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ON THE RAYLEIGH–PLATEAU INSTABILITY.

THE REGULARITY IN H3
per

A. ALRIYABI

(Communicated by Jean-Michel Rakotoson)

Abstract. In this paper, we study the Rayleigh-Plateau instability of a cylindrical pore. We are
interested in the model developed by Spencer et al. [20], Kirill et al. [12] and Boutat et al. [3] in
absence of the stress. We obtain a nonlinear parabolic PDE of fourth order. We obtain the local
existence and uniqueness of the solution of this problem. The global existence of the solution
and the convergence to the mean value of the initial data for long time, represent the main results
of this work. In this study, we give also a numerical tests in order to validate the theoretical
results.

1. Introduction

It is known that a liquid jet, initially of constant radius, is falling vertically un-
der gravity. The liquid length increases and reaches a critical value. At this moment
the jet loses its cylindrical shape and it decomposes into a stream of droplets. This
phenomenon occurs primarily as a result of surface tension. This effect of surface
tension is called Rayleigh-Plateau instability [24, 25, 26]. All the streams fluid con-
tain perturbations, which are small changes in a physical system (such as a stream).
These perturbations are sometimes compounded into sinusoidal functions and appear
as waves. In the lower section of the wave, where the radius of stream is smaller, the
surface tensions creates a higher pressure. At the crest of the wave where the radius
is larger, the pressure will be lower. As a result of the pressure difference the ampli-
tude of some waves will increase. It will eventually align waves in what looks like
a destructive interference patterns, however they do not cancel each other out. When
the waves become large enough, stream will be in a bottleneck and spherical droplets
will be formed. The droplets are spherical because the liquid is more stable at a lower
energy level and by decreasing the surface area, number of higher energy molecules is
decreased and thus lowers the droplets energy. The Rayleigh-Plateau instability quanti-
fies this phenomenon and explains why and how a falling stream of fluid breaks up into
smaller packets with the same volume but less surface area.

In this paper, we are interested on a cylindrical and axisymmetric crystalline struc-
ture in the case without stress. We study the morphological instabilities at cylindrical
pore surface [20], [12]. Such phenomena are observed for example in materials science
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[16], since the manufacture of materials introduced distributions of pores that affect
their mechanical and physical properties. The evolution equation of the surface insta-
bility is written in the form (see [3]):

∂h
∂ t

= −1
h

∂
∂Z

[
h

∂
∂Z

(
(1−θ ln(h))hZZ − θ

2
h−2h2

Z

)]
, (1.1)

where ∂h/∂Z (or hZ ), hZZ are the partial derivatives of h of order one and two, respec-
tively; θ is a physical parameter (θ = σ2

0 /γμ ) which depends on the stress applied to
material σ0 , on shear modulus μ and on the free energy of the surface γ . In this work,
we consider the absence of stress case (σ0 = 0), which is called the Rayleigh-Plateau
instability

∂h
∂ t

= −1
h

∂
∂x

(
h

∂ 3h
∂x3

)
. (1.2)

We are interested in the periodic problem

⎧⎪⎪⎨
⎪⎪⎩

∂h
∂ t

= −1
h

∂
∂x

(
h

∂ 3h
∂x3

)
on (0,T )× (0,1),

h(t, .) is a periodic function on(0,1),
h(0, .) = h0 > 0 is a periodic function given on (0,1).

(1.3)

Arguments of longitudinal perturbation of small amplitude of the cylinder and numer-
ical calculations are used in [7, 8, 2] to study the nonlinear equation which governs
the morphological change of the cylinder surface. Stability analysis of cylinder surface
using linear theory in the case of uniaxial stress is studied in [11, 12]. In [18, 19], the
authors study the morphological stability of the surface of a pore under the action of the
artificial tension (with zero stress), they show the transformation of cylindrical pores in
the spheres and that the distance between the spheres depends on the diffusion of sur-
face and on the diffusion of volume; they also show that the surface becomes unstable if
the wavelength is larger than the cylinder circumference. In particular, they analyze the
external evolution due to the perturbations of small amplitudes. Some recent interesting
studies on thin film equations can be found in [9, 14, 15, 27, 28].

In this study, we use the model developed in [20], [12], the radius of cylinder sat-
isfies a parabolic partial differential equation. Under assumptions of formal asymptotic
and with a changes of appropriate scale, we simplify the PDE satisfied by the cylinder
radius [3].

