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Abstract. The aim of this paper is to investigate the zeros’ distribution of the first kind Bessel
functions Jν (z) of order ν � 1 . The problem arises from the conjecture given by the work
[8] which considered the existence of smooth solutions for one-dimensional compressible Euler
equation with gravity. In this article we show that Jν (Lθ ) �= 0 for any integer L � 2 provided
that Jν (θ ) = 0 , ν � 1 and θ is sufficiently large. Moreover, if ν is half of an odd integer, we
can remove the restriction of large θ and show that Jν (Lθ ) �= 0 for any integer L � 2 .

1. Introduction

The aim of this work is to investigate the zeros’ distribution of the first kind Bessel
functions. The Bessel functions were first defined by Bernoulli and generalized by
Bessel, which are canonical solutions of the following Bessel’s differential equation:

z2 d2w
dz2 + z

dw
dz

+(z2−ν2)w = 0, (1.1)

where z,ν ∈ R . The parameter ν is called the order of the Bessel function. In the
past years, Bessel function plays an important role in many problems, for example, the
study of wave propagation and static potentials, etc.. According to the book of Watson
[11], the Bessel functions can be classified into two classes: the first kind Jν(z) and
the second kind Yν(z) . In the past, many properties of the Bessel functions have been
widely investigated. For example, J0(z) has an infinity of real zeros and, obtained by
Poisson, the formal expansion of J0(z) for large positive z was

J0(z) =
( 2

πz

)1/2[
cos(z− 1

4
π) ·{1− 12 ·32

2!(8z)2 +
12 ·32 ·52 ·72

4!(8z)4 −·· ·}+

sin(z− 1
4

π) ·{ 12

1!8z
− 12 ·32 ·52

3!(8z)3 + · · ·}]
.

For elementary properties of the Bessel functions, we refer the readers to the book [11].
Some recent results on the zeros of Bessel functions can also be found in the literature
[1, 3, 4, 9, 10].
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In recent work [8], Hsu et al considered the existence of smooth solutions for one-
dimensional motions of polytropic gas governed by the compressible Euler equations{

ρt +(ρu)x = 0,

(ρu)t +(ρu2 +P)x = −gρ ,
with ρu|x=0 = 0, (1.2)

for t,x � 0, here ρ ,u,P and g > 0 are density, velocity, pressure and gravitational ac-
celeration constant respectively. By expanding the solution of (1.2) as a power series
of parameters, they found that the first-order term of the series is exactly the solution
of their linearized problem, which can be represented by the first kind Bessel function
Jν(z) with index ν = (N−2)/2 for some N > 0 (see Section 2 for more details). More-
over, in order to seek the formulas of the higher order terms of the series solution, they
provided the following conjecture:

Conjecture. (see [8, p.719]) Let ν � 1 and θ be a positive zero of the first kind
Bessel function Jν(z) . Then Jν(Lθ ) �= 0 for any integer L � 2 .

The conjecture provides an interesting property for the zeros of Bessel function.
To the best of our knowledge, it was not considered before. Therefore, in this article
we will verify the authenticity of this conjecture. Here we remark that the statement of
the conjecture does not hold when ν < 1. For example, when ν = 1/2, we have

J 1
2
(z) = (

√
2sin z)/

√
πz,

which has positive zeros j 1
2 ,n := nπ for any n ∈ Z

+ . So that, for any integer L , we

have J 1
2
(L j 1

2 ,n) = J 1
2
( j 1

2 ,Ln) = 0.

This work is organized as follows. In Section 2, we recall some results of [8] which
provides the derivation of the conjecture. Then, in Section 3, we prove the conjecture
when ν � 1 and θ is sufficiently large. In the last section, we can remove the restriction
of large θ and prove the conjecture when ν = m+ 1

2 with m ∈ N .

2. Derivation of the conjecture

To illustrate the significance of the conjecture, we briefly describe its derivation in
this section. For more details, see the literature [6, 8].

