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SPECTRAL ANALYSIS OF A NONLINEAR BOUNDARY–VALUE

PROBLEM IN A PERFORATED DOMAIN. APPLICATIONS

TO THE FRIEDRICHS INEQUALITY IN Lp

YULIA KOROLEVA

(Communicated by Šárka Nečasová)

Abstract. The paper deals with asymptotic expansion for p -Laplace boundary-value problem in
a domain periodically perforated along the boundary. It is assumed that the later boundary of the
domain is subject to the Neumann boundary condition while the Dirichlet condition is set on the
boundary of small sets. The asymptotic expansion for the first eigenelement is constructed. This
result is applied to derive the asymptotics of the best constant in the Friedrichs inequality.

1. Introduction

The homogenization of problems for differential operators in perforated domains
has been addressed in fairly numerous works (see e.g., [3], [7], [19], [20], [22], [25]–
[30] and the references therein). The basic goal is to determine a homogenized (lim-
iting) problem, compute the convergence rate of solutions to the original problem and
construct asymptotics of solutions (whenever possible). The direction in which the
eigenvalue of the original problem shifts from that of the homogenized problem can
frequently be determined from variational considerations. For example, in the case
when a Dirichlet boundary condition is specified on small subsets of the boundary,
the eigenvalue of the perturbed problem is obviously larger than the eigenvalue of the
homogenized problem. However, for the case of Dirichlet boundary conditions on per-
foration inside of the domain and Neumann boundary conditions on the outer boundary
such arguments are not applicable.

In this paper, we consider a singularly perturbed eigenvalue problem for the oper-
ator −Δp in n -dimensional domain that is periodically perforated along its boundary
in the case when the diameter of the cavities, the distances between them, and the
distance to the boundary are of the same order of smallness. A Dirichlet boundary con-
dition is set on the boundaries of the cavities, while the Neumann boundary condition
is specified on the remaining part of the boundary. For this problem, it can be shown
that homogenized problem is one in the domain without perforation with a Dirichlet
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boundary condition on that part of the boundary near which the small perforation were
situated (a detailed proof of this convergence can be found in [17]). Asymptotics of
the eigenvalues to analogous spectral problems in case p = 2 were studied in [7], [8]
and [10] for different geometrical settings, in particular, for dimensions 2 and 3. It was
shown that the first eigenvalue of the original problem is less than the first eigenvalue
of the limit one. Let us remark that such a result can not be derived directly from vari-
ational definition of the first eigenvalues. Our goal now is to study asymptotics of the
problem for the case p > 2 in n−dimensional domain. Such problem requires more
complicated analysis since it leads to nonlinear spectral problem. Especial interest in
case p > 2 is motivated by applications to the Friedrichs inequality for Lp space, p > 2.
For the perturbed problem, we construct a two-term asymptotic expansion of the first
eigenvalue. We apply the constructed asymptotics of the considered spectral problem
to estimate the best constant in the Friedrichs inequality in perforated domain. The
validity of such inequality was proved in [17], while the bounds for the sharp constant
were derived in [7]-[10] for p = 2 and n = 2.

2. Statement of the problem

Let Ω ⊂ Rn−1 ×{xn > 0},n > 2 be a domain with boundary ∂Ω = Γ. We will
use the notation x̂ = (x1, . . . ,xn−1). It is assumed that Γ = Γ1∪Γout ∪Γ0 is piece-wise
smooth and consists of the parts Γ0 = [−1/2;1/2]n−1∩ {xn = 0}, Γ1 is the smooth
surface given by xn = f (x̂). The part

Γout =
n−1⋃
i=1

[
− 1

2
;
1
2

]n−2∩{xi = ±1
2
}∩{0 < xn < f (x̂)}.

In the sequel ε = 1
2N +1 is a small parameter, N ∈ N, N � 1. Moreover, we can

represent the domain Ω as the union of parallelepipeds:

Ω =
⋃

(i1...in−1)

Πi1...in−1
ε , ik = 0, . . . ,N , k = 1,n−1,

where

Πi1...in−1
ε =

{
(x̂,xn) ∈ Ω :

(
ik − 1

2

)
ε � xk �

(
ik +

1
2

)
ε,0 � xn � f (x̂)

}
,k = 1,n−1.