REMARK 1.1. 1. Equation (1.2) can be written in general form of evolution
equations of thin films [10]:

∂v
∂ t

= − ∂
∂x

(
vn ∂ 3v

∂x3 + αvn−1 ∂v
∂x

∂ 2v
∂x2 + βvn−2(

∂v
∂x

)3
)

, (1.4)

with n = 0 , α = −3/2 , β = 3/4 and v = h2 .
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2. We introduce, for m ∈ N the periodic Sobolev space Hm
per(0,1) by:

Hm
per(0,1) = {u ∈ Hm(0,1); ∀ j ∈ {0,1, . . . ,m−1}, u( j)(0) = u( j)(1)},

where Hm(0,1) is the usual Sobolev space. We also consider the functional space
X defined by:

X = L2(0,T ;H3
per(Ω)

)∩L∞(
0,T ;H1

per(Ω)
)
.

We endow X with the norm:

‖ u ‖X =
[∫ T

0

∫ 1

0
|u(3)(t,x)|2 dxdt+ sup

t∈(0,T)

(∫ 1

0
|u′(t,x)|2 dx+

∫ 1

0
|u(t,x)|2 dx

)] 1
2

.

For simplicity, we shall assume that Ω = (0,1), ΩT = (0,T )× (0,1) .

DEFINITION 1.1. We say that the solution h ∈ L2
(
0,T ;H3

per(Ω)
)

of (1.3) is weak
if:

1.
1
h

∂h
∂x

∂ 3h
∂x3 ∈ L1(ΩT ).

2. ht ∈ L2
(
0,T ;(H3

per(Ω))′
)
.

3. For all ϕ ∈ H3
per(Ω) , we have, in D ′(0,T ) , the following equality:

d
dt

∫ 1

0
h(t,x)ϕ(x)dx = −

∫ 1

0
hxxϕxx dx−

∫ 1

0

hx

h
hxxxϕ dx. (1.5)

4. h(0) = h0 > 0 (given in H1
per(Ω)).

LEMMA 1.1. Suppose that h ∈ X , h0 ∈ C [0,1], and h0 � ε > 0 . Then, for all
local weak solution h of (1.5), there is a moment T∗(ε) > 0 , where h(t,x) � ε/2, ∀t ∈
[0,T∗] and f orallx ∈ [0,1] .

In equation (1.2), it is appropriate to add the hypotheses (see [3]):

R0 � h and h/� � 1. (1.6)

R0 , � are respectively the radius and the length of the cylinder at the initial state.
Thanks to lemma 1.1, we make the change of variable h(t,x) = eu(t,x) . Equation (1.2)
becomes under simplified form:

∂u
∂ t

= −u(4)− (5u′u(3) +9u′2u′′ +3u′′2 +2u′4), (1.7)
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where u(k)(t,x) =
∂ ku
∂xk (t,x) . Therefore, we consider the boundary problem:

⎧⎪⎨
⎪⎩

∂u
∂ t

= −u(4)−F(u′,u′′,u(3)) on ΩT ,

u(t, .) is a periodic function onΩ,
u(0, .) = u0 = lnh0 is given a periodic function on Ω,

(1.8)

where
F(u′,u′′,u(3)) = 5u′u(3) +9u′2u′′ +3u′′2 +2u′4.

2. Local Existence

In this section, we prove the existence of solution of Problem (1.8) using Faedo-
Galerkin method [13, 22].

DEFINITION 2.1. A function u defined on [0,T ]× [0,1] is a weak solution of
Problem (1.8) if:

(P0)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1. u ∈ L2(0,T ;H3
per(Ω)).

2. For all ϕ ∈ H3
per(Ω), the following equality holds in D ′(0,T )

d
dt

∫ 1

0
u(t,x) ϕ(x) dx+

∫ 1

0
u′′(t,x)ϕ ′′(x)dx+

∫ 1

0
F(u′,u′′,u(3))ϕ(x)dx = 0.

3. u(0, .) = u0 ∈ H1
per(Ω) and

∂u
∂ t

∈ L2(0,T ;(H3
per(Ω))′).

THEOREM 2.1. There exists a constant Λ0 > 0 , such that if |u′0|L2(Ω) < Λ0 , then
the problem (P0 ) accept a unique global solution u in X , such that:

|ux(t)|L2(Ω) � C0 e−ν t , t > 0, (2.1)

with C0 > 0, ν > 0 are constants which are independent of u0 .

Proof of Theorem 2.1
In order to prove theorem 2.1, we proceed in three steps.

First step: In this step, we construct a function um solving the approximated
problem on a finite dimensional space.
Let {ϕ j, j ∈ N

∗} be the basis of H1
per(Ω) , satisfying:

1. ϕ j ∈ C ∞
per(Ω) =

⋂
m�1

Hm
per(Ω).

