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EXAMPLES OF SHOCKS IN POPULATION DYNAMICS
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Abstract. The aim of this paper is to study some shocks in population dynamics by means of the
recent theories of generalized functions in order to have a better understanding of the long-term
behavior of these phenomena. The shocks analyzed can be wars, genocides, epidemics, natural
disasters, cancers... Population dynamics is represented by the transport equation and shocks by
initial data which are distributions. This justifies to search for solutions in Colombeau algebra.
Moreover we build well-posed problems. We study two models, the genesis model and a top hat
condition.

1. Introduction

The purpose of this paper is to study shocks (which can be wars, genocides, natural
disasters, epidemics, significant immigrations, cancers...) in population dynamics, by
means of the recent theories of algebras of generalized functions in order to have a
better understanding of the long-term behavior of these phenomena. The meeting of
mathematics and economy allows us to understand facts, sometimes to anticipate them,
or even to change them. The facts show the persistent effect of the shocks in population
dynamics whose amplitude diminishes with time for wars [8], [6], genocides [25], [29],
natural disasters [3], [4], [28], cancers [17] and in various cases. The impact of shocks,
in terms of deaths, is heavier in low income countries than in high income countries.
The natural disasters have considerable repercussions on the vulnerable populations and
have long-term consequences for human capital in the poorest countries. Rich countries
rank ahead poor countries in terms of economic losses owed to natural disasters because
of a higher value of guaranteed goods. Nevertheless, when numbers are presented in
proportion to Gross Domestic Product, the developing countries rank at the top in terms
of economic impact [3].

Transport equation is used as model for some phenomena in economy: health, fi-
nance, taxation, insurance, economic growth, economy of transport, demography. The
solution of the transport equation is well known in various classical cases with initial
data in the space of Ck functions. However, some situations cannot be interpreted by
equations with regular data. To study them we must use data which are distributions or
other generalized functions [13, 14]. The Lotka-McKendrick equation is the common
model describing the dynamics of age structured population. It is formulated by the
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transport equation and shock by initial data which are distributions. Since we investi-
gate solutions with distributions [27], [18], or other generalized functions as initial data,
that necessitates a non-linear theory of distributions like that of Colombeau. Thus we
must search for solutions in the Colombeau algebra, [9, 10]. This algebra gives an effi-
cient algebraic framework which allows for a precise study of solutions. Introducing it
in economy will permit to build well-posed problems and to have a fine interpretation of
the results. We try to show that the theory of nonlinear generalized functions, which is a
natural continuation of the classical theory of smooth functions and distributions, gives
a better and more rigorous approach of some economic and demographic problems.

Moreover we must use the results of H. A. Biagioni [5] because the functions are
defined on Ω , a subset of R

2 which is not an open set, and we must use a specific
family of mollifiers to stay in Ω .

The paper is structured as follows. Section 2 describes the model for regular data.
In Section 3, we briefly recall Colombeau’s construction obtained as a (C ,E ,P)-
algebra of J.-A. Marti [20, 21, 22] and we study two models, the genesis model and a
top hat initial condition. In both models we treat the case where birth distribution is a
Dirac distribution.

2. The model for regular data

We use the classical age-structured population model usually formulated by the
Lotka-McKendrick equation [19], [23], [16], which is a hyperbolic Partial Differential
Equation where u(t,x) is the age-density at position x at time t of the population

(P)

⎧⎨
⎩

∂u
∂ t

(t,x)+
∂u
∂x

(t,x) = −μ(x)u(t,x),

u |{t=0}= φ ,

φ is the initial data, supplemented by a nonlocal boundary condition, the birth law,

u(t,0) =
∫ xm

0
β (ζ )u(t,ζ )dζ

which gives the total number of newborn (individuals with age x = 0) at time t . The
maximal age is xm , (t,x) ∈ R+× [0,xm) and for x > xm we have u(t,x) = 0.

The age-specific fertility β (x) is the number of newborn, in one time unit, coming
from a single individual whose age is in the infinitesimal age interval [x;x+dx] . Thus
the number of newborn in one time unit, coming from individuals with age in [a1;a2]
is ∫ a2

a1

β (ζ )u(t,ζ )dζ .

The age specific mortality μ(x) is the death rate of people having age in [x;x+dx] .
The functions μ , β , φ are, of course, non negative,

μ ∈ C0 (R+) ,β ∈ C1 (R+) ,φ ∈ L1
loc (R+) ,

∫ ∞

0
μ(ζ )dζ = +∞.
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The total population at time t is given by

N(t) =
∫ +∞

0
u(t,ζ )dζ .

