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ON THE OSCILLATION CERTAIN FOURTH ORDER NONLINEAR

DYNAMIC EQUATIONS WITH A NONLINEAR MIDDLE TERM

SAID R. GRACE AND TAHER S. HASSAN

(Communicated by Sandra Pinelas)

Abstract. New oscillation criteria for certain fourth order nonlinear dynamic equations with non-
linear middle term are established.

1. Introduction

This article deals with the oscillatory behavior of certain fourth order nonlinear
dynamic equations with nonlinear middle term

(
a(t)φα(xΔΔΔ(t))

)Δ
+ p(t)φβ (xΔΔ(h(t)))+q(t)φβ (x(g(t))) = 0, (1.1)

on an arbitrary time scale T ⊆ R with supT = ∞ . We assume that

(i) φλ (u) := |u|λ sgnu for λ > 0;

(ii) a, p,q : T → (0,∞) are real valued, rd-continuous functions such that
∫ ∞

0
a−1/α(s)Δs = ∞; (1.2)

(iii) g,h : T→T are real valued, rd-continuous functions such that gΔ(t)� 0, hΔ(t)�
0, g(t) � t , h(t) � t for t � t0 ∈ T and limt→∞ g(t) = limt→∞ h(t) = ∞;

We recall that a solution of equation (1.1) is said to nonoscillatory if there exists
t0 ∈ T such that x(t)x(σ(t)) > 0 for all t ∈ [t0,∞)T, where the forward jump operator
σ(t) := inf{s ∈ T : s > t} , otherwise it is said to be oscillatory.

The theory of time scales, which has recently received a lot of attention, was in-
troduced by Stefan Hilger in his Ph.D Thesis in 1988 in order to unify continuous and
discrete analysis, see [12]. A time scale T is an arbitrary closed subset of the reals,
and the cases when this time scale is equal to the reals or to the integers represent the
classical theories of differential and of difference equations. Many other interesting
time scales exist, and they give rise to many applications (see [1]). This new theory of
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these so-called “dynamic equations” not only unifies the corresponding theories for the
differential equations and difference equations cases, but it also extends these classical
cases to cases “in between”. That is, we are able to treat the so-called q−difference
equations when T =qN0 := {qn : n ∈ N0 for q > 1} (which has important applications
in quantum theory and can be applied to different types of time scales like T =hN ,
T = N

2 and T = Tn the set of the harmonic numbers. The books on the subject of time
scales by Bohner and Peterson [1] summarize and organize much of time scale calculus.

Recently, there has been an increasing interest in studying the oscillatory behavior
of all order dynamic equations on time scales, see, for example [2, 1, 5, 6, 7, 8, 10, 3,
4, 9, 11] and the references contained therein.

The study content on the oscillatory and asymptotic behavior of second order dy-
namic equations on time scales is very rich.

In contrast, the study of oscillation criteria of fourth order dynamic equations is
relatively less. To the best of our knowledge, the oscillatory behavior of fourth order
nonlinear dynamic equations with nonlinear middle term has not been studied till now.

Our aim here is to initiate such a study by establishing some new criteria for the
oscillation of equation (1.1) and some related equation. Our approach is to reduce the
problem in such a way that specific oscillation results for second order equations can
be adapted for fourth order case.

We may also extend the results obtained to fourth order nonlinear dynamic equa-
tions with a nonlinear middle term and with distributed deviating arguments on time
scale of the form(

a(t)φα(xΔΔΔ(t))
)Δ

+ p(t)φβ (xΔΔ(h(t)))+
∫ c

b
q1(t,τ)φβ (x(g1(t,τ)))Δτ = 0, (1.3)

where (i)–(iii) hold, 0 < b < c ,

(iv) q1 : T× [b,c]→ [0,∞) is real valued, rd-continuous function;

(v) g1 : T× [b,c]→ T is decreasing with respect to second variable, g1(t,τ) � t and
limt→∞ g1(t,τ) = ∞, t � t0 ∈ T and τ ∈ [b,c].