2. ∀ϕ ∈ H1
per(Ω); (ϕ ′

j,ϕ
′)L2(Ω) = μ j(ϕ j,ϕ)L2(Ω) ; where the sequence μ j con-

verges to +∞ when j converges to +∞ and satisfies 0 = μ1 < μ2 � · · · � μ j · · · .
3. (ϕ j,ϕk)L2(Ω) = δ jk ; where δ jk is the Kronecker symbol.
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We set Hm the finite-dimensional space generated by {ϕ1,ϕ2, . . . ,ϕm} . Pm denotes
the orthogonal projection of L2(Ω) into Hm . By the Cauchy–Peano theorem, we can
introduce a time T ∗ > 0 and a function um ∈C 1

(
[0,T ∗];Hm

)
, such that, for all ψ ∈Hm

d
dt

∫ 1

0
um(t,x)ψ(x)dx+

∫ 1

0
u′′m(t,x)ψ ′′(x)dx+

∫ 1

0
F(u′m,u′′m,u(3)

m )(t,x)ψ(x)dx = 0,

(2.2)
where

F(u′m,u′′m,u(3)
m )(t,x) = 5u′m(t,x)u(3)

m (t,x)+9u′2m(t,x)u′′m(t,x)+3u′′2m (t,x)+2u′4m(t,x),

with the initial data um(0) = Pm(u0) .

Second step : In this step, we give a uniform estimates in m , in space, and in time
We need the following lemmas:

LEMMA 2.1. There are strictly positive constants Λ0, c0, and μ , such that if the
initial data satisfies sup

m�1
|u′0m(t)|L2(Ω) < Λ0 (say the norm in H1

per is small enough),

then:
|u′m(t)|L2(Ω) � c0 e−μt , ∀t > 0. (2.3)

Proof. In equation (2.2), we set ψ = −u′′m . An integration by parts gives:

1
2

d
dt

∫ 1

0
|u′m(t,x)|2 dx+

∫ 1

0
|u(3)

m (t,x)|2 dx =
∫ 1

0
F(u′,u′′,u(3)

m )u′′m dx︸ ︷︷ ︸
I

. (2.4)

Where

I =
1
2

∫ 1

0
u′′3m (t,x)dx−3

∫ 1

0
u′3m(t,x)u(3)

m (t,x)dx := I1 + I2. (2.5)

By interpolation inequalities, one has :

|u′′m(t)|3L3(Ω) � c3|u′m(t)|
5
4
L2(Ω)|u

(3)
m (t)|

7
4
L2(Ω).

Applying Young’s inequality, we deduce that

|u′′m(t)|3L3(Ω) � c8
3

8

(|u′m(t)|
5
4
L2(Ω)

)8 +
7
8

(|u(3)
m (t)|

7
4
L2(Ω)

) 8
7 .

Hence:

|I1| � c4|u′m(t)|10
L2(Ω) +

7
8
|u(3)

m (t)|2L2(Ω) (2.6)

On the other hand, by the Young’s inequality, for all ε > 0, one has:

|I2| � cε

∫ 1

0
|u′m|6(t,x)dx+ ε

∫ 1

0
|u(3)

m |2(t,x)dx.
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Applying interpolation inequalities, one deduce that

|I2| � cε |u′m(t)|5L2(Ω)|u
(3)
m (t)|L2(Ω) + ε

∫ 1

0
|u(3)

m |2(t,x)dx.

Once again by Young’s inequality, for all ε > 0, we have:

|I2| � c5|u′m(t)|10
L2(Ω) +2ε

∫ 1

0
|u(3)

m |2(t,x)dx. (2.7)

Both inequalities (2.6) and (2.7) give:

|I| � c6|u′m(t)|10
L2(Ω) + (2ε +

7
8
)
∫ 1

0
|u(3)

m |2(t,x)dx.

Therefore, for 4ε <
1
8

, one has:

d
dt
|u′m(t)|2L2(Ω) +

1
8
|u(3)

m (t)|2L2(Ω) � c |u′m(t)|10
L2(Ω). (2.8)

By Poincaré inequality, there exist a constant k > 0, such that

k|u′m(t)|2L2(Ω) � 1
8
|u(3)

m (t)|2L2(Ω).

By relation (2.8), we deduce that:

d
dt
|u′m(t)|2L2(Ω) + k |u′m(t)|2L2(Ω) � c |u′m(t)|10

L2(Ω). (2.9)

Now, multiplying by ekt , one has:

d
dt

[ekt |u′m(t)|2L2(Ω)] � ce−4kt [ekt |u′m(t)|2L2(Ω)]
5.

We set Z(t) = ekt |u′m(t)|2
L2(Ω) and we integrate between 0 and t :

−Z−4(t)+Z−4(0) � − c
k
(e−4kt −1) � c

k
, t > 0.

If sup
m�1

|u′0m|8L2(Ω) <
k
c

:= Λ8
0 , then there exist c0 > 0 and μ = k

2 such that:

|u′m(t)|L2(Ω) � c0 e−μt , ∀t > 0. (2.10)

REMARK 2.1. From (2.10), we deduce that T ∗ = T , that is um is a global solu-
tion (because c0 and μ are independent of T ∗ and m).