In general

φ(0) �=
∫ xm

0
β (ζ )u(0,ζ )dζ .

Under these conditions, as t increases, the boundary condition introduces discontinu-
ities in the solutions.

Integrating the equation along characteristics, one obtains

u(t,x) = u(t0,x0)exp(−
∫ t

0
μ(s+ x0− t0)ds);x− x0 = t − t0

where x0 is the age variable at time t = t0 .
Then the solution of the McKendrick equation is

u(t,x) =
{

v(t− x)e−
∫ x
0 μ(ζ )dζ ,t � x,

φ(x− t)e−
∫ x
x−t μ(ζ )dζ ,t < x

where v(t) = u(t,0) is the birth rate.
Substituting u into the birth law one obtains the renewal equation

v(t) =
∫ t

0
v(t −a)β (a)e−

∫ a
0 μ(ζ )dζ da+

∫ +∞

t
φ(a− t)β (a)e−

∫ a
a−t μ(ζ )dζ da.

for the birth rate v(t) .
When μ is constant, we have

u(t,x) =
{

g(t,x) = v(t− x)e−μx,t � x,
w(t,x) = φ(x− t)e−μt ,t < x

and

v(t) = ψ(t)+
∫ t

0
v(t−a)β (a)e−μada

with

ψ(t) =
∫ +∞

t
φ(a− t)β (a)e−μtda.

The solution space is divided into two regions: for t < x , the solution is determined
by initial density of individuals of age x− t ; for t � x , the solution is determined, via
the renewal condition, by the birth rate at time t− x .

Set

D = {(t,x) : t � 0,x � 0} ,D1 = {(t,x) : t � x � 0} ,

D2 = {(t,x) : 0 � t < x} .

We consider (g,w) ∈ C∞ (D1)×C∞ (D2) as solution of the problem.
Now consider a population which has only one fertile age class. This correspond

to a birth function of the form β (x) = Bδ (x− x0) where B is the number of offspring
[15], [7], [11].
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THEOREM 1. Assume that φ ∈ L1
loc (R+) is a locally integrable initial condition

for the McKendrick equation, β (x) = Bδ (x− x0) where δ is the Dirac delta function,
x0 > 0 and B > 0 , then

u(t,0) = Bu(t,x0)

and if μ is constant, the solution of the McKendrick equation is

u(t,x) =
{

g(t,x) = Bmφ(mx0 + x− t)e−μt,t � x,
w(t,x) = φ(x− t)e−μt ,t < x

where m = Ent((t − x)/x0 + 1) , Ent (x) = integer part of x . The solution of the
renewal equation is

v(t) = Bsφ(sx0 − t)e−μt

where s = Ent(t/x0 +1).

Proof. Take the sets

Δm = {(t,x) : x+(m−1)x0 � t � x+mx0;x � 0;t � 0}
where m ∈ N

∗ and Δ0 = {(t,x) : 0 � t < x} . So, for m � 1, (t,x) ∈ Δm if and only if

t � x and m = Ent((t− x)/x0 +1) . Take m = 1, (t,x) ∈
o

Δ1 , take the point (t ′,x′) on
the line t = t ′ , therefore x′ < t ′ < x′ + x0 . The characteristic line that passes by (t ′,x′)
and crosses the line x = 0 at t ′1 = t ′ − x′ . According to the method of characteristic we
have

u
(
t ′,x′

)
= u

(
t ′ − x′,0

)
e−μx′ .

As β (x) = Bδ (x− x0) then the boundary condition becomes u(t,0) = Bu(t,x0) , then

u
(
t ′,x′

)
= u

(
t ′ − x′,x0

)
e−μx′ .

As t ′1 = t ′ − x′ < x0 then (t ′ − x′,x0) ∈ Δ0 , so

u
(
t ′ − x′,x0

)
= φ

(
x0− t ′+ x′

)
e−μ(t′−x′)

and

u
(
t ′,x′

)
= Bφ

(
x0 − t ′+ x′

)
e−μ(t′−x′)e−μx′

= Bφ
(
x0 + x′ − t ′

)
e−μt′ .

