
D ifferential
Equations

& Applications

Volume 8, Number 3 (2016), 385–391 doi:10.7153/dea-08-21
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Abstract. We present a new global minimization theorem on Hilbert spaces which is different
from the one in Hofer [7] using the notion of a nonexpansive potential operator. An example is
given to illustrate our result.

1. Introduction

In [12] the link between a fixed point of a potential operator and a global minimum
of some energy functional was established. Usually a minimization theory is based
on the Palais-Smale condition (see, [6, 7]). In this paper we present a minimization
theorem using nonexpansive potential operator theory in Hilbert spaces and our proof
is based on a fixed point approach.

Let (H,(., .)) be a real Hilbert space. An operator T : H −→H is called a potential
operator (or gradient operator) on H , if there exists a Gâteaux differentiable functional
ϕ : H −→ R such that Gradϕ(x) = T (x) , for all x ∈ H i.e.

lim
t→0

ϕ(x+ th)−ϕ(x)
t

= (T (x),h) ∀x,h ∈ H.

Let (., .) denote the scalar product on H and ‖.‖ =
√

(., .) the norm. Consider the
functional,

ϕ(x) =
1
2
‖x‖2−

∫ 1

0
(T (sx),x)ds

for all x ∈ H .

PROPOSITION 1. [12]. The fixed points of T agree with the global minima of the
functional ϕ .

In our main result, we need the following fixed point theorem.
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THEOREM 1. [2] (Browder Theorem) Let H be a Hilbert space and C a nonempty
closed convex bounded subset of H . Then every nonexpansive mapping F : C −→ C
has a fixed point in C.

THEOREM 2. [11] (Leray-Schauder type theorem) Let U be an open bounded
subset of a Hilbert space H , 0 ∈U and F : U −→ H a nonexpansive map. Assume

λF(u) �= u for all u ∈ ∂U and λ ∈ [0,1] .

Then F has at least one fixed point in U.

Now, we recall some concepts from critical point theory.

DEFINITION 1. [8]. Let ϕ ∈ C1(H,R) . If any sequence (un) ⊂ H for which
(ϕ(un)) is bounded in R and ϕ ′(un) −→ 0 as n −→+∞ in H ′ possesses a convergent
subsequence, then we say that ϕ satisfies the Palais-Smale condition ((PS) condition
for short).

PROPOSITION 2. [6, 7]. Let H be a real Hilbert space and let ϕ ∈ C 1(H,R)
satisfy the Palais-Smale condition. Let C be a closed convex subset of H . Suppose
that T = I −ϕ ′ maps C into C and that ϕ is bounded below in C . Then, there is a
u0 ∈C such that ϕ ′(u0) = 0, and inf

C
ϕ = ϕ(u0) .

In [6] the authors considered the problem⎧⎨
⎩

−
N
∑

i, j=1
Dj(ai j(x)Di(u))+ c(x)u = f (x,u), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω
(1.1)

where Ω is a bounded subset of R
N , ai j ∈ L∞(Ω) , c∈ L

N
2 , c(x) � 0, and f : Ω×R−→

R is a Carathéodory function such that

| f (x,s)| � c|s|σ +d(x), (1.2)

where σ = N+2
N−2 and d ∈ L

2N
N+2 if N � 3, or d ∈ Lp and 1 < p,σ < ∞ if N = 2. The

associated Dirichlet problem is{
a[u,v] =

∫
Ω f (x,u)v, ∀v ∈ H1

0 (Ω)
u ∈ H1

0 (Ω) (1.3)

with a[u,v] =
∫

Ω
N
∑

i, j=1
ai j(x)DiuDjv+ c(x)uv .

By a subsolution and a supersolution of (1.3), we mean respectively w,W ∈H1
0 (Ω)

satisfying a[w,v] �
∫

Ω f (x,w)v, and a[W,v] �
∫

Ω f (x,W )v, ∀v ∈ H1
0 (Ω),v � 0.