LEMMA 2.2. There exist a constant c(u0) > 0 independent of T , such that:
∫ T

0

∫ 1

0
|u(3)

m |2(τ,x)dxdτ � c(u0). (2.11)
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Proof.
We integrate the inequality (2.8) between 0 and T :

∫ 1

0
|u′m|2(T,x)dx+

1
8

∫ T

0

∫ 1

0
|u(3)

m |2(τ,x)dxdτ � c
∫ T

0
|u′m(τ)|10

L2(Ω)dτ

+
∫ 1

0
|(Pmu0)′|2dx.

(2.12)

Hence
1
8

∫ T

0

∫ 1

0
|u(3)

m |2(τ,x)dxdτ � c
∫ T

0
e−10μτdτ + |u0|2H1

per(Ω)

� c
10μ

(1− e−10μτT )+ |u0|2H1
per(Ω).

(2.13)

Therefore
∫ T

0

∫ 1

0
|u(3)

m |2(τ,x)dxdτ � c(u0), (independent of T ). (2.14)

LEMMA 2.3. There exists a contant C(u0) independent of T , such that:∣∣∣∣
∫ 1

0
um(t,x)dx

∣∣∣∣ � C(u0), ∀t ∈ [0,T ]. (2.15)

Proof.
In (2.2), we take ψ = 1:

d
dt

∫ 1

0
um(t,x)dx+

∫ 1

0
F(u′m(t,x),u′′m(t,x),u(3)

m (t,x))dx = 0. (2.16)

An integration by parts (2.16) gives:

d
dt

∫ 1

0
um(t,x)dx = 2

∫ 1

0
u′′2m (t,x)dx−2

∫ 1

0
u′4m(t,x)dx. (2.17)

We integrate (2.17) between 0 and t :

∫ 1

0
um(t,x)dx = 2

∫ t

0

∫ 1

0
u′′2m (τ,x)dτdx−2

∫ t

0

∫ 1

0
u′4m(τ,x)dτdx+

∫ 1

0
u0m(x)dx.

(2.18)
From which:∣∣∣∣

∫ 1

0
um(t,x)dx

∣∣∣∣ � 2
∫ T

0

∫ 1

0
|u′′m|2(τ,x)dτdx+ 2

∫ T

0

∫ 1

0
|u′m|4(τ,x)dτdx

+
∣∣∣∣
∫ 1

0
u0m(x)dx

∣∣∣∣ .
(2.19)

We have:
∫ T

0

∫ 1

0
|u′′m|2(τ,x)dτdx �

∫ T

0

∫ 1

0
|u(3)

m |2(τ,x)dτdx � c1(u0). (2.20)
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On the other hand, by the interpolation inequalities, one has:

|u′m(t)|4L4(Ω) � c1 |u′m(t)|3L2(Ω)|u′′m(t)|L2(Ω). (2.21)

Applying the Young’s inequality, we deduce:

|u′m(t)|4L4(Ω) � α|u′m(t)|6L2(Ω) + cα |u′′m(t)|2L2(Ω), ∀α > 0. (2.22)

Hence:
∫ T

0
|u′m(τ)|4L4(Ω)dτ � α

∫ T

0
|u′m(τ)|6L2(Ω)dτ + cα

∫ T

0
|u′′m(τ)|2L2(Ω)dτ

� c(1− e−6μT)+ c2(u0) � c3(u0).
(2.23)

Since: ∣∣∣∣
∫ 1

0
(Pmu0)dx

∣∣∣∣ �
∫ 1

0
|Pmu0|2dx � |u0|L2(Ω) < ∞, (2.24)

therefore: ∣∣∣∣
∫ 1

0
um(t,x)dx

∣∣∣∣ � C(u0), ∀t ∈ [0,T ]. (2.25)

REMARK 2.2. we know from Poincare-Sobolev inequality (see for instance [4,
21]), that for all v ∈ H1(Ω) , we can write:

|v|L2(Ω) � c
(∣∣∣∣

∫ 1

0
vdx

∣∣∣∣+ |v′|L2(Ω)
)
.

Then, thanks to lemmas 2.1 and 2.3, there exists a constant c1(u0) > 0 , independent of
T , such that:

|um(t)|L2(Ω) � c1(u0). (2.26)

PROPOSITION 2.2. (The uniforme estimates in m). We have the following asser-
tions:

1. For all α � 1 , there exists a constant cα(u0) > 0 , such that:

sup
m�1

|um|L∞(0,T ;Lα (Ω)) � cα(u0) < +∞.