Let’s consider system (1.2) under the assumption that the pressure satisfying the
gamma-law (see [2]), i.e. P = P(ρ) = Aργ for some constants A and γ with A > 0
and 1 < γ � 2. One can easily verify that equilibria of (1.2) are of the form

ρ =

⎧⎨
⎩A1(x+ − x)

1
γ−1 , if 0 � x � x+,

0, if x+ < x,
where A1 := ((γ −1)g/γA)1/(γ−1) (2.1)

and x+ is an arbitrary positive value. Without loss of generality, we may assume x+ =
1, A1 = 1 and A = 1/γ . Using the Lagrangian variable m =

∫ x
0 ρdx as the independent
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variable instead of x , we can write equations (1.2) by

xtt +Pm = −g, (2.2)

where P = γ−1(xm)−γ . Let us fix an equilibrium x = x(m) = 1−A2(m+−m)
γ−1

γ , where

A2 :=
(
γ/(γ −1)

)γ/(γ−1)
, m+ := (γ −1)/γ and 0 � m � m+ .

Putting x(t,m) = x(m)+ y and taking x(m) as the independent variable instead of m
(still write it as x ), then equation (2.2) is reduced to

ytt − 1
ρ(x)

(γP(x)G(yx))x = 0 with y|x=0 = 0, for 0 < x < 1, (2.3)

where

G(v) := γ−1(1− (1+ v)−γ), ρ(x) = (1− x)
1

γ−1 and P(x) = γ−1(1− x)
γ

γ−1 .

In addition, using new variables z := 1− x and N := 2γ/(γ −1) , equation (2.3) can be
written by

ytt −Δy = G(v)Δy+ Ĝ(v), (2.4)

where v := −∂y/∂ z,

Δy := zyzz +Nyz/2, G(v) := DG(v)−1 and Ĝ(v) := N(vDG(v)−G(v))/2.

For the linearized equation of (2.4), i.e.

ytt −Δy = 0 and y|z=1 = 0, (2.5)

Hsu et al [6] showed that (2.5) admits a time periodic solution

y = y1(t,z) := (λnz)
2−N

4 sin(
√

λnt + θ )JN−2
2

(2
√

λnz), (2.6)

where θ is a constant and λn := ( j N−2
2 ,n)

2/4. Note that j N−2
2 ,n is the n -th positive zero

of JN−2
2

(z) . Recently, by using the Nash-Moser Theorem (cf. [5]), the authors of [8]
established long time existence of true solution, for which the time-periodic function
(2.6) around an equilibrium is the first approximation. Their main idea is to find a
formal solution of (2.4) of the form

y(t,z) =
∞

∑
k=1

yk(t,z)εk,

where ε stands for a small parameter. Substituting the series solution into (2.4) and
starting from y1(t,z) , we can solve yk(t,z) with the boundary condition yk(1) = 0
successively. For simplicity, we only consider the case k = 2. One can verify that
y2(t,z) satisfies

( ∂ 2

∂ t2
−Δ

)
y2 = −2(N−1)

N−2
(Δy1 +

N
4

v1)v1, (2.7)
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where v1 = −∂y1/∂ z . Since y1(t,z) is an entire function, we can write the right-hand
side of (2.7) by f0(z)+(cos2Θ) f1(z), where Θ :=

√
λn0t +θ0 for some n0 , f0(z) and

f1(z) are entire functions of z . To solve equation (2.7), we first consider the problem

−Δw = f0(z), w|z=1 = 0. (2.8)

It’s easy to see that w(z) can be represented by

w(z) = − 2
N−2

∫ z

0

(
1−

(ζ
z

)N
2 −1)

f0(ζ )dζ +
2

N−2

∫ 1

0
(1− ζ

N
2 −1) f0(ζ )dζ . (2.9)

Next, we consider the problem

wtt −Δw = (cos2Θ) f1(z), w|z=1 = 0. (2.10)

Note that λn = ( j N−2
2 ,n)

2/4 is the eigenvalues of the operator −Δ with the Dirichlet
boundary condition. To solve the problem (2.10), we need to consider the following
two cases: (i) 4λn0 is not an eigenvalue and (ii) there is an eigenvalue λq = 4λn0 .

For case (i), (2.10) have a solution of the form w(t,z) = (cos2Θ)W (z), where

(−4λn0 −Δ
)
W = f1(z), W |z=1 = 0. (2.11)

According to Proposition 3 of [8], the first equation of (2.11) has a solution W0(z) ,
which is an entire function of z such that W0(0) = 1. Then, for any constant C ,

W (z) =W0(z)+C(4λn0z)
2−N

4 JN−2
2

(4
√

λn0z)

is a solution of (2.11), too. Since 4λn0 is not an eigenvalue, we have JN−2
2

(4
√

λn0) �= 0.