Now we proceed by induction. Suppose that, for some k � 1, the solution can be
written in the form

u(t,x) = Bmφ(mx0 + x− t)e−μt (A1)

where m = Ent((t− x)/x0 +1) , (t,x) ∈ Δm , 1 � m � k . It is true for m = 1. Suppose
now that (t ′,x′) ∈ Δk+1 . We have

u
(
t ′,x′

)
= u

(
t ′ − x′,0

)
e−μx′ = u

(
t ′ − x′,x0

)
e−μx′ .
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As (t ′,x′) ∈ Δk+1 we have x′ � t ′ and k+1 = Ent((t ′ − x′)/x0 +1) is equivalent to

k+1 < 1+(t ′ − x′)/x0 < k+2

then
x0 (k+1) < x0 +(t ′ − x′) < x0 (k+2) .

As
Ent((t ′ − x′ − x0)/x0 +1) = Ent((t ′ − x′)/x0) = k,

we have (t ′ − x′,x0) ∈ Δk then, according to (A1), we have

u
(
t ′,x′

)
= B

(
Bkφ

(
kx0 + x0− (t ′ − x′)

)
e−μ(t′−x′)

)
e−μx′

= Bk+1φ
(
(k+1)x0 + x′ − t ′)

)
e−μt′ .

Thus (A1) is true for m = k+1. This gives the result.

3. Models for irregular data

It is convenient to describe shocks with help of discontinuous functions or distribu-
tions as data, thus we use the framework of generalized algebras to obtain a well-posed
problem.

3.1. The Colombeau algebra

First we briefly recall Colombeau’s construction obtained as a (C ,E ,P)-algebra
of J.-A. Marti [20, 21, 22]. Set Λ = (0;1] . Set

A =
{
(mε )ε ∈ R

Λ : ∃p ∈ R
∗
+,∃C ∈ R

∗
+,∃μ ∈ (0;1],∀ε ∈ (0;μ ], |mε | � Cε−p

}
and

IA =
{
(mε)ε ∈ R

Λ : ∀q ∈ R
∗
+,∃D ∈ R

∗
+,∃μ ∈ (0;1],∀ε ∈ (0;μ ], |mε | � Dεq

}
an ideal of A . Thanks to the results of H. A. Biagioni [5], J. Aragona [1], [2], A.
Delcroix [12] and J.-A. Marti [20, 21, 22], we can define Colombeau spaces on Ω an
subset of R

n such that
O ⊂ Ω ⊂ O, (H1)

where O is an open subset of R
n and O the closure of O .

Define for n ∈ N and Ω an subset of R
n verifying (H1),

X (Ω) = {(uε)ε ∈ [C∞(Ω)]Λ : ∀K � Ω, ∀l ∈ N,
(
PK,l(uε)

)
ε ∈ |A|},

N (Ω) = {(uε)ε ∈ [C∞(Ω)]Λ : ∀K � Ω, ∀l ∈ N,
(
PK,l(uε)

)
ε ∈ |IA|}

where
PK,l(uε) = sup

|α |�l
PK(uε) with PK(uε) = sup

x∈K
|Dαuε(x)| , K � Ω,
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the notation K � R
n means that K is a compact subset of R

n and

Dα =
∂ α1+...+αn

∂ zα1
1 ...∂ zαn

n
for z = (z1, ...,zn) ∈ Ω , α = (α1, ...,αn) ∈ N

n .

The pointwise product, the addition and the generalized derivation Dα : u(= [uε ]) 	→
Dαu = [Dαuε ] provide G (Ω) with a differential algebraic structure.

The sheaf of factor algebras G (·) = X (·)/N (·) is called the sheaf of simpli-
fied Colombeau algebras. G (Ω) is the simplified Colombeau algebra of generalized
functions.

We denote by [uε ] the class in G (Ω) defined by the representative (uε)ε∈Λ ∈
X (Ω) .

The set of generalized real numbers is defined as R = A/IA .
Relationship with distribution theory.
Let Ω an subset of R

n verifying (H1). If (ϕε)ε∈(0;1] is a family of mollifiers
ϕε (x) = ε−nϕ (x/ε) , x∈R

n ,
∫

ϕ (x)dx = 1 and if T ∈D ′ (Ω) , the convolution product
family (T ∗ϕε)ε is a family of smooth functions slowly increasing in 1/ε . The space
of distributions D ′(Ω) is embedded into G (Ω) by T 	→ [T ∗ϕε ] , [12].

We choose a special kind of mollifiers which moments of higher order vanish.
The association process. The association relation identifies elements of G (Ω) if

they coincide in the weak limit. That is, u = [uε ] and v = [vε ] ∈ G (Ω) are called
associated if

lim
ε→0

∫
(uε(x)− vε(x))ψ(x)dx = 0

for all test functions ψ . We write u ∼ v . We can also define an association process
between u = [uε ] and T ∈ D ′(Ω) by writing simply u ∼ T ⇐⇒ lim

D ′(Ω),Λ
uε = T , then

u is said to admit T as associated distribution.
So, here we take the data in G ([0;+∞[) and we search for solution (g,w) ∈

G (D1)×G (D2) .