2. For all r � 2 and k ∈ [1,∞[ which satisfy the condition

k
4
− k

2r
� 2, (2.27)

there exists a constant ck,r(u0) > 0 , such that:

sup
m�1

|u′m|Lk(0,T ;Lr(Ω)) � ck,r(u0) < +∞.
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3. For all r � 2 and k ∈ [1,∞[ which satisfy the condition

3k
4

− k
2r

� 2, (2.28)

there exists a constant ck,r(u0) > 0 , such that:

sup
m�1

|u′′m|Lk (0,T ;Lr (Ω))
� ck,r (u0) < +∞.

Third step. (Time-Derivative Estimats) By the obtained estimates, we deduce
that um remains in a bounded set of L2(0,T ;H3

per(Ω))∩ L∞(0,T ;H1
per(Ω)) . For all

ψ ∈ H3
per(Ω) , we take the function Pmψ as a test function:

∫ 1

0

∂um

∂ t
(t,x)(Pmψ(x))dx = −

∫ 1

0
u′′m(t,x)(Pmψ(x))′′dx−2

∫ 1

0
u′4m(t,x)(Pmψ(x))dx

+3
∫ 1

0
u′3m(t,x)(Pmψ(x))′dx−3

∫ 1

0
u′′2m (t,x)(Pmψ(x))dx

−5
∫ 1

0
u′m(t,x)u(3)

m (t,x)(Pmψ(x))dx.

(2.29)
Applying the Hölder’s inequality, one has:∣∣∣∣

∫ 1

0

∂um

∂ t
(t,x)(Pmψ(x))dx

∣∣∣∣ � |u′′m(t)|L2(Ω)|(Pmψ)′′|L2(Ω) +2|u′m(t)|4
L8(Ω)|Pmψ |L2(Ω)

+3|u′m(t)|3
L6(Ω)|(Pmψ)′|L2(Ω) +2|Pmψ |∞|u′′(t)|2L2(Ω)

+5|Pmψ |∞|u′m(t)|L2(Ω)|u(3)
m (t)|L2(Ω).

(2.30)
We have:

∫ 1

0

∂um

∂ t
(t,x)(Pmψ(x))dx =

∫ 1

0
Pm

(∂um

∂ t
(t,x)

)
ψ(x)dx =

∫ 1

0

∂um

∂ t
(t,x)ψ(x)dx,

and since |Pmψ |∞ � c1|(Pmψ)′|L2(Ω) and |(Pmψ)(k)|L2(Ω) � c2|ψ |H3
per(Ω), where k =

0,1,2, then:∣∣∣∣
∫ 1

0

∂um

∂ t
(t,x)ψ(x)dx

∣∣∣∣ � c3 Y (u′m(t),u′′m(t),u(3)
m (t)) |ψ |H3

per(Ω), (2.31)

with

Y (u′m(t),u′′m(t),u(3)
m (t)) = |u′′m(t)|L2(Ω) + |u′m(t)|4

L8(Ω) + |u′m(t)|3
L6(Ω)

+|u′′(t)|2
L2(Ω) + |u′m(t)|L2(Ω)|u(3)

m (t)|L2(Ω).
(2.32)

Hence: ∫ T

0
|∂um

∂ t
(t)|2H3

per(Ω)dt � c3

∫ T

0
Y 2(u′m(t),u′′m(t),u(3)

m (t))dt. (2.33)
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By (2.3), we find sup
t�0

|u′m(t)|L2(Ω) � c0 . Then:

Y 2(u′m(t),u′′m(t),u(3)
m (t)) � c4

(|u′′m(t)|2
L2(Ω) +|u′m(t)|8

L8(Ω) + |u′m(t)|6
L6(Ω)

+|u′′m(t)|4
L2(Ω) + |u(3)

m (t)|2
L2(Ω)

)
.

(2.34)

We have:
∫ T

0
|u′′m(t)|2L2(Ω)dt � c

∫ T

0
|u(3)

m (t)|2L2(Ω) � c(u0), (by (2.11)). (2.35)

On the other hand, for k = r = 8 or k = r = 6, the condition (2.27) is valid. Then
|u′m|nLn(Ω) remains in a bounded set of L1(]0,T [), with n = 6,8. In the same way, the

condition (2.28) remains valid for k = 4 and r = 2, which affirms that |u′′m|4L2(Ω) re-

mains also in a bounded set of L1(]0,T [) . Then, Y 2(u′m,u′′m,u(3)) remains in a bounded

set of L1(]0,T [) . Hence
∂um

∂ t
remains in a bounded set of L2(0,T ;(H3

per(Ω))′) when
m → +∞ .

REMARK 2.3. We have um(0)−−−−−→
m−→+∞

u(0) in H1
per

(
Ω

)
. Since

um(0) = Pmu0−−−−−→
m−→+∞

u0,

then u(0) = u0 in the meaning of H1
per

(
Ω

)
.