Let ϕ : H1
0 (Ω) −→ R be defined by

ϕ(u) =
1
2
a[u,u]−

∫
Ω

F(x,u)dx (1.4)

with F(x,s) =
∫ s
0 f (x,ξ )dξ .
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THEOREM 3. (Theorem 6 in [6]). Assume conditions on f that guarantee that ϕ
defined in (1.4) satisfies the Palais-Smale condition. Suppose that there exist a subso-
lution w∈ H1

0 and a supersolution W ∈ H1
0 of (1.3) such that w �W . Assume also for

each fixed x ∈ Ω, f (x,s) is a nondecreasing function of s for w(x) � s � W (x) . Then
there exists a u0 ∈ H1

0 (Ω) such that

u0 ∈ [w, W ], ϕ(u0) = inf
[w, W ]

ϕ and ϕ ′(u0) = 0,

where [w, W ] is the segment defined by [w, W ] = {tw+(1− t)W, t ∈ [0,1]}.
Consequently u0 is a solution of (1.3).

In this paper we remove the Palais-Smale condition in Proposition 2 and Theorem
3 and replace it with easy verifiable conditions on the functional ϕ .

2. Main Result

Let H a real Hilbert space and (., .) the scalar product.

THEOREM 4. Let ϕ : H −→ R be a functional such that:

1. ϕ is twice Gateaux differentiable on H.

2. ‖(I′ −ϕ ′′)(u)‖ � 1 , ∀u ∈ H .

3. (I −ϕ ′)(C) ⊂C for some convex nonempty closed and bounded subset C of
H .

Then, ϕ has a global minimum on H. Indeed there exists a u0 ∈C such that

ϕ(u0) = inf
H

ϕ .

In particular, ϕ ′(u0) = 0.

Proof. Let T : H −→ H with ϕ ′ = I − T (i.e. T = I −ϕ ′ ). Note that T is a
potential operator. To show T is nonexpansive, note from the mean value theorem (see
[13] pp. 122 ) that for all u,v ∈ H there exists τ0 ∈ [0 1] such that:

‖Tu−Tv‖ � ‖DT (τ0u+(1− τ0)v).(u− v)‖
� ‖DT (τ0u+(1− τ0)v)‖‖u− v‖
= ‖(I′ −ϕ ′′)(τ0u+(1− τ0)v)‖‖u− v‖.

Here, DT is the differential of the operator T. Using assumption (2) we infer that

‖Tu−Tv‖ � ‖u− v‖, ∀u,v ∈ H.

From Theorem 1, the operator T has a fixed point in C and, by Proposition 1, such a
fixed point is a global minimizer of ϕ on H.

Now, one can prove an analogue of the above theorem.
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THEOREM 5. Let ϕ : H −→ R be a functional as in Theorem 4 and assume con-
ditions 1 and 2 in the statement of Theorem 4 hold. Also suppose there is an open
bounded subset U of H with 0 ∈U and

ϕ ′(u) �= λ −1
λ

u ,∀u ∈ ∂U, ∀λ ∈ [0,1] .

Then, ϕ has a global minimum on U. Indeed there exists a u0 ∈U such that

ϕ(u0) = inf
H

ϕ .

In particular, ϕ ′(u0) = 0.

Proof. The result follows from Theorem 2, since the above condition guarantees
that λ (I−ϕ ′)(u) �= u for all u ∈ ∂U and λ ∈ [0,1] .

3. Application

Consider the problem
{−Δu = f (x,u), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(3.1)

where Ω is a bounded domain in R
N . Here f and f ′ : Ω×R −→ R are Carathéodory

functions where f ′ is the derivative of f with respect to its second variable. Also
assume

| f (x,s)| � c1|s|σ1 +d1, and | f ′(x,s)| � c2|s|σ2 +d2 (3.2)

for some positive constants c1,c2,d1,d2 and 0 � σ1,σ2 < N+2
N−2 if N � 3 (0 � σ1,σ2 <

∞ if N = 1,2)
A weak solution of (3.1) is a solution of the problem,

{∫
Ω ∇u.∇vdx− ∫

Ω f (x,u).vdx = 0, ∀v ∈ H1
0 (Ω),

u ∈ H1
0 (Ω).

(3.3)

Let w,W ∈ H1
0 (Ω) be respectively a subsolution and a supersolution of (3.3) and let λ1

be the first eigenvalue of the linear Dirichlet problem
{−Δu(x) = λu(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.