3.2. The genesis model

In the genesis model we assume that φ = kδ where δ the Dirac distribution and
k > 0. Thus all the initial population is at age zero. Let us assume also that the age-
specific fertility β and the age specific mortality μ are both constantes. We have the
problem formally written as

(P)

⎧⎨
⎩

∂u
∂ t

+
∂u
∂x

= −μu,

u |{t=0}= kδ .

For example, to model the growth of tumors, some assumptions are made about the
initial distribution of cell ages. The simplest case is when all the cells start at age zero,
so that φ = kδ with k is the initial population of cells and δ the Dirac distribution [17].
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3.2.1. Well formulated problem

We take some fixed smooth function ϕ ,

ϕ(x) = 0 for x /∈ [0;1] ,
∫

ϕ(x)dx = 1, sup
x∈[0;1]

ϕ(x) = ϕ(0) .

We consider the family of mollifiers (ϕε)ε given by ϕε(x) = 1
ε ϕ
(

x
ε
)

then suppϕε =
[0;ε] . We approach problem (P) by a parametric family of (Pε) ones

(Pε)

{ ∂uε
∂ t

+
∂uε
∂x

= −μuε ,

uε,η(0,x) = kϕε(x),

with k > 0, ϕε ∈ C∞ ([0;+∞[) .
The generalized problem is well formulated as

(Pgen)

⎧⎨
⎩

∂u
∂ t

+
∂u
∂x

= −μu,

u |{t=0}= [kϕε ] ,

where [kϕε ] ∈ G ([0;+∞[) and (g,w) is searched in G (D1)×G (D2) .

3.2.2. Solution to (Pgen)

THEOREM 2. The solution to (Pε) is (gε ,wε ) with

gε(t,x) = kβet(β−μ)e−β x, if t � x,
wε(t,x) = kϕε (x− t)e−μt = k

ε ϕ
(

x−t
ε
)
e−μt , if t < x.

Proof. We have

uε(t,x) =
{

gε(t,x) = vε (t− x)e−μx, if t � x,
wε(t,x) = kϕε (x− t)e−μt = k

ε ϕ
(

x−t
ε
)
e−μt , if t < x

where vε(t) = uε(t,0) . Thus the renewal equation takes the form

vε(t) = ψε(t)+
∫ t

0
vε(t −a)βe−μada,

with

ψε(t) =
∫ +∞

t
kϕε (a− t)βe−μtda =

∫ +∞

0
kϕε (s)βe−μt ds

= kβe−μt
∫ +∞

0
ϕε(s)ds = kβe−μt .

Thus we have

vε(t) = kβe−μt + β
∫ t

0
vε(t −a)e−μada = kβe−μt + β

∫ t

0
vε(s)e−μ(t−s)ds
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= kβe−μt + βe−μt
∫ t

0
vε(s)eμsds.

Differentiation gives

(vε)
′ (t) = −μkβe−μt + βe−μt (vε(t)eμt)− μβe−μt

∫ t

0
vε(s)eμsds

= −μ
(

kβe−μt + βe−μt
∫ t

0
vε(s)eμsds

)
+ βvε(t)

= −μvε(t)+ βvε(t) = (β − μ)vε(t).

Then (vε)
′ (t) = (β − μ)vε(t) . From the renewal equation with t = 0 we have vε(0) =

kβ . Then vε (t) = kβe(β−μ)t and gε(t,x) = kβe(β−μ)(t−x)e−μx = kβet(β−μ)e−β x . This
gives the result.

REMARK 1. For any ε , gε(t,x) = kβet(β−μ)e−β x is independent of ε . Moreover
gε ∈ C∞ (D1) , then (gε)ε ∈ X (D1) , we denote by g = [gε ]G (D1) it class in G (D1) .

Recall

D1 = {(t,x) : t � x � 0} and D2 = {(t,x) : 0 � t < x} .

Take (wε)ε ∈ X (D2) , we denote by [wε ]G (D2) it class in G (D2) .

THEOREM 3. Taking (gε ,wε ) the solution to (Pε) , thus the family (gε)ε lies in
X (D1) , the family (wε)ε lies in X (D2) . Set g = [wε ]G (D1) , w = [wε ]G (D2) , then
(g,w) is solution to (Pgen) in G (D1)×G (D2) .