Therefore, W (z) satisfies the boundary value condition provided C satisfies

W (1) = W0(1)+C(4λn0)
2−N

4 JN−2
2

(4
√

λn0) = 0.

On the other hand, the case (ii) implies j N−2
2 ,q = 2 j N−2

2 ,n0
, i.e. JN−2

2
(2 j N−2

2 ,n0
)= 0.

Similarly, for any case k � 3, we also need to verify j N−2
2 ,q = k j N−2

2 ,n0
or not. This

gives us the reason why we have to investigate the correctness of the conjecture as stated
in Section 1.

3. Result for the case ν � 1

According to the book [11] (see Section 7.3, p. 205), we have

Jν(z) =
√

2(πz)−1/2(pν(z)cos(z− ν
2

π − π
4

)−qν(z)sin(z− ν
2

π − π
4

)
)
, (3.1)
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where⎧⎪⎪⎪⎨
⎪⎪⎪⎩

pν(z) :=
1
2

1

Γ(ν + 1
2)

∫ +∞

0
e−uuν− 1

2

((
1+

iu
2z

)ν− 1
2 +

(
1− iu

2z

)ν− 1
2
)
du,

qν(z) :=
1
2i

1

Γ(ν + 1
2 )

∫ +∞

0
e−uuν− 1

2

((
1+

iu
2z

)ν− 1
2 −

(
1− iu

2z

)ν− 1
2
)
du

(3.2)

are real-valued for z > 0, i =
√−1. By the formulae of (3.2), if |z| → ∞ and |argz| <

π , we can write the asymptotic expansions of pν (z) and qν(z) more precisely by the
form:

pν(z) ∼
∞

∑
k=0

(−1)k(ν,2k)
(2z)2k

and qν(z) ∼
∞

∑
k=0

(−1)k(ν,2k+1)
(2z)2k+1 ,

where (ν,k) :=
Γ(ν + k+

1
2
)

k!Γ(ν − k+
1
2
)

=
(4ν2−12)(4ν2−32) · · · (4ν2− (2k−1)2)

22kk!
.

Hence, it follows that

pν(z) = 1+O(z−2) and qν(z) = (
ν2

2
− 1

8
)
1
z
(1+O(z−2)) as z → +∞. (3.3)

Using the asymptotic expansions of Jν(z) , we can obtain the following result.

THEOREM 1. Let ν � 1 and θ be a positive zero of the Bessel function Jν . If θ
is sufficiently large, then Jν(Lθ ) �= 0 for any integer L � 2 .

Proof. Suppose Jν(θ ) = 0 and θ is sufficiently large, by (3.1) and (3.3), we have

tan(θ − ν
2

π − π
4

) = A(θ ) :=
pν(θ )
qν(θ )

=
8

4ν2 −1
θ (1+O(θ−2)).

If Jν(Lθ ) = 0 for L � 2 and θ being sufficiently large, then

tan(Lθ − ν
2

π − π
4

) = A(Lθ ) and
tan(Lθ − ν

2
π − π

4
)

tan(θ − ν
2

π − π
4

)
→ L, as θ → ∞. (3.4)

Denote Θ := θ − ν
2

π − π
4

and β := tan((L−1)(
ν
2

π +
π
4

)) , we have

tanΘ ∼ 2Θ/(ν2− 1
4
) → ∞ as θ → ∞, and (3.5)

tan(Lθ − ν
2

π − π
4

) = tan(LΘ +(L−1)(
ν
2

π +
π
4

))
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=

⎧⎪⎨
⎪⎩

β + tan(LΘ)
1−β tan(LΘ)

, if β �= ±∞,

−cot(LΘ), if β = ±∞.

(3.6)

Moreover, by induction, we obtain that

tan(Lθ ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−1)�+1L(tanθ )2�−1 + · · ·+L tanθ
(−1)�(tanθ )2� + · · ·+1

, if L = 2�, � ∈ Z
+,

(−1)�(tanθ )2�+1 + · · ·+L tanθ
(−1)�L(tanθ )2� + · · ·+1

, if L = 2�+1, � ∈ Z
+.

(3.7)

Now we consider the following two cases.