THEOREM 6. Assume that

| f (x,s)| � c1|s|σ1 +d1, and | f ′(x,s)| � c2|s|σ2 +d2

for some positive constants c1,c2,d1,d2 and 0 � σ1,σ2 < N+2
N−2 if N � 3 (0 � σ1,σ2 <

∞ if N = 1,2) and that
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1. for each fixed x ∈ Ω, f (x,y) is a nondecreasing function of y for w(x) � y �
W (x) ,

2. | f ′(x,s)| � λ1 , ∀x ∈ Ω , ∀s ∈ R.

Then, there exists a u0 ∈ H1
0 (Ω) which is a weak solution of problem (3.1) and u0 ∈

[w, W ].

Proof. Consider the problem,

{∫
Ω ∇u.∇vdx− ∫

Ω f (x,u).vdx = 0, ∀v ∈ H1
0 (Ω),

u ∈ H1
0 (Ω).

Let ϕ : H1
0 (Ω) −→ R be such that

ϕ(u) =
1
2
‖u‖2−

∫
Ω

F(x,u)dx with F(x,u) =
∫ u

0
f (x,ξ )dξ .

From assumption (3.2) (see [3], [5]), ϕ is twice differentiable and the derivatives are
given by:

ϕ ′(u).v =
∫

Ω
∇u.∇v−

∫
Ω

f (x,u).vdx, ∀v ∈ H1
0 (Ω), (3.4)

(ϕ ′′(u).v).ω =
∫

Ω
∇v.∇ω −

∫
Ω

f ′(x,u).v.ωdx, ∀ v,ω ∈ H1
0 (Ω). (3.5)

To prove that problem (3.3) has a solution we show that ϕ satisfies the assumptions
in Theorem 4.

To show
‖(I′ −ϕ ′′)(u)‖ � 1,∀u ∈ H1

0 (Ω),

we use the Cauchy-Schwarz and the Poincaré inequalities, and we have

‖(I′ −ϕ ′′)(u)‖ = sup
‖v‖�1,‖ω‖�1

|(I′ −ϕ ′′)(u).v.ω |,

= sup
‖v‖�1,‖ω‖�1

⏐⏐∫
Ω

f ′(x,u)v(x)ω(x)dx
⏐⏐

� sup
‖v‖�1,‖ω‖�1

∫
Ω
| f ′(x,u)||v(x)||ω(x)|dx

� λ1 sup
‖v‖�1,‖ω‖�1

∫
Ω
|v(x)||ω(x)|dx

� λ1 sup
‖v‖�1,‖ω‖�1

(∫
Ω
|v(x)|2dx

) 1
2
(∫

Ω
|ω(x)|2dx

) 1
2

� λ1 sup
‖v‖�1,‖ω‖�1

‖v‖L2 .‖ω‖L2
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� λ1 sup
‖v‖�1,‖ω‖�1

(
1√
λ1

‖v‖
)

.

(
1√
λ1

‖ω‖
)

= sup
‖v‖�1,‖ω‖�1

‖v‖.‖ω‖

� 1.

Let C = [w, W ] =
{
u ∈ H1

0 (Ω) : w(x) � u(x) � W (x), ∀x ∈ Ω
}

. Note C is a closed
convex subset of H1

0 (Ω) and it is bounded since if u ∈ C = [w, W ] , then there exists
t ∈ [0,1] such that u = tw+(1− t)W , and so,

‖u‖ = ‖tw+(1− t)W‖ � ‖w‖+‖W‖.

The argument in [1, p. 712] shows that (I−ϕ ′)(C) ⊂C.
The existence of a weak solution of (3.1) follows from Theorem 4.

EXAMPLE 1. Consider the boundary value problem
⎧⎨
⎩

−u′′(x) = π2

4

(
ln(exp(u(x))+10)− 1

2

)
, x ∈ (−1,1),

u(−1) = u(+1) = 0.
(3.6)

It is easy to see that w and W which are defined by w(x) = 0 and W (x)= π2

4

(|x|− |x|2)
are respectively subsolution and supersolution of (3.6). Also note all the assumptions
in the statement of Theorem 6 are satisfied.
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