2. Main Results

We shall employ the following lemmas. Consider the inequality
(
a(t)φα

(
xΔ(t)

))Δ
+ p(t)φβ (x(h(t))) � 0, (2.1)

where the numbers α and β are positive real numbers and the functions a , h and p
are as in equation (1.1).

LEMMA 1. If the inequality (2.1) has an eventually positive solution, then the
equation (

a(t)φα

(
xΔ(t)

))Δ
+ p(t)φβ (x(h(t))) = 0, (2.2)

also has an eventually positive solution.
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Proof. Let x(t) be an eventually positive solution of inequality (2.1). It is easy to
see that xΔ > 0 eventually. Let t0 be sufficiently large so that x(t) > 0, x(h(t)) > 0
and y(t) := a(t)φα

(
xΔ(t)

)
for t ∈ [t0,∞)

T
. Then in view of

x(t) = x(t0)+
∫ t

t0
φ−1

α

(
y(s)
a(s)

)
Δs.

There is a t1 � t0 such that h(t) � t0 , for t � t1 . Inequality (2.1) becomes

yΔ(t)+ p(t)φβ

(
x(t0)+

∫ h(t)

t0
φ−1

α

(
y(s)
a(s)

)
Δs

)
� 0. (2.3)

Integrating (2.3) from t to v � t � t1 and letting v → ∞ , we have

y(t) � G(t,y(t)) , for t ∈ [t1,∞)
T
,

where

G(t,y(t)) :=
∫ ∞

t
p(v)φβ

(
x(t0)+

∫ h(v)

t0
φ−1

α

(
y(s)
a(s)

)
Δs

)
Δv.

Now, we define a sequence of successive approximations
{
wj(t)

}
as follows:

w0(t) : = y(t)
wj+1(t) : = G(t,wj(t)) , j = 0,1,2, . . .

It is easy to show that

0 < wj(t) � y(t) and wj+1(t) � wj(t), j = 0,1,2, . . .

Then, the sequence
{
wj(t)

}
is nonincreasing and bounded for each t � t1 . This

means,we may define w(t) := lim j→∞ wj(t) � 0. Since

0 � w(t) � wj(t) � y(t), for all j � 0,

we find that ∫ t

t1
wj(s)Δs �

∫ t

t1
y(s)Δs.

By the Lebesgue’s dominated convergence theorem on time scale, one can easily find

w(t) = G(t,w(t)) .

Therefore

wΔ(t) = −p(t)φβ

(
x(t0)+

∫ h(t)

t0
φ−1

α

(
w(s)
a(s)

)
Δs

)
= −p(t)φβ (m(h(t))) , (2.4)

where

m(t) := x(t0)+
∫ t

t0
φ−1

α

(
w(s)
a(s)

)
Δs.
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Then
m(t) > 0 and a(t)φα

(
mΔ(t)

)
= w(t), for t � t1.

Equation (2.4) then gives

(
a(t)φα

(
mΔ(t)

))Δ
+ p(t)φβ (m(h(t))) = 0.

Hence equation (2) has a positive solution m(t) . This completes the proof.
In the following two lemmas, we consider the second order dynamic equation

(
a(t)φα

(
xΔ(t)

))Δ
= Q(t)φβ (x(h(t))) , (2.5)

where the numbers α and β are the ratio of positive odd integers and the functions a
and h are as in equation (1.1) and Q : T→ [0,∞) is real valued, rd-continuous function.

LEMMA 2. If

limsup
t→∞

∫ t

h(t)
Q(s)

(∫ h(t)

h(s)

Δτ
a1/α(τ)

)β

Δs >

⎧⎨
⎩

1 if β = α

0 if β < α ,
(2.6)

then all bounded solutions of equation (2.5) are oscillatory.

