

Moreover ψ(t0) < a
2(m+1) if and only if

ψ(t0) = C1
p−q

p−2(m+1)

(
C1(2(m+1)−q)
C2(p−2(m+1))

) q−2(m+1)
p−q

λ
p−2(m+1)

p−q <
a

2(m+1)
.

Therefore, we obtain that there exist λ0,c0,α > 0 such that Jλ (u)� α with λ ∈ (0,λ0) ,
ρ = t0 = ‖u‖X0 and ‖h‖r � c0 for each h ∈ Lr(Ω) .

(ii) Let Ω0 ⊂ Ω̃ be a bounded domain, where Ω̃ is given in (A3) . Choose φ ∈
C∞

0 (Ω0) , φ � 0, φ �≡ 0 in Ω0 , let φ = 0 for x ∈ Ω\Ω0 , then

Jλ (tφ) =
at2(m+1)

2(m+1)
‖φ‖2(m+1)

X0
+

bt2

2
‖φ‖2

X0
− λ tq

q

∫
Ω

f (x)|φ |qdx

− t p

p

∫
Ω

g(x)|φ |pdx− t
∫

Ω
h(x)φdx,

and Jλ (tφ1) →−∞ as t → +∞ , since q < 2(m+1) < p . Therefore there exists t1 > 0
large enough such that Jλ (tφ) < 0. Then we take v = t1φ ∈ X0 and Jλ (v) < 0.

Next, let us prove Jλ satisfies (PS) condition in X0 .

LEMMA 2. Suppose (A1),(A2) and (A3) hold. Then Jλ satisfies (PS) condition
in X0 .

Proof. Let {un} be a (PS)c sequence of Jλ in X0 , that is

Jλ (un) is bounded, J′λ (un) → 0 in X∗
0 as n → +∞. (3.6)

We claim that {un} is bounded in X0 . Indeed, using (3.1), for n large enough, we find

C+‖un‖X0 � Jλ (un)− 1
p
〈J′λ (un),un〉X0
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=
(

1
2(m+1)

− 1
p

)
a‖un‖2(m+1)

X0
+
(

1
2
− 1

p

)
b‖un‖2

X0

+λ
(

1
p
− 1

q

)∫
Ω

f (x)|un|qdx+
(

1
p
−1

)∫
Ω

h(x)|un|dx

�
(

1
2(m+1)

− 1
p

)
a‖un‖2(m+1)

X0
+
(

1
2
− 1

p

)
b‖un‖2

X0

−λD1‖un‖q
X0
−D2‖un‖X0 (3.7)

with

D1 =
(

1
q
− 1

p

)
S−q‖ f‖q0 and D2 =

(
1− 1

p

)
S−1‖h‖r.

Thus {un} is bounded in X0 . Then we can take a subsequence(still denote by un ) such
that un ⇀ u in X0 as n → ∞ . By (2.8), we have

〈J′λ (un),un −u〉X0

=
(
a‖un‖2(m+1)

X0
+b
)
〈un,un−u〉X0

−
∫

Ω

(
λ f (x)|un|q−2un +g(x)|un|p−2un +h(x)

)
(un−u)(x)dx. (3.8)

First, the left side of (3.8) goes to zero as n → +∞ , because J′λ (un) → 0 in X∗
0 as

n → +∞ . Moreover, from Hölder inequality and using the facts that un is bounded by
some constant times ‖un‖X0 , and f ∈ Lq0(Ω) , we have

∫
Ω
| f (x)||un|q−1|un−u|dx �

(∫
Ω
| f (x)||un|qdx

) q−1
q
(∫

Ω
| f (x)||un −u|qdx

) 1
q

� C

(∫
Ω
| f (x)||un −u|qdx

) 1
q

. (3.9)

Since f (x) ∈ Lq0(Ω) , then for every ε > 0, there is ρ0 > 0, such that∫
Ωc

ρ
| f (x)|q0dx < ε for ρ � ρ0, (3.10)

where Ωρ = Bρ\D , Ωc
ρ = Ω\Ωρ , and Bρ is an open ball in X0 centered at the origin

with radius ρ . Let ρ be so large that D⊂ Bρ for any ρ � ρ0 . By the Sobolev compact
embedding theorem in the bounded domain Ωρ , un has a subsequence, still denoted
by un , which converges v in Lq(Ωρ) . Note that f is bounded in Ωρ and un is also
bounded in L2∗s (Ω) . Thus, Hölder inequality implies that

∫
Ω
| f (x)||un −u|qdx � ‖ f‖∞

∫
Ωρ

|un−u|qdx+

(∫
Ωc

ρ
| f |q0

) 1
q0
(∫

Ωc
ρ
|un−u|2∗s

) q
2∗s

.