Since um belongs to a bounded set of L∞(0,T ;H1
per(Ω)) ,

∂um

∂ t
remains in a bounded

set of L2(0,T ;(H3
per(Ω))′) when m → +∞ , and using the identification

H1
per(Ω) ⊂ L2(Ω) ∼= (L2(Ω))′ ⊂ (H3

per(Ω))′,

we deduce, by the Aubin–Lions theorem, that um converges in C
(
[0,T ];L2(Ω)

)
. There-

fore, by the previous estimates, there exists a subsequence of um which is denoted also
by um and a function u , such that:

(a)
∂um

∂ t
−−−−−→
m−→+∞

∂u
∂ t

in L2(0,T ;(H3
per(Ω))′)–weak.

(b) um−−−−−→
m−→+∞

u in L2(0,T ;H3
per(Ω))–weak.

(c) um−−−−−→
m−→+∞

u weak L∞(0,T ;H1
per(Ω))–weak star.

(d) um−−−−−→
m−→+∞

u strongly in C
(
[0,T ];L2(Ω)

)
.

(e) u is a weak solution of the problem (1.8).
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REMARK 2.4. Under similar conditions of the main theorem 2.1, if u0 is fixed in
Hs

per(Ω), s < 3 , We can take the space Hs
per(Ω) as a pivot space:

H3
per(Ω) ⊂ Hs

per(Ω) ∼= (
Hs

per(Ω)
)′ ⊂ (H3

per(Ω))′,

with continuous and dense injections, then, we have

um → u in C
(
[0,T ];Hs

per(Ω)
)

.

COROLLARY 2.1. (of Theorem 2.1) There are two constants c > 0, μ > 0 , such
that, for all x ∈ [0,1] , one has:

|u(x,t)− u(t)|∞ � ce−μt , t > 0,

where u(t) =
∫ 1

0
u(t,x)dx .

Proof. For all x ∈ [0,1] , by the interpolation inequalities and the estimation (2.3),
we deduce that:

|u(x, t)− u(t)|∞ � c|u(x,t)− u(t)|
1
2
L2(Ω)|ux(t)|

1
2
L2(Ω) � ce−μt , t > 0.

3. Uniqueness

We show in this section the uniqueness of the solution of the system (1.8) on the
space X .

THEOREM 3.1. The problem (1.8), has at most one solution u ∈ X , with the
initial data u(0) = u0 ∈ H1

per(Ω) .

Proof. Let u1, u2 ∈ X be two solutions of (1.8) and we set δu = u1−u2 . Since
u1 and u2 satisfy the equation (1.7), then, making the difference between the two equa-
tions, multiplying the resulting equation by (δu)′′ and integrating between 0 and 1,
one has:

1
2

d
dt

∫ 1

0
|(δu)′(t,x)|2dx+

∫ 1

0
|(δu)(3)(t,x)|2dx = P1 +P2 +P3 +P4, (3.1)

with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P1 = 5
∫ 1

0

(
u′1(t,x)u

(3)
1 (t,x)−u′2(t,x)u

(3)
2 (t,x)

)
(δu)′′(t,x)dx,

P2 = 9
∫ 1

0

(
u′1

2(t,x)u′′1(t,x)−u′2
2(t,x)u′′2(t,x)

)
(δu)′′(t,x)dx,

P3 = 3
∫ 1

0

(
u′′1

2(t,x)−u′′2
2(t,x)

)
(δu)′′(t,x)dx,

P4 = 2
∫ 1

0

(
u′1

4(t,x)−u′2
4(t,x)

)
(δu)′′(t,x)dx.

(3.2)
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We can rewrite the term P1 under the following form:

P1 = 5
∫ 1

0
(δu)′(t,x)u(3)

1 (t,x)(δu)′′(t,x)dx+5
∫ 1

0
u′2(t,x)(δu)(3)(t,x)(δu)′′(t,x)dx

= P11 +P12.

To estimate the term P11 , we use the interpolation inequalities and the estimation (2.3).

Since
∫ 1

0
(δu)′′(t,x)dx = 0, then

|(δu)′′(t,x)| �
∫ 1

0
|(δu)(3)(t,x)|dx � |(δu)(3)(t)|L2(Ω). (3.3)

Thus, by the Cauchy–Schwarz and Young inequalities, and for all ε > 0, one has:

|P11| � 5|(δu)(3)(t)|L2(Ω)

∫ 1

0
|(δu)′(t,x)||u(3)

1 (t,x)|dx

� c1|(δu)(3)(t)|L2(Ω)

(∫ 1

0
|u(3)

1 (t,x)|2dx

) 1
2
(∫ 1

0
|(δu)′(t,x)|2dx

) 1
2

� cε

(∫ 1

0
|u(3)

1 (t,x)|2dx

)(∫ 1

0
|(δu)′(t,x)|2dx

)
+

ε
8

∫ 1

0
|(δu)(3)(t,x)|2dx

= c2|u(3)
1 (t)|2L2(Ω)|(δu)′(t)|2L2(Ω) +

ε
8

∫ 1

0
|(δu)(3)(t,x)|2dx.