Proof. Let x(t) be a bounded nonoscillatory solution of equation (2.5), say x(t) >
0 and x(h(t)) > 0 for t � t1 for some t1 ∈ [t0,∞)T . Then there exists a t2 � t1 such
that

x(t) > 0, xΔ(t) < 0 and
(
a(t)φα

(
xΔ(t)

))Δ
� 0 for t � t2. (2.7)

Now, for v � u � t2 we have

x(u) � x(u)− x(v) = −
∫ v

u
xΔ(τ)Δτ = −

∫ v

u
a−1/α(τ)φ−1

α

[
a(τ)φα

(
xΔ(τ)

)]
Δτ

� φ−1
α

[
a(v)φα

(
−xΔ(v)

)]∫ v

u
a−1/α(τ)Δτ. (2.8)

For t � s � t2 , setting u = h(s) and v = h(t) in (2.8), we get

x(h(s)) � φ−1
α

[
a(h(t))φα

(
−xΔ(h(t))

)]∫ h(t)

h(s)
a−1/α(τ)Δτ. (2.9)

Integrating (2.5) from h(t) � t2 to t , we have

−a(h(t))φα

(
xΔ(h(t))

)
� a(t)φα

(
xΔ(t)

)
−a(h(t))φα

(
xΔ(h(t))

)

=
∫ t

h(t)
Q(s)φβ (x(h(s))) Δs. (2.10)
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Using (2.9) in (2.10), we have

a(h(t))φα

(
−xΔ(h(t))

)

� φβ/α

[
a(h(t))φα

(
−xΔ(h(t))

)]∫ t

h(t)
Q(s)

(∫ h(t)

h(s)
a−1/α(τ)Δτ

)β

Δs,

or

[
a(h(t))φα

(
−xΔ(h(t))

)]1−β/α
�

∫ t

h(t)
Q(s)

(∫ h(t)

h(s)
a−1/α(τ)Δτ

)β

Δs. (2.11)

We take the limsup as t → ∞ of both sides of the above inequality. If α = β , the
contradiction is obvious. If β < α the left hand side of (2.11) is positive and must
decrease to zero (to present a contradiction to positively of x(t)). Thus contradicts
(2.6) and completes the proof of the lemma.

LEMMA 3. If

limsup
t→∞

∫ t

h(t)

1

a1/α(s)

(∫ t

s
Q(τ)Δτ

)1/α
Δs >

⎧⎨
⎩

1 if β = α

0 if β < α ,
(2.12)

then all bounded solutions of equation (2.5) are oscillatory.

Proof. Let x(t) be a bounded nonoscillatory solution of equation (2.5), say x(t) >
0 and x(h(t)) > 0 for t � t1 for some t1 ∈ [t0,∞)T . As in the Lemma 2, we obtain
(2.7). Integrating (2.5) from s to t � s � t2 , we have

−a(s)φα

(
xΔ(s)

)
� a(t)φα

(
xΔ(t)

)
−a(s)φα

(
xΔ(s)

)
=

∫ t

s
Q(τ)φβ (x(h(τ)))Δτ.

Thus

−a(s)φα

(
xΔ(s)

)
�

∫ t

s
Q(τ)φβ (x(h(τ)))Δτ

or

−xΔ(s) � 1

a1/α(s)

(∫ t

s
Q(τ)φβ (x(h(τ)))Δτ

)1/α

� φβ/α (x(h(t)))
1

a1/α(s)

(∫ t

s
Q(τ)Δτ

)1/α
.

Integrating this inequality from h(t) to t , we get

x(h(t)) � φβ/α (x(h(t)))
∫ t

h(t)

1

a1/α(s)

(∫ t

s
Q(τ)Δτ

)1/α
Δs,
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or

x1−β/α (h(t)) �
∫ t

h(t)

1

a1/α(s)

(∫ t

s
Q(τ)Δτ

)1/α
Δs.

The rest of the proof is similar to that of Lemma 2 and hence is omitted. This completes
the proof.

Now we are ready to establish the main results of this article.

THEOREM 1. Let conditions (i)–(iii) and g(t) � h(t) for t � t0 ∈ T hold. If equa-
tion (2) is oscillatory and condition (2.6) or (2.12) holds with

Q(t) := cgβ (t)q(t)(h(t)−g(t))β − p(t) � 0 for t � t0 and for some c ∈ (0,1),

then every solution x of equation (1.1), either x(t) or xΔΔ(t) is oscillatory.