Let the constants α,β satisfy the condition 0 < α < 1, 0 � β . Introduce small pa-
rameters ε1 = αε, ε2 = β ε. Define a set of balls with radius ε1 centered at points
x̂0 = (xi1...in−1

1,0 , . . . ,xi1...in−1
n−1,0 , 1

2) ∈ Πi1...in−1
ε :

Ki1...in−1
ε =

{
(x̂,xn) ∈ Πi1...in−1

ε :

(x1− xi1...in−1
1,0 )2 + . . .+(xn−1− xi1...in−1

n−1,0 )2 +(xn− 1
2
)2 � ε2

1

}
.
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Figure 1: Structure of Ωε

Due to the construction, the centers of each ball are located on the distance ε
2 from the

boundary Γ0. The distances between centers of neighboring balls are ε2 :

|xi1...il ...in−1
k,0 − x

i1...il+1...in−1
k,0 | = ε2, k = 1,n−1.

Consider the set

Bi1...in−1
ε ⊂ Ki1...in−1

ε such that
meas(Bi1...in−1

ε )

meas(Ki1...in−1
ε )

= const,

i.e. we choose the subset of the ball with equivalent measure. Denote

Bε =
⋃

(i1...in−1)

Bi1...in−1
ε , Γε = ∂Bε .

According to this definition, the small set Bε is the 1- periodic translation of the fixed
B1...1

ε with respect to vector (i1, . . . , in−1) over the domain Ω. Moreover, we shall as-
sume that the boundary of set B1...1

ε is given by a smooth function. We denote, finally,
B = {( x̂

ε , xn
ε
)

: (x̂,xn) ∈ B1...1
ε }. The figure demonstrates an example of set B in the pe-

riodic cell Π. Define the perforated domain Ωε as Ω\Bε . See the illustration for cut
of Ωε on fig. 1.

In the sequel the space

W 1,p(Ωε ,Γε ) := {u ∈W 1,p(Ωε) : u|Γε=0}
will be used. We remind also the following important fact which holds for spaces
W 1,p(Ωε ,Γε ) (for the proof see e.g. [6], [15], [16], [17] for different p,n and different
types of perforations).

THEOREM 1. (Friedrichs inequality) There exists a constant K > 0 independent
on ε such that the following Friedrichs inequality∫

Ωε

|u|p dx � K
∫

Ωε

|∇u|p dx holds for u ∈W 1,p(Ωε ,Γε). (2.1)
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DEFINITION 1. For 2 � p < n define the operator

Δup(x) ≡
n

∑
j=1

∂
∂x j

(
|∇u(x)|p−2 ∂u(x)

∂x j

)
.

We are interested to obtain the asymptotics with respect to ε of the solution to the
following spectral problem:⎧⎪⎨⎪⎩

−Δpuε(x) = λε |uε |p−2uε in Ωε ,

uε = 0 on Γε ,
∂uε
∂pν ≡ |∇u|p−2(∇u,ν) = 0 on ∂Ω,

(2.2)

where ν is the unit outward normal vector to the boundary of Ω.

DEFINITION 2. One say that λε is an eigenfunction to the problem (2.2) if there
exists uε ∈W 1,p(Ωε ,Γε )\ {0}, satisfying the integral identity∫

Ωε

n

∑
j=1

|∇uε(x)|p−2 ∂uε(x)
∂x j

∂ϕε (x)
∂x j

dx = λε

∫
Ωε

|uε |p−2uε ϕε dx (2.3)

for every ϕε ∈W 1,p(Ωε ,Γε). The couple (uε ,λε) is called the solution to (2.2).

One can extend the functions uε ∈ W 1,p(Ωε ,Γε) into Bε by zero. For the extended
function we keep the same notation. It is true that uε belongs to W 1,p(Ω), see [21].
Our goal now is to construct the asymptotics for eigenelements to problem (2.2). The
main result with asymptotics of the first eigenvalue is given in Theorem 5.

3. Asymptotic expansions

To construct the asymptotics we use the method of matching of asymptotic ex-
pansions (see [14], and also [2], [5], [12], [13]). It was shown in [17] the existence of
eigenelement (u0,λ0), u0 ∈C∞(Ω) such that

uε → u0, λε → λ0 as ε → 0.

In the sequel the eigenfunction u0 is chosen to be normalized in Lp(Ω) . Therefore it is
naturally to seek the asymptotics of the solution uε in the form

uε(x) ∼ ûε(x) = u0 + εu1 + ε2u2. (3.1)

We will call (3.1) ” the outer expansion” assuming that it holds outside a small neigh-
borhood of Γ0, mainly as xn > εβ , 0 < β < 1. Analogously, we will seek the eigen-
value λε as the formal expansion

λε ∼ λ̂ε = λ0 + ελ1 + ε2λ2. (3.2)
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Now we find out the boundary-value problems for u0,u1,u2. Substitute expansions into
the boundary-value problem (2.2). By using formulas

|u0 + εu1 + ε2u2 + . . .)|p−2 =|u0|p−2 + ε(p−2)|u0|p−3|u1|

+ ε2 (p−2)
2

(2u2|u0|p−3 +(p−3)|u0|p−4u2
1)+o(ε2),

(3.3)

λε |uε |p−2uε = λ0|u0|p−2u0 + ε((λ1u0 + λ0u1)|u0|p−2

+(p−2)λ0u0|u0|p−3|u1|)

+ ε2[|u0|p−2(λ2u0 + λ1u1 + λ0u2)+
(p−2)

2
λ0u0(2u2|u0|p−3

+(p−3)|u0|p−4u2
1)+ (p−2)|u0|p−3|u1|(λ1u0 + λ0u1)]+o(ε2), (3.4)

|∇uε |p−2 =(|∇u0|2 +2ε(∇u0,∇u1)+ ε2(2(∇u2,∇u0)+ |∇u1|2)+ . . .)
p−2
2

= |∇u0|p−2 + ε(p−2)|∇u0|p−4(∇u0,∇u1)

+ ε2 p−2
2

|∇u0|p−6(2(∇u2,∇u0)|∇u0|2

+ |∇u0|2|∇u1|2 +(p−4)(∇u0,∇u1)2)+o(ε2), (3.5)

∂
∂x j

(
|∇uε |p−2

(
∂u0

∂x j
+ ε

∂u1

∂x j
+ ε2 ∂u2

∂x j
+o(ε2)

))
=

∂
∂x j

(
|∇u0|p−2

(
∂u0

∂x j

))
+ ε

∂
∂x j

(
(p−2)|∇u0|p−4(∇u0,∇u1)

∂u0

∂x j
+ |∇u0|p−2 ∂u1

∂x j

)
+ ε2

[
∂

∂x j

((
p−2

2
|∇u0|p−6(2(∇u2,∇u0)|∇u0|2

+ |∇u0|2|∇u1|2 +(p−4)(∇u0,∇u1)2)
)

∂u0

∂x j

)
+

∂
∂x j

(
|u0|p−2 ∂u2

∂x j

)
+

∂
∂x j

(
2(∇u0,∇u1)

∂u1

∂x j

)]
+o(ε2), (3.6)

|∇uε |p−2 ∂uε
∂ν

= |∇u0|p−2 ∂u0

∂ν

+ ε
(

(p−2)|∇u0|p−4(∇u0,∇u1)
∂u0

∂ν
+ |∇u0|p−2 ∂u1

∂ν

)



442 Y. KOROLEVA, Differ. Equ. Appl. 8, No. 4 (2016), 437–458.

+ ε2
[(

p−2
2

|∇u0|p−6(2(∇u2,∇u0)|∇u0|2

+ |∇u0|2|∇u1|2 +(p−4)(∇u0,∇u1)2)
)

∂u0

∂ν

+ |∇u0|p−2 ∂u2

∂ν
+2(∇u0,∇u1)

∂u1

∂ν

]
+o(ε2), (3.7)

and collecting the terms with ε0 we obtain the following problem for (u0,λ0) :⎧⎪⎨⎪⎩
−Δpu0(x) = λ0|u0|p−2u0 in Ω,

u0 = 0 on Γ0,
∂u0
∂pν ≡ |∇u0|p−2 ∂u0

∂ν = 0 on ∂Ω\Γ0.

(3.8)

As usually, we understand the solution to this boundary-value problem in the weak
sense i.e. iff u0 ∈W 1,p(Ω,Γ0)\ {0}, satisfies∫

Ω

n

∑
j=1

|∇u0(x)|p−2 ∂u0(x)
∂x j

∂ϕ(x)
∂x j

dx = λ0

∫
Ω

|u0|p−2u0ϕ dx (3.9)

for every ϕ ∈W 1,p(Ω,Γ0). The existence and uniqueness of the smooth (C∞(Ω)) nor-
malized solution follows from the general theory of monotone nonlinear elliptic opera-
tors. The detailed proof is given in [17]. In addition, the following fact was proved in
[17].

THEOREM 2. The spectrum of problems (2.2) and (3.8) is nonempty closed set.
Let λ 1

ε ,λ 1
0 be the first eigenvalues of problems (2.2) and (3.8) respectively. Then

λ 1
ε → λ 1

0 as ε → 0.

Moreover, if uε , u0 are corresponding eigenfunctions, normalized in Lp, then up to a
subsequence,

‖uε −u0‖W1,p → 0.

The main goal in present paper is to derive the asymptotics of λ 1
ε and estimate the rate

of the convergence λ 1
ε to λ 1

0 . This result can be applied to estimate the sharp constant
in the Friedrichs inequality (2.1) (see Section 7).

Analogously, collecting the terms in front of ε, and ε2 one obtain the following
boundary-value problems for unknown u1 and u2 functions:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑
j

∂
∂x j

(
(p−2)|∇u0|p−4(∇u0,∇u1)

∂u0
∂x j

+ |∇u0|p−2 ∂u1
∂x j

)
= (λ1u0 + λ0u1)|u0|p−2 +(p−2)λ0u0|u0|p−3u1, in Ω,

u1 = α0
1 (x̂) on Γ0,

∂u1
∂ν = 0 on ∂Ω\Γ0.

(3.10)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∑
j

[
∂

∂x j

((
p−2
2 |∇u0|p−6(2(∇u2,∇u0)|∇u0|2 + |∇u0|2|∇u1|2

+(p−4)(∇u0,∇u1)2)
)

∂u0
∂x j

)
+ ∂

∂x j

(
|u0|p−2 ∂u2

∂x j

)
+ ∂

∂x j

(
2(∇u0,∇u1)

∂u1
∂x j

)]
= |u0|p−2(λ2u0 + λ1u1 + λ0u2)+ (p−2)

2 λ0u0(2u2|u0|p−3 + |u0|p−4u2
1)

+(p−2)|u0|p−3|u1|(λ1u0 + λ0u1) in Ω,

u2 = α0
2 (x̂) on Γ0,

∂u2
∂ν = 0 on ∂Ω\Γ0.

(3.11)
The existence of the solution for (3.10) and (3.11) follows from the general theory

of linear elliptic operators with smooth coefficients. It is given in Lemma 1.

4. The internal expansion

However, the approximation ûε(x) ≡ u0 + εu1 + ε2u2 does not satisfy to the con-
dition on Γε . This forces us to introduce an additional term in the asymptotic expansion
for uε to satisfy the appropriate boundary condition. In a small neighborhood of Γ0,

mainly on the set {(x̂,xn) :
[− 1

2 ; 1
2

]n−1
, 0 � xn < 2εβ}, 0 < β < 1, we construct an

”internal expansion”. The solution u0(x)∈C∞(Ω) satisfies to the problem (3.8), is even
with respect to xi . With this property, one has where

u0(x̂,0) = 0,
∂u0

∂xi

∣∣∣∣
xi=± 1

2

= 0 on Γout .

Due to the regularity, the equation

Δpu0 = λ0|u0|p−2u0

holds up to the boundary, hence, Δpu0 = 0 and ∂u0
∂xi

= 0 on Γ0, i = 1,n−1. Now we
rewrite the p-Laplace operator as follows:

Δpu0 = |∇u0|p−4
(
|∇u0|p−4Δu0 +(p−2)

n

∑
i, j=1

∂u0

∂xi

∂u0

∂x j

∂ 2u0

∂xi∂x j

)
.

On Γ0 it reduces to

0 = Δpu0 =
(

∂u0

∂xn

)p−4((∂u0

∂xn

)2 ∂ 2u0

∂x2
n

+(p−2)
(

∂u0

∂xn

)2 ∂ 2u0

∂x2
n

)
= (p−1)

(
∂u0

∂xn

)p−2 ∂ 2u0

∂x2
n

.
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From this we conclude that
∂ 2u0

∂x2
n

= 0 on Γ0. (4.1)

Thus, one can write the following expansion in the Taylor series with respect to xn :

u0(x) = α1
0 (x̂)xn +O(x3

n) as xn → 0, (4.2)

where

α1
0 =

∂u0

∂xn

∣∣∣∣∣
xn=0

∈C∞([−1/2,1/2]n−1) (4.3)

satisfies
∂α1

0

∂xi

∣∣∣∣∣
xi=± 1

2

= 0, i = 1,n−1, on Γout . (4.4)

Due to the smoothness (see Lemma 1), the functions u1,u2 can also be decom-
posed in the Taylor series

u1(x) = α0
1 (x̂)+ α1

1 (x̂)xn +O(x2
n),

u2(x) = α0
2 (x̂)+O(xn)

(4.5)

as xn → 0. Moreover, α1
1 ,α0

2 ∈C∞([−1/2,1/2]n−1
)

and due to (3.10)

∂α1
1

∂xi

∣∣∣∣∣
xi=± 1

2

= 0,
∂α0

2

∂xi

∣∣∣∣∣
xi=± 1

2

= 0, i = 1,n−1 on Γout . (4.6)

LEMMA 1. Let α0
1 ,α0

2 ∈C∞([−1/2,1/2]n−1
)

and satisfies (4.6). Then there exist
constants λ1, λ2 and functions u1(x),u2(x) ∈ C∞(Ω) , solving the problems (3.10),
(3.11) and satisfying

∫
Ω
|u0|p−2u0u1 dx = 0. Moreover, λ1 can be find as

λ1 = −(p−1)
∫
Γ0

|∇u0|p−2α1
0 α0

1 dx̂. (4.7)

Proof. The existence of the smooth solutions u1,u2 follows from the classical
results on regular solutions of linear elliptic operators with smooth coefficients (see
e.g., [1]). In order to get u1 as the unique solution one can add the condition∫

Ω

|u0|p−2u0u1 dx = 0. (4.8)

By multiplying (3.10) with u0 and twice integrating by parts over Ω the obtained
equation, we find that

λ1

∫
Ω

|u0|p dx+ λ0(p−1)
∫
Ω

u1u0|u0|p−2 dx
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= −
∫
Ω

∑
j

∂
∂x j

(
(p−2)|∇u0|p−4(∇u0,∇u1)

∂u0

∂x j
+ |∇u0|p−2 ∂u1

∂x j

)
u0 dx

= (p−1)
∫
Ω

|∇u0|p−2(∇u0,∇u1)dx = −(p−1)
∫
Ω

∑
j

∂
∂x j

(
|∇u0|p−2 ∂u0

∂x j

)
u1

+(p−1)
∫

∂Ω

|∇u0|p−2 ∂u0

∂ν
u1 dΩ = λ0(p−1)

∫
Ω

|u0|p−2u0u1 dx

− (p−1)
∫
Γ0

|∇u0|p−2 ∂u0

∂xn
u1 dx̂. (4.9)

Taking into account the fact that u0 is the normalized in Lp(Ω) solution of (3.8) and
since u1 satisfies (4.8), we can deduce that

λ1 = −(p−1)
∫
Γ0

|∇u0|p−2 ∂u0

∂xn
u1 dx̂ = −(p−1)

∫
Γ0

|∇u0|p−2α1
0 α0

1 dx̂. (4.10)

The formula (4.10) proves (4.7) and the proof is complete. �
Insert (4.2) and (4.5) into (3.1) and make the substitution ξn = xn

ε . It yields

uε(x) =εV1(ξn; x̂)+ ε2V2(ξn; x̂)+O(x3
n + ε2 + ε2x2) (4.11)

as εξn = xn → 0, where

V1(ξn; x̂) = α1
0 (x̂)ξn + α0

1 (x̂), V2(ξ2; x̂) = α1
1 (x̂)ξn + α0

2 (x̂). (4.12)

Following the method of matched asymptotic expansions, we conclude that the inner
expansion must have the structure

uε(x) = εv1 (ξ ; x̂)+ ε2v2 (ξ ; x̂)+O(ε3), (4.13)

where ξ = (ξ1, . . .ξn) = x
ε =

( x1
ε , . . . xn

ε
)
. Here xi is a ”slow” variable while ξi is a

”fast” one. Denote by v̂ε(x) = εv1 + ε2v2. Definition (4.12) implies the asymptotics

v1(ξ ; x̂) ∼V1(ξn; x̂), v2(ξ ; x̂) ∼V2(ξn; x̂) as ξn → +∞. (4.14)

REMARK 1. In the sequel we construct v1 and v2 as 1-periodic functions with
respect to ξi (depending on a fixed ”slow” parameter xi ).

With new scaling, the domain Ω can be divided in the union of periodic cells
Π = Ω∩{ξ : − 1

2 < ξi <
1
2 , ξn > 0}.

Let γ = {ξ : − 1
2 < ξi < 1

2 , ξn = 0} . Rewriting Δp operator in (ξ , x̂) variables and
applying it to the function v̂ε , we get

Δpv̂ε =
n−1

∑
i=1

[
∂

∂xi

(∣∣∣∣∂ v̂ε
∂xi

∣∣∣∣p−2 ∂ v̂ε
∂xi

)
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+
1
ε

(
∂

∂ξi

(∣∣∣∣∂ v̂ε

∂xi
+

1
ε

∂ v̂ε

∂ξi

∣∣∣∣p−2(∂ v̂ε

∂xi
+

1
ε

∂ v̂ε

∂ξi

)))]

+
1

ε p

∂
∂ξn

(∣∣∣∣∂ v̂ε
∂ξn

∣∣∣∣p−2(∂ v̂ε
∂ξn

))

=
n−1

∑
i=1

[
∂

∂xi

(∣∣∣∣∂ v̂ε
∂xi

∣∣∣∣p−2 ∂ v̂ε
∂xi

)

+
1

ε p

(
∂

∂ξi

(∣∣∣∣ε ∂ v̂ε
∂xi

+
∂ v̂ε
∂ξi

∣∣∣∣p−2(
ε

∂ v̂ε
∂xi

+
∂ v̂ε
∂ξi

)))]

+
1

ε p

∂
∂ξn

(∣∣∣∣∂ v̂ε
∂ξn

∣∣∣∣p−2(∂ v̂ε
∂ξn

))
.

The Taylor decomposition implies that∣∣∣∣ε ∂ v̂ε
∂xi

+
∂ v̂ε
∂ξi

∣∣∣∣p−2(
ε

∂ v̂ε
∂xi

+
∂ v̂ε
∂ξi

)
=
∣∣∣∣∂ v̂ε

∂ξi

∣∣∣∣p−2 ∂ v̂ε
∂ξi

+ ε
(

(p−2)
∣∣∣∣∂ v̂ε
∂ξi

∣∣∣∣p−3 ∂ v̂ε
∂ξi

∂ v̂ε
∂xi

+
∣∣∣∣∂ v̂ε
∂ξi

∣∣∣∣p−2 ∂ v̂ε
∂xi

)
+ ε2

(
(p−3)(p−2)

∣∣∣∣∂ v̂ε

∂xi

∣∣∣∣2 ∣∣∣∣∂ v̂ε

∂ξi

∣∣∣∣p−4 ∂ v̂ε

∂ξi

+(p−2)
(

∂ v̂ε
∂xi

)2 ∣∣∣∣∂ v̂ε
∂ξi

∣∣∣∣p−3)
+O(ε3).

Substitute this inside of previous formula, we get the following:

Δpv̂ε =
n−1

∑
i=1

[
∂

∂xi

(∣∣∣∣∂ v̂ε
∂xi

∣∣∣∣p−2 ∂ v̂ε
∂xi

)

+
1

ε p

∂
∂ξi

(∣∣∣∣∂ v̂ε
∂ξi

∣∣∣∣p−2 ∂ v̂ε
∂ξi

+ ε
(

(p−2)
∣∣∣∣∂ v̂ε

∂ξi

∣∣∣∣p−3 ∂ v̂ε
∂ξi

∂ v̂ε
∂xi

+
∣∣∣∣∂ v̂ε
∂ξi

∣∣∣∣p−2 ∂ v̂ε
∂xi

)
+ ε2

(
(p−3)(p−2)

∣∣∣∣∂ v̂ε
∂xi

∣∣∣∣2 ∣∣∣∣∂ v̂ε
∂ξi

∣∣∣∣p−4 ∂ v̂ε
∂ξi

+(p−2)
(

∂ v̂ε
∂xi

)2 ∣∣∣∣∂ v̂ε
∂ξi

∣∣∣∣p−3
))

+
1

ε p

∂
∂ξn

(∣∣∣∣∂uε
∂ξn

∣∣∣∣p−2(∂ v̂ε
∂ξn

))]
+O(ε p−3).

Using the expansions for Δp (see the previous step) and collecting the terms in front of
the same power of ε in the equation −Δpv̂ε = λε |v̂ε |p−2v̂ε , we deduce that

−Δξ
pv1 = 0, where Δξ

pv1 =
n

∑
i=1

∂
∂ξi

(∣∣∣∣∂v1

∂ξi

∣∣∣∣p−2 ∂v1

∂ξi

)
.
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The boundary conditions
v̂ε = 0 on Γε

implies v1 = v2 = 0 on ∂B. On the part Γ0 one has

0 =
∂ v̂ε
∂pxn

=
∣∣∣∣∂ v̂ε
∂xn

∣∣∣∣p−2 ∂ v̂ε
∂xn

=
1

ε p−1

∣∣∣∣∂ v̂ε
∂ξn

∣∣∣∣p−2 ∂ v̂ε
∂ξn

.

Hence, ∂v1
∂ξn

= ∂v2
∂ξn

= 0 on γ. On the boundary Γout we have

0 =
∂ v̂ε
∂pν

=
∣∣∣∣∂ v̂ε

∂xi

∣∣∣∣p−2 ∂ v̂ε
∂xi

= ±
∣∣∣∣ ∂ v̂ε

ε∂ξi
+

∂ v̂ε

∂xi

∣∣∣∣p−2( ∂ v̂ε

ε∂ξ1
+

∂ v̂ε

∂xi

)
= ± 1

ε p−2

(∣∣∣∣∂ v̂ε
∂ξi

∣∣∣∣p−2

+ ε(p−2)
∣∣∣∣∂ v̂ε
∂ξi

∣∣∣∣p−3 ∣∣∣∣∂ v̂ε
∂xi

∣∣∣∣+o(ε)

)(
∂ v̂ε
ε∂ξi

+
∂ v̂ε
∂xi

)
.

Analogously, collecting the terms in front of the same power of ε, we conclude that

∑
i

∣∣∣∣∂v1

∂ξi

∣∣∣∣p−2 ∂v1

∂ξi
= 0, i = 1, . . . ,n

on corresponding parts of the boundary Γout . Thus, the functions v1 is the solution to
the following problem in periodic cell Π :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δξ v1 = 0 in Π\B,

v1 = 0 on ∂B,∣∣∣ ∂v1
∂ξn

∣∣∣p−2 ∂v1
∂ξn

= 0 on γ,∣∣∣ ∂v1
∂ξi

∣∣∣p−2 ∂v1
∂ξi

(ξ ;xi = ± 1
2) = 0 as ξi = ± 1

2 ,

v1 ∼V1 as ξn → +∞.

(4.15)

An analogous technique one can use to obtain the boundary-value problem for the
function v2 with asymptotics

v2 ∼V2 as ξn → +∞.

Here we omit the details due to heavy technical formulas. For an example of explicit
boundary-value problem for v2 and its solution in case p = n = 2 we refer to [7].

5. Solvability of problem (4.15).

We analyze problem (4.15) and simultaneously determine the function α0
1 (x̂).

The following Lemma is useful for our analysis. The proof of an analogous statement
can be find in [23].
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LEMMA 2. Let eδ0ξnF ∈ Lq(Π\B) eδ0ξnH ∈ Lp(∂Π), δ0 > 0. Then there exists
the unique weak solution of ⎧⎪⎪⎨⎪⎪⎩

−ΔpZ = F in Π\B

Z = K on ∂B,
∂Z
∂ν

= H on ∂Π.

This solution can be represented as

Z(ξ ) = C1 +Z′(ξ ),

where C1 is a constant and Z′ satisfies eδξnZ′ ∈W 1,p(Π\B), where δ such that δ � δ0.
Moreover, the asymptotics

|∇Z(ξ )|p−2 ∼C2 +O(e−δξn)

holds as ξn → ∞.

Consider the problem ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ΔpY = 0 in Π\B,

Y = −ξn on ∂B,
∂Y
∂ξn

= −1 on γ,
∂Y
∂ξi

= 0 as ξi = ± 1
2 .

(5.1)

By Lemma 2 there exists the weak solution to boundary-value problem (5.1) such that

Y (ξ ) = C1(B)+O(e−δξn), |∇Y (ξ )|p−2 ∼C2(B)+O(e−δξn). (5.2)

Due to the symmetry of B with respect to axis ξi = 0 the function Y is even with
respect to ξi . Denote by ΠR = Π∩{ξn > R} , γR = {ξ ∈ Π,ξn = R} , yR = Y

∣∣
γR

. The
function Y is evidently the unique bounded solution of boundary-value problem⎧⎪⎨⎪⎩

ΔpY = 0 in ΠR,
∂Y
∂ξn

= yR on γR,
∂Y
∂ξi

= 0 on ∂ΠR \ γR,

when R is large. Thus, it has the asymptotics (5.2) as ξn → ∞.
Let us derive the formula for C(B) = C1(B)C2(B) :

C(B) =
∫

Π\B
|∇Y |pdξ +

∫
B

n

∑
i=1

∂
∂ξi

(|∇Y |p−2ξn)dξ . (5.3)
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Denote ΠR = Π∩{ξn < R} . Multiply the equation in (5.1) with Y + ξn and integrate
the result over ΠR \B .

0 =
∫

ΠR\B
ΔpY (Y + ξn)dξ =

∫
ΠR\B

n

∑
i=1

∂
∂ξi

(
|∇Y |p−2 ∂Y

∂ξi

)
(Y + ξn)dξ

= −
∫

ΠR\B

n

∑
i=1

|∇Y |p−2 ∂Y
∂ξi

∂ (Y + ξn)
∂ξi

dξ −
∫
γ

∂Y
∂ξn

|∇Y |p−2(Y +0)dξ̂

+
∫

ΓR

∂Y
∂ξn

|∇Y |p−2(Y + ξn)dξ̂ +
∫

∂B

n

∑
i=1

∂Y
∂νB

|∇Y |p−2(Y + ξn)dB

+
∫

∂Π

n

∑
i=1

∂Y
∂ξi

|∇Y |p−2(Y + ξn)dΠ = −
∫

ΠR\B

n

∑
i=1

|∇Y |p−2 ∂Y
∂ξi

∂ (Y + ξn)
∂ξi

dξ

+
∫
γ

|∇Y |p−2Y dξ̂ +
∫

ΓR

O(e−δR)|∇Y |p−2(C+R+O(e−δR))dξ̂ .

Integrating by parts again we have

0 =
∫

ΠR\B

n

∑
i=1

∂
∂ξi

(
|∇Y |p−2 ∂

∂ξi
(Y + ξn)

)
Y dξ +

∫
γ

|∇Y |p−2Y dξ̂

+
∫
γ

∂
∂ξn

(Y + ξn)|∇Y |p−2Y dξ̂ −
∫

∂B

Y |∇Y |p−2 ∂
∂νB

(Y + ξn) dsξ

−
∫

ΓR

Y |∇Y |p−2 ∂
∂ξn

(Y + ξn) dξ̂

=
∫

ΠR\B

n

∑
i=1

∂
∂ξi

(
|∇Y |p−2 ∂Y

∂ξi

)
Y dξ +

∫
ΠR\B

∂
∂ξn

(
|∇Y |p−2 ∂ξn

∂ξn

)
Y dξ

+
∫
γ

Y |∇Y |p−2 dξ̂ +
∫

∂B

Y |∇Y |p−2 ∂Y
∂νB

dsξ −
∫

∂B

ξn|∇Y |p−2 ∂ξn

∂νB
dsξ

−
∫

ΓR

(C1(B)+O(e−δR))(C2(B)+O(e−δR))(1+O(e−δR)) dξ̂

=
∫

Π\B
(C1(B)+O(e−δR))O(e−δR) dξ +

∫
γ

Y |∇Y |p−2 dξ̂ +
∫

∂B

Y |∇Y |p−2 ∂Y
∂νB

dsξ

−
∫

∂B

ξn|∇Y |p−2 ∂ξn

∂νB
dsξ

−
∫

ΓR

(C1(B)+O(e−δR))(C2(B)+O(e−δR))(1+O(e−δR)) dξ̂ →
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∫