Since un → u in Lq(Ωρ) as n → ∞ , this together with (3.10) gives that∫
Ω
| f (x)||un −u|qdx → 0 as n → +∞. (3.11)
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From (3.9) and (3.11), we get as n → ∞ ,

∫
Ω
| f (x)||un|q−1|un−u|dx

�
(∫

Ω
| f (x)||un|qdx

) q−1
q
(∫

Ω
| f (x)||un −u|qdx

) 1
q

→ 0. (3.12)

Similarly,
∫

Ω
|g(x)||un|p−1|un−u|dx→ 0. (3.13)

From (3.8), (3.12), (3.13), we obtain that(
a‖un‖2(m+1)

X0
+b
)
〈un,un−u〉X0 → 0 as n → ∞. (3.14)

On the other hand, by the fact un ⇀ u in X0 as n → ∞ , we find that(
a‖un‖2(m+1)

X0
+b
)
〈u,un−u〉X0 → 0 as n → ∞. (3.15)

Combining (3.14) with (3.15), we have that ‖un−u‖X0 → 0 as n→∞. Thus Jλ satisfies
(PS) condition on X0 .

Proof of Theorem 1: From Lemmas 1 and 2, Jλ satisfies the Mountain pass the-
orem [12]. Then there exists u1 ∈ X0 such that u1 is a solution of (1.1). Moreover,
Jλ (u1) � α > 0.

We look for the second solution u2 in the following. Choosing ϕ ∈C∞
0 (Ω) such

that
∫

Ω h(x)ϕ(x)dx > 0, then we have

Jλ (tϕ) =
at2(m+1)

2(m+1)
‖ϕ‖2(m+1)

X0
+

bt2

2
‖ϕ‖2

X0
− λ tq

q

∫
Ω

f (x)|ϕ |qdx

− t p

p

∫
Ω

g(x)|ϕ |pdx− t
∫

Ω
h(x)ϕdx < 0,

for small t > 0, and for any open ball Bτ ⊂ X0 , we have

−∞ < cτ = inf
u∈Bτ

Jλ (u). (3.16)

Thus,
cρ = inf

u∈Bρ
Jλ (u) < 0, and inf

u∈∂Bρ
Jλ (u) > 0,

where ρ is given in Lemma 1. Let εk ↓ 0 be such that

0 < εk < inf
u∈∂Bρ

Jλ (u)− inf
u∈Bρ

Jλ (u).
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By Ekeland’s variational principle in [7], there exists uk ∈ Bρ such that

cρ � Jλ (uk) � cρ + εk, (3.17)

and

J(uk) < J(u)+ εk‖uk −u‖X0, ∀ u ∈ Bρ , u �= uk. (3.18)

Then we have

J(uk) < cρ + εk � inf
u∈Bρ

J(u)+ εk < inf
u∈∂Bρ

J(u). (3.19)

Thus uk ∈ Bρ .
Next we show that J′λ (uk) → 0 in X∗

0 . Indeed, for any u ∈ X0 with ‖u‖X0 = 1, let
wk = uk + tu and for a fixed k � 1, we have ‖wk‖X0 � ‖uk‖X0 + t < ρ if t > 0 small
enough. It follows from (3.18) that Jλ (uk + tu) � Jλ (uk)− tεk‖u‖X0, that is,

Jλ (uk + tu)− Jλ(uk)
t

� −εk‖u‖X0 = −εk.

Letting t → 0, we see that 〈J′λ (uk),u〉 � −εk . It yields |〈J′λ (uk),u〉X0 | < εk , for any
u∈ X0 with ‖u‖X0 = 1. Then J′λ (uk)→ 0 in X∗

0 . Therefore, there exists a subsequence
{uk} ⊂ Bρ such that Jλ (uk) → cρ and J′λ (uk) → 0 in X∗

0 as k → ∞ . By Lemma 2,
{uk} has a convergent subsequence in X0 , still denoted by {uk} , such that uk → u2 in
X0 . Thus u2 is a solution of (1.1) with Jλ (u2) < 0. We complete the proof of Theorem
1.
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