Proof. Let x(t) be a bounded nonoscillatory solution of equation (1.1), say x(t) >
0, x(h(t)) > 0 and x(g(t)) > 0 for t � t1 for some t1 ∈ [t0,∞)T . We consider the two
cases:

(I) xΔΔ(t) > 0 for t � t1, (II) xΔΔ(t) < 0 for t � t1.
If case (I) holds, then (1.1) becomes

(
a(t)φα

(
yΔ(t)

))Δ
+ p(t)φβ (y(h(t))) � 0 for t � t2 � t1, (2.13)

where y(t) := xΔΔ(t) > 0. By Lemma 1, equations (2.2) has a positive solution, a
contradiction. Finally, if case (II) holds, xΔ(t) must be positive, otherwise, we obtain a
contradiction to the fact x(t) > 0. Now there exists a t3 � t2 and a constant c1 ∈ (0,1)
such that

x(g(t)) � c1 g(t)xΔ (g(t)) > 0 for t � t3.

Using this inequality in equation (1.1), we get

(
a(t)φα

(
yΔΔ(t)

))Δ
+ p(t)φβ

(
yΔ(h(t))

)
+ cβ

1 q(t)gβ (t)φβ (y(g(t))) � 0 for t � t3,

(2.14)
where y(t) := xΔ(t) > 0 for t � t3 . Now, we see that y(t) > 0 and yΔ(t) < 0 and
we must have yΔΔ(t) > 0, for otherwise, we obtain a contradiction to y(t) > 0. For
v � u � t3 we have

y(u) � y(u)− y(v) = −
∫ v

u
yΔ(τ)Δτ =

(
−yΔ(v)

)
(v−u).

Setting u = g(t) and v = h(t), we get

y(g(t)) �
(
−yΔ(h(t))

)
(h(t)−g(t)) for t � t3. (2.15)

Using (2.15) in inequality (2.14), we get

(
a(t)φα

(
wΔ(t)

))Δ
�

(
cβ
1 q(t)gβ (t)(h(t)−g(t))β − p(t)

)
φβ (w(h(t))) for t � t3,
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where w(t) = −yΔ(t) > 0 for t � t3 . Proceeding as in the proofs of Lemma 2 and
Lemma 3, we arrive at the desired conclusion completing the proof of the theorem.

Next, we consider equation (1.3). Set

q(t) :=
∫ c

b
q1(t,τ)Δτ, g1(t,c) := g(t) and g(t) � h(t),

and
Q(t) := cq(t)(g(t))β (h(t)− g(t))β − p(t), for t � t0 ∈ T.

Now, we have the following oscillation result for equation (1.3).

THEOREM 2. Let the hypotheses of Theorem 2.1, (iv) and (v) hold, with Q be
replaced by Q. Then the conclusion of Theorem 2.1 holds.

Proof. Let x(t) be a nonoscillatory solution of equation (1.3), say x(t) > 0, and
x(g1(t,τ)) > 0 for t � t0 ∈ T and τ ∈ [b,c] . Proceeding as in the proof of Theorem
2.1, we consider the two Cases (I) and (II). The proof of Case (I) is similar to that of
Theorem 2.1 and is omitted. Next, if Case (II) holds, one can easily find

(
a(t)φα

(
xΔΔΔ(t)

))Δ
+ p(t)φβ

(
xΔΔ(h(t))

)
+

(∫ c

b
q1(t,τ)Δτ

)
φβ (x(g1(t,c))) � 0,

or (
a(t)φα

(
xΔΔΔ(t)

))Δ
+ p(t)φβ

(
xΔΔ(h(t))

)
+ q(t)φβ (x(g(t))) � 0.

The rest of the proof is similar the proof of Theorem 2.1-Case (II) and is omitted. This
completes the proof of the theorem.

General Remarks

1. The results of this paper are presented in a form that is essentially new and of a
high degree of generality.

2. The results here are valid for various types of time scales e.g., T = R , T = Z ,
T = hZ with h > 0, T = qN0 , q > 1 and T = N

2
0 , etc. (see [1]).

3. Finally, we note that our oscillation results are applicable to equations (1.1) and
(1.3) if h(t) < t . Thus as is well known it is the delay in equation (1.1) or (1.3)
that can generate the oscillation.
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