(1) Assume L = 2� , � ∈ Z . By (3.5) and (3.7), as θ → ∞ , we have tan(LΘ) ∼
−L/tanΘ → 0 as θ → ∞. Then, from (3.6), we obtain that

tan(Lθ − ν
2

π − π
4

)

tan(θ − ν
2

π − π
4

)
∼

⎧⎪⎪⎨
⎪⎪⎩

β
tanΘ

, if β �= ±∞,

−cot(LΘ)
tanΘ

, if β = ±∞
→

⎧⎨
⎩

0, if β �= ±∞,

1
L

, if β = ±∞,
(3.8)

as θ → ∞ . However, by (3.4) and (3.8), we have either L = 0 or L = 1/L and which
gives a contradiction.

(2) Assume L = 2�+1, � ∈ Z . By (3.5) and (3.7), we have

tan(LΘ) ∼ tanΘ/L → ∞, as θ → ∞.

Then, from (3.6), we obtain that

tan(Lθ − ν
2

π − π
4

)

tan(θ − ν
2

π − π
4

)
∼

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

− 1
β tanΘ

, if β �= 0,±∞,

tan(LΘ)
tanΘ

, if β = 0,

−cot(LΘ)
tanΘ

, if β = ±∞

→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if β �= 0,±∞,

1
L

, if β = 0,

0, if β = ±∞,

(3.9)

as θ → ∞ . However, by (3.4) and (3.9), we have either L = 0 or L = 1/L and which
gives a contradiction. Hence Jν(θ ) and Jν(Lθ ) can not vanish simultaneously pro-
vided that θ is sufficiently large and L � 2. The proof is complete.

4. Result for the case ν = m+ 1
2

In this section, we further improve the result of Theorem 1 to the case ν = m+ 1
2

for some m ∈ N . If ν is half of an odd integer, Jν(z) can also be written by (see [11])

Jν(z) = (−1)ν− 1
2

√
2
π

zν
(1

z
d
dz

)ν− 1
2 sinz

z
. (4.1)

By (4.1), we can remove the restriction of large θ in Theorem 1.
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THEOREM 2. Suppose ν = m+ 1
2 for some integer m � 1 . If θ is a positive zero

of Jν , then Jν(Lθ ) �= 0 for any integer L � 2 .

Proof. Since ν = m+ 1
2 for some integer m � 1, by (4.1) and mathematical in-

duction on m , there are polynomials Pm(z),Qm(z) of z with coefficients in Z such
that (1

z
d
dz

)m sinz
z

=
1

z2m

(
Pm(z)cosz−Qm(z)

sinz
z

)
. (4.2)

Moreover, we can show that these polynomials are of the form

P2k =(−1)kk(2k+1)z2k−2 + [lower order terms],

P2k+1 =(−1)kz2k + [lower order terms],

Q2k =(−1)k+1z2k + [lower order terms],

Q2k+1 =(−1)k(k+1)(2k+1)z2k + [lower order terms].

Suppose that Jν(θ ) = Jν(Lθ ) = 0 for some θ > 0 and an integer L � 2. Then it follows
from (4.2) that

Pm(θ )cosθ −Qm(θ )
sinθ

θ
= 0 and Pm(Lθ )cosLθ −Qm(Lθ )

sinLθ
Lθ

= 0. (4.3)

By Siegel’s theorem (cf. [11], p. 485), which claims that if θ is a non-zero algebraic
number then Jν(θ ) is transcendental, we know that θ is transcendental. Then Qm(θ ) �=
0,Qm(Lθ ) �= 0 and which imply that cosθ �= 0,cosLθ �= 0,

tanθ =
θPm(θ )
Qm(θ )

and tanLθ =
LθPm(Lθ )
Qm(Lθ )

. (4.4)

On the other hand, by (3.7), we may write tan(Lθ ) = RL(tanθ )/SL(tanθ ) where RL(T )
and SL(T ) are polynomials of T with coefficients in Z which consist of odd powers
of T and even powers of T respectively. Moreover, SL �≡ 1 for L � 2. Then it follows
from (4.4) that

RL(
Pm

(
θ )

Qm(θ )
θ
)

SL
( Pm(θ )
Qm(θ )

θ
) =

Pm(Lθ )
Qm(Lθ )

Lθ (4.5)

and which implies that θ is algebraic, a contradiction. Therefore, Jν(θ ) and Jν(Lθ )
can not vanish simultaneously for any L � 2. The proof is complete.
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