Proof. Set suppϕ = [0;1] = K . Then ∀L � D2 ,

(PL,0(wε ))ε = k

(
sup

(t,x)∈L

∣∣ϕε (x− t)e−μt
∣∣)

ε

� k

(
sup
ξ∈K

|ϕε(ξ )|
)

ε

= k (PK,0(ϕε))ε ∈ |A| .

As the derivatives with respect to x have the same support, we obtain similar estimates.
Set n ∈ N , (

sup
(t,x)∈L

(∣∣∣∣ ∂ n

∂xn ϕε(x− t)e−μt

∣∣∣∣
))

ε

� (PK,n(ϕε ))ε ∈ |A| .

Set m ∈ N , compute the derivatives with respect to t ,

∂m

∂ tm
(
ϕε(x− t)e−μt)= ∑m

l=0 (−1)m
(

m
l

)
μm−le−μt ∂ lϕε

∂ tl
(x− t),
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then

sup
(t,x)∈L

(∣∣∣∣ ∂m

∂ tm
ϕε(x− t)e−μt

∣∣∣∣
)

� ∑m
l=0

(
m
l

)
μm−lPK,m(ϕε),

so
(
PK,(l,0)(wε )

)
ε ∈ |A| . Compute the cross derivatives with n ∈ N , m ∈ N

∂m+n

∂ tm∂xn

(
ϕε (x− t)e−μt)= ∑m

l=0 (−1)m
(

m
l

)
μm−le−μt ∂ l+mϕε

∂ tl∂xn (x− t).

Then we have (PK,n+m(wε ))ε ∈ |A| . It results from this that

∀L � R
2,∀l ∈ N,

(
PK,l(wε)

)
ε ∈ |A| .

Then (wε)ε ∈ X s(D2) . Put w = [wε ]G (D2) then (g,w) is a solution to (Pgen) in
G (D1)×G (D2) .

REMARK 2. The total population size

Nε(t) =
∫ ∞

0
uε(t,x)dx

=
∫ t

0
uε(t,x)dx+

∫ ∞

t
uε(t,x)dx

=
∫ t

0
kβe(β−μ)t e−β xdx+

∫ ∞

t
kϕε (x− t)e−μtdx

= kβe(β−μ)t
∫ t

0
e−β xdx+ ke−μt = kβe(β−μ)t

[
−(1/β )e−β x

]t
0
+ ke−μt

= ke(β−μ)t
(
1− e−β t

)
+ ke−μt = ke(β−μ)t .

3.2.3. Behavior in D ′(D2) .

We have lim
ε→0

uε(t,x) = ke−μtδ (x− t) with

< δ (x− t)), f (t,x) >=
∫ +∞

−∞
f (t,t))dt.

We have a decreasing wave which propagates the data along the characteristic curve
Γ = {x = t} .

3.2.4. Case where β is a Dirac distribution δx0

We assume that individuals give birth when they reach a certain age x0 . This
corresponds to a birth distribution of the form β = Bδx0 , where B is the number of
offspring and x0 > 1 [7]. This model may be specialized to the case β = 2δx0 thus
expressing that mitosis (doubling of the cell, reproduction) arises at a given age x0

[26]. It has been used and compared in in vitro experiments. We consider the case
where the parent survives contributing to the total population.
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The generalized problem is also well formulated as

(Pgen)

⎧⎨
⎩

∂u
∂ t

+
∂u
∂x

= −μu,

u |{t=0}= k [ϕε ] ,

where k > 0, [ϕε ] ∈ G ([0;+∞[) and (g,w) is searched
in G (D1)×G (D2) .
Recall D = {(t,x) : t � 0,x � 0} .

THEOREM 4. The solution (uε) to (Pε) in C∞ (D) is defined by

uε(t,x) =
+∞

∑
m=0

Bmkϕε(mx0 + x− t)e−μt.

Proof. According to Theorem 1, we have

uε(t,x) =
{

gε(t,x) = Bmφε(mx0 + x− t)e−μt,t � x,
wε (t,x) = φε(x− t)e−μt , if t < x

where m = Ent((t− x)/x0 +1) . Then the solution (gε ,wε ) to (Pε) is defined by

gε(t,x) = Bmkϕε(mx0 + x− t)e−μt, if t � x,
wε (t,x) = kϕε(x− t)e−μt , if t < x.

As suppϕε = [0;ε] , for ε small, ε < 1 < x0 , then we have the result.