(3.4)
In the same way, using also the interpolation inequalities, and for all ε > 0, we deduce
that:

|P12| � c3|u′2(t)|∞
∫ 1

0
|(δu)(3)(t,x)||(δu)′′(t,x)|dx

� cεc
2
5|u′2(t)|2∞|(δu)′′(t)|2L2(Ω) +

ε
24

∫ 1

0
|(δu)(3)(t,x)|2dx

� c4|u′2(t)|2∞|(δu)′(t)|L2(Ω)|(δu)(3)(t,x)|L2(Ω) +
ε
24

∫ 1

0
|(δu)(3)(t,x)|2dx

� c5|u′2(t)|4∞(t)|(δu)′(t)|2L2(Ω) +
ε
8

∫ 1

0
|(δu)(3)(t,x)|2dx.

(3.5)

Then,

|P1| � f1(t)|(δu)′(t)|2L2(Ω) +
ε
4

∫ 1

0
|(δu)(3)(t,x)|2dx, ∀ε > 0, (3.6)

with, f1(t) = c5
(|u(3)

1 (t)|2
L2(Ω) + |u′2(t)|4∞

)
. We show that f1 ∈ L1(]0,T [) . Thanks to

proposition 2.2, with k = 4 et r = ∞ , we deduce that |u′2|4∞ ∈ L1(]0,T [) , and since
u1 ∈ L2

(
0,T ;H3

per(Ω)
)
, then f1 ∈ L1(]0,T [) .

An integration by parts allows us to write the term P2 under the following form:

P2 = −3
∫ 1

0

(
u′31 (t,x)−u′32 (t,x)

)
(δu)(3)(t,x)dx

=
∫ 1

0

(
u′1(t,x)−u′2(t,x)

)(
u′21 (t,x)+u′1(t,x)u

′
2(t,x)+u′22 (t,x)

)
(δu)(3)(t,x)dx.
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Applying the Young inequality for ε > 0, one has:

|P2| � c6
(|u′1(t)|2∞ + |u′1(t)|∞|u′2(t)|∞ + |u′2(t)|2∞

)∫ 1

0
|(δu)′(t,x)||(δu)(3)(t,x)|dx

� c7
(|u′1(t)|2∞ + |u′2(t)|2∞

)∫ 1

0
|(δu)′(t,x)||(δu)(3)(t,x)|dx

� cε
(|u′1(t)|2∞ + |u′2(t)|2∞

)2
∫ 1

0
|(δu)′(t,x)|2dx+

ε
4

∫ 1

0
|(δu)(3)(t,x)|2dx

� c8
(|u′1(t)|4∞ + |u′2(t)|4∞

)∫ 1

0
|(δu)′(t,x)|2dx+

ε
4

∫ 1

0
|(δu)(3)(t,x)|2dx.

(3.7)
Thus,

|P2| � f2(t)|(δu)′(t)|2L2(Ω) +
ε
4

∫ 1

0
|(δu)(3)(t,x)|2dx, ∀ε > 0, (3.8)

with f2(t) = c8
(|u′1(t)|4∞ + |u′2(t)|4∞

)
. Applying proposition 2.2, with k = 4 and r = ∞ ,

one has f2 ∈ L1(]0,T [) .
We can write the term P3 as following:

P3 = 3
∫ 1

0

(
u′′1(t,x)+u′′2(t,x)

)(
u′′1(t,x)−u′′2(t,x)

)
(δu)′′(t,x)dx

= 3
∫ 1

0

(
u′′1(t,x)+u′′2(t,x)

)
(δu)′′2(t,x)dx.

(3.9)

By the intepolation inequalities, we deduce that:

|P3| � c9
(|u′′1(t)|∞ + |u′′2(t)|∞

)∫ 1

0
|(δu)′′(t,x)|2dx

� c10
(|u′′1(t)|∞ + |u′′2(t)|∞

)|(δu)′(t)|L2(Ω)|(δu)(3)(t)|L2(Ω).
(3.10)

Then, the Young inequality gives us

|P3| � f3(t)|(δu)′(t)|2L2(Ω) +
ε
4

∫ 1

0
|(δu)(3)(t,x)|2dx, ∀ε > 0, (3.11)

with
f3(t) = c11

(|u′′1(t)|∞ + |u′′2(t)|∞
)2 � c12

(|u′′1(t)|2∞ + |u′′2(t)|2∞
)
.

Applying proposition 2.2, with k = 2 and r = ∞ , we deduce that f3 ∈ L1(]0,T [) .
Finally, we can write the term P4 as:

P4 = 2
∫ 1

0
(δu)′′(t,x)(δu)′(t,x)

(
u′1(t,x)+u′2(t,x)

)(
u′21 (t,x)+u′22 (t,x)

)
dx,

then

|P4| � c13(|u′1(t)|∞ + |u′2(t)|∞)(|u′1(t)|2∞ + |u′2(t)|2∞)
∫ 1

0
(δu)′′(t,x)(δu)′(t,x)dx. (3.12)
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Thus,

|P4| � f4(t)|(δu)′(t)|2L2(Ω) +
ε
4

∫ 1

0
|(δu)(3)(t,x)|2dx, ∀ε > 0, (3.13)

with
f4(t) = c14(|u′1(t)|∞ + |u′2(t)|∞)2(|u′1(t)|2∞ + |u′2(t)|2∞)2.

Hence
f4(t) � c15(|u′1(t)|6∞ + |u′2(t)|6∞).

By using proposition 2.2, with k = 6 and r = ∞ , we deduce that f4 ∈ L1(]0,T [) . There-
fore f := ∑4

i=1 fi ∈ L1(]0,T [). For ε < 1, the estimations (3.6), (3.8), (3.11), and (3.13)
allow us to write

d
dt

∫ 1

0
|(δu)′(t,x)|2dx � c f (t)|(δu)′(t)|2L2(Ω), (3.14)

Setting G(t) = |(δu)′(t)|2
L2(Ω) , one has:

(
G(t)

)′
t � c f (t)G(t). (3.15)

The Gronwall inequality gives:

G(t) � G(0)exp

(
c
∫ t

0
f (τ)dτ

)
= 0.

Therefore u1 = u2 , then the solution (1.8) is unique in X .

4. Numerical Validation

In this section we review the numerical verification of previous theoretical study.
We use pseudo-spectral method conjugated with an exponential scheme that breaks
down to a classical forward Euler time scheme, for zero wave number [23].

4.1. Spatial discretization

We consider the periodic problem (1.3), where h(x,t) supposed 2π -periodic. Eq.
(1.3) can be written in the form

∂h
∂ t

+L (h) = N (h) (4.1)

where L and N are respectively the linear and nonlinear operators of (1.3), i.e.,

L ≡ ∂ 4

∂x4 (4.2)

and
N (h) = −h−1h′h(3). (4.3)
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The periodic boundary conditions and given initial data yield

h(0,t) = h(2π ,t), t ∈ R+
h(x,0) = h0(x), x ∈ (0,2π).

The solution of (1.3) is approximated as a truncated series in the Fourier basis functions
{(Φk)k∈Z, Φk(x) ≡ eikx} :

hN(x,t) = PN(h(x,t)) = ∑
k∈IN

ĥk(t)Φk(x),

where IN = [1− N
2 , N

2 ] ; the ĥk are the spectral coefficients. We require the orthogonality
of the residue for all functions of SN who make up the vectorial space generated by
(Φk)k∈Z . In Fourier space, we can write

∂ ĥk

∂ t
= Lkĥk +Nk,

where Nk is the k -th Fourier coefficient of the nonlinear term of (4.1).

4.2. Time discretization

To approach the solution of (1.3), we adopt a pseudo-spectral method which is
associated with an exponential scheme in time [23]. Let δ t = tn+1− tn be the time step
(constant) then we obtain the exponential scheme in time

ĥn+1
k = ĥn

k exp(Lkδ t)+Nk
exp(Lkδ t)−1

Lk
.

This scheme is based on a discrete version of the “variation of constants method”. The
nonlinear term Nk is calculated at each step time in the direct space then in the Fourier
space by a fast discrete transform.
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Figure 1: On the left, solution h(x,t) of system (1.3) with the initial data h0(x) =
0.01+ 0.001sin(x) and for δ t = 10−2 and N = 8192. On the right, solution (1.3) of
h0(x) = 2+ 0.01sin(3x)− 0.003sin(x) . The initial solution is given by a dotted line.
We obtain the convergence of the solution to the mean value of the initial data.
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Figure 2: On the left, solution h(x,t) of system (1.3) with the initial data h0(x) =
1.5+ 0.05sin3(x) and for δ t = 10−3 and N = 8192. On the right, solution (1.3) for
h0(x) = 1 + 0.03cos3(x)− 0.03cos(x) . The initial solution is given by a dotted line.
Again we obtain the convergence of the solution to the mean value of the initial data.

Remark

I would like to draw your attention that this article is a part of my thesis [1].
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