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ON THE RAYLEIGH–PLATEAU INSTABILITY.

THE REGULARITY IN H3
per

A. ALRIYABI

Abstract. In this paper, we study the Rayleigh-Plateau instability of a cylindrical pore. We are
interested in the model developed by Spencer et al. [20], Kirill et al. [12] and Boutat et al. [3] in
absence of the stress. We obtain a nonlinear parabolic PDE of fourth order. We obtain the local
existence and uniqueness of the solution of this problem. The global existence of the solution
and the convergence to the mean value of the initial data for long time, represent the main results
of this work. In this study, we give also a numerical tests in order to validate the theoretical
results.
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1969.

[14] C. Liu, J. Yin, J. Zhou, Existence of weak solutions for a generalized thin film equation, Commun.
Pure Appl. Anal., 2007, 6: 465–480.

c© � � , Zagreb
Paper DEA-08-23

http://dx.doi.org/10.7153/dea-08-23


412 A. ALRIYABI, Differ. Equ. Appl. 8, No. 4 (2016), 411–427.

[15] X. Liu, C. Qu, Existence and blow-up of weak solutions for a sixth-order equation related to thin solid
films, Nonlinear Anal. Real World Appl., 2010, 11: 4214–4222.

[16] J.D. Powers, A.M. Glaeser, High-temperature healing of cracklike flaws in titanium ion-implanted
sapphire, J. Amer. Ceramic Soc., 1993, 76: 2225–2234.
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