REMARK 3. Behavior in D ′(D2) . If t < x , lim
ε→0

uε(t,x) = ke−μtδ (x− t). We have

a decreasing wave which propagates the data along the characteristic curve Γ = {x = t} .

REMARK 4. Set

Tm = {(t,x) : x+(m−1)x0 � t < x+mx0; t � 0,x � 0} .

For (t,x) ∈ Tm we have uε(t,x) = Bmφε (mx0 + x− t)e−μt and

lim
ε→0

uε(t,x) = Bmke−μtδ (mx0 + x− t).

The effect of the delta birth distribution is to create a new decreasing wave of indi-
viduals whenever the cohort reaches the reproduction age which propagates along the
characteristic curve {t = x+mx0} .

THEOREM 5. Taking u = [uε ]G (D) then u is a solution to (Pgen) in G (D) .

For (t,x) ∈ D , we have uε(t,x) = Bmφε (mx0 + x− t)e−μt where m = Ent((t −
x)/x0 + 1) if t � x , m = 0 if t < x . Technical estimates prove that

(
PK,l(uε)

)
ε ∈ |A|

thus (uε)ε ∈ X (D) .
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REMARK 5. The total population size

Nε(t) =
∫ ∞

0
uε(t,x)dx

=
m=Ent(t/x0)

∑
m=0

∫ ∞

0
Bmkϕε(mx0 + x− t)e−μtdx

= ke−μt
m=Ent(t/x0)

∑
m=0

Bm
∫ ∞

0
ϕε(mx0 + x− t)dx

= ke−μt
m=Ent(t/x0)

∑
m=0

Bm = ke−μt B
Ent(t/x0)+1−1

B−1
.

3.3. Top hat initial condition

A shock can correspond to a ”top hat” initial condition [7], [24]. For example
wars, genocides, epidemic or natural disasters. Take

φ = L−d (Ha−Hb))

where L is the distribution associated with the function l , d lying in C1 (R+) , a ,
b ∈ R+ , a < b < xm and H is the Heaviside distribution. Let us assume also that
the age-specific fertility β and the age specific mortality μ are both constantes. Let
I = [a;b] be the tested age bracket affected by the shock (for example we can take
I = [18;45] for a war).

Then φ is a distribution and the problem is ill-posed in the spaces of classical
functions. To have a well-posed problem we must study the problem in an algebra of
generalized functions, in this case the Colombeau algebra, and the data will be consid-
ered as generalized functions. We have the problem formally written as

(P)

⎧⎨
⎩

∂u
∂ t

+
∂u
∂x

= −μu,

u |{t=0}= φ .

3.3.1. Well formulated problem

We take some fixed smooth function ϕ ,

ϕ(x) = 0 for x /∈ [0;1] ,
∫

ϕ(x)dx = 1.

We consider the family of mollifiers (ϕε)ε given by ϕε(x) = 1
ε ϕ
(

x
ε
)

then suppϕε =
[0;ε] . We approach problem (P) by a parametric family of (Pε) ones

(Pε)

{ ∂uε
∂ t

+
∂uε
∂x

= −μuε ,

uε(0,x) = φε(x),
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with φε (x) = l(x)−d(x)(hε(x−a)−hε(x−b)) and hε = ϕε ∗H ∈ C∞ (R) .
Assume that l(x) = c , a constant, and d(x) = (1/2) l(x) = (1/2)c , then

φε (x) = c− 1
2
c(hε(x−a)−hε(x−b)).

The generalized problem (Pgen) is well formulated as

(Pgen)

⎧⎨
⎩

∂u
∂ t

+
∂u
∂x

= −μu,

u |{t=0}= [φε ] ,

where [φε ] ∈ G ([0;+∞[) and (g,w) is searched in G (D1)×G (D2) .

3.3.2. Solution to (Pgen)

THEOREM 6. The solution (gε ,wε ) to (Pε) is defined by

gε(t,x) = Kβe(β−μ)t e−β x, if t � x,

wε (t,x) = φε (x− t)e−μt

=
[
c− 1

2
c(hε(x−a)−hε(x−b))

]
e−μt , if t < x,

where K = c(xm − (1/2)(b−a)) .

Proof. We have

uε(t,x) =
{

gε(t,x) = vε (t− x)e−μx, if t � x,
wε(t,x) = φε(x− t)e−μt , if t < x

where vε(t) = uε(t,0) . Thus the renewal equation takes the form

vε(t) = ψε(t)+
∫ t

0
vε(t− y)βe−μydy,

with

ψε(t) =
∫ +∞

t
φε(y− t)βe−μtdy =

∫ +∞

0
φε (s)βe−μt ds

= βe−μt
∫ +∞

0
φε (s)ds = Kβe−μt ,

with

K =
∫ +∞

0
φε(s)ds =

∫ xm

0
c(1−1/2(hε(s−a)−hε(s−b)))ds

= cxm− (1/2)c(b−a) = c(xm − (1/2)(b−a)) .
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Thus we have

vε(t) = Kβe−μt + β
∫ t

0
vε (t− y)e−μydy = Kβe−μt + β

∫ t

0
vε(s)e−μ(t−s)ds

= Kβe−μt + βe−μt
∫ t

0
vε(s)eμsds.

Differentiation gives

(vε)
′ (t) = −Kμβe−μt + βe−μt (vε(t)eμt)− μβe−μt

∫ t

0
vε(s)eμsds

= −μ
(

Kβe−μt + βe−μt
∫ t

0
vε(s)eμsds

)
+ βvε(t)

= −μvε(t)+ βvε(t) = (β − μ)vε (t).

Then (vε)′ (t) = (β − μ)vε(t) . From the renewal equation with t = 0 we have vε(0) =
Kβ . Then vε(t) = Kβe(β−μ)t . Thus

uε(t,x) = Kβe(β−μ)(t−x)e−μx = Kβe(β−μ)t e−β x = gε(t,x).

This gives the result.

REMARK 6. For any ε , gε(t,x) = kβet(β−μ)e−β x is independent of ε . Moreover
gε ∈ C∞ (D1) , then (gε)ε ∈ X (D1) , we denote by g = [gε ]G (D1) it class in G (D1) .

THEOREM 7. The family (wε)ε lies in X (D2) . Taking w = [wε ]G (D2) then (g,w)
is solution to (Pgen) in G (D1)×G (D2) .

Technical estimates proving that
(
PK,l(wε )

)
ε ∈ |A| , then (wε)ε lies in X (D2) .

REMARK 7. The total population size

Nε (t) =
∫ ∞

0
uε(t,x)dx

=
∫ t

0
uε(t,x)dx+

∫ ∞

t
uε(t,x)dx

=
∫ t

0
βe(β−μ)t e−β xdx+

∫ ∞

t
φε(x− t)e−μtdx

= βe(β−μ)t
∫ t

0
e−β xdx+Ke−μt = βe(β−μ)t

[
−(1/β )e−β x

]t
0
+Ke−μt

= e(β−μ)t
(
1− e−β t

)
+Ke−μt = e(β−μ)t +(K−1)e−μt.
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3.3.3. Case where β is a Dirac distribution δx0

We assume that individuals give birth when they reach a certain age x0 . This
corresponds to a birth distribution of the form β = Bδx0 , where B is the number of
offspring and x0 > 1. We consider the case where the parent survives.

The generalized problem (Pgen) is also well formulated as

(Pgen)

⎧⎨
⎩

∂u
∂ t

+
∂u
∂x

= −μu,

u |{t=0}= [φε ] ,

where [φε ] ∈ G ([0;+∞[) and (g,w) is searched in G (D1)×G (D2) .
Set βε(x) = Bϕε(x− x0) . Assume that x0 > b > a .
First, we can give a straight proof for x0 + x > t � x .

THEOREM 8. The solution (g,w) to (Pε) is defined, if x0 + x > t � x , by

gε(t,x) = cBe−μt [1−1/2(hε(x0− t + x−a)−hε(x0 − t + x−b))]

and, if t < x , by
wε(t,x) = φε (x− t)e−μt.

Proof. We have

uε(t,x) =
{

gε(t,x) = vε(t− x)e−μx, if x0 + x > t � x,
wε(t,x) = φε(x− t)e−μt , if t < x

where vε(t) = uε(t,0) . We have

ψε(t) =
∫ +∞

t
φε(y− t)Bϕε(y− x0)e−μt dy

= Be−μt
∫ +∞

0
φε(s)ϕε (s− (x0− t))ds

= Be−μtφε(x0− t)

= cBe−μt [1− (1/2)(hε(x0 − t−a)−hε(x0 − t−b))] .

The renewal equation takes the form

vε(t) = ψε(t)+B
∫ t

0
vε(t−a)ϕε(a− x0)e−μada

= Be−μtφε(x0 − t)+B
∫ t

0
vε (s)ϕε (t− s− x0)e−μ(t−s)ds

= Be−μtφε(x0 − t)+Be−μt
∫ t

0
vε(s)ϕε ((t − x0)− s)eμsds

and
vε(0) = Be−μtφε(x0) = cBe−μt .
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Differentiation gives

(vε )
′ (t) = −μBe−μtφε (x0− t)−Be−μtφ ′

ε (x0− t)

+Be−μtvε(t)ϕε(−x0)eμt − μBe−μt
∫ t

0
vε(s)ϕε ((t− x0)− s)eμsds

= −μ(Be−μtφε (x0− t)+Be−μt
∫ t

0
vε(s)ϕε ((t− x0)− s)eμsds)

−Be−μtφ ′
ε (x0− t)

= −μvε(t)−Be−μtφ ′
ε (x0− t) .

Consequently we have to solve the equation

(vε)′ (t) = −μvε(t)−Be−μtφ ′
ε (x0− t) . (E2)

Consider the homogenous equation (vε)
′ (t) = −μvε(t) . The solution is given by

vε(t) = Ke−μt . Then take vε(t) = K(t)e−μt . Thus vε is solution to (E2) if and only if

−Be−μtφ ′
ε (x0− t) = K′(t)e−μt ,

then K′(t) = −Bφ ′
ε (x0 − t) and K(t) = Bφε (x0− t)+ k . As

vε(0) = Be−μtφε(x0) = cBe−μt ,

thus vε(t) = Bφε (x0 − t)e−μt . We have

vε(t− x)e−μx = Bφε (x0− t + x)e−μ(t−x)e−μx = Bφε (x0 + x− t)e−μt .

Then

vε(t− x)e−μx = cBe−μt [1− (1/2)(hε((x0 − t)+ x−a)−hε((x0− t)+ x−b))] .

This gives the result.

THEOREM 9. The solution (gε ,wε ) to (Pε) is defined, if t � x , by

gε(t,x) = cBme−μt
[
1− 1

2
(hε(mx0 + x− t−a)−hε(mx0 + x− t−b))

]

and, if t < x , by
wε(t,x) = φε (x− t)e−μt.

Proof. According to Theorem 1, we have

uε(t,x) =
{

gε(t,x) = Bmφε(mx0 + x− t)e−μt,t � x,
wε (t,x) = φε(x− t)e−μt , if t < x

where m = Ent((t− x)/x0 +1) . We have

φε(x) = c− 1
2
c(hε(x−a)−hε(x−b))
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then

φε(mx0 + x− t) =
[
c− 1

2
c(hε(mx0 + x− t−a)−hε(mx0 + x− t−b))

]
.

Then

gε(t,x) = Bm
[
c− 1

2
c(hε(mx0 + x− t−a)−hε(mx0 + x− t−b))

]
e−μt

= cBme−μt
[
1− 1

2
(hε(mx0 + x− t−a)−hε(mx0 + x− t−b))

]
.

COROLLARY 1. The solution (uε) to (Pε) in C∞ (D) is defined by

uε(t,x) =
+∞

∑
m=0

BmkΦε (mx0 + x− t)e−μt.

REMARK 8. Set

Tm = {(t,x) : x+(m−1)x0 � t < x+mx0; t � 0,x � 0} .

For (t,x) ∈ Tm we have uε(t,x) = Bmφε (mx0 + x− t)e−μt and

lim
ε→0

uε(t,x) = cBmke−μt
[
1− 1

2
(Ha(mx0 + x− t)−Hb(mx0 + x− t))

]
.

At time t = (m−1)x0 a new cohort is completely created imitating the previous cohort
for 0 � x � x0 .

THEOREM 10. Taking u = [uε ]G (D) then u is a solution to (Pgen) in G (D) .

For (t,x) ∈ D , we have uε(t,x) = Bmφε (mx0 + x− t)e−μt where m = Ent((t −
x)/x0 + 1) if t � x , m = 0 if t < x . Technical estimates prove that

(
PK,l(uε)

)
ε ∈ |A|

thus (uε)ε ∈ X (D) .

4. Conclusion

Our research relates to the persistent character of shocks in demography. Our
results indicate the propagation mechanism for some demographic shocks and show
the persistent effect of shocks in population dynamics whose amplitude diminishes with
time. This study could be used also to disease transmission in age-structured models.
We watch appearance of traveling waves which have been observed frequently in the
spread of epidemics. Our investigation in the framework of Colombeau algebra can be
extended to analyze a wide spectrum of situations (significant immigration, black-out...)
in various types of shocks. Economic policies need to take into account variations of
population in reply to shocks.
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Université des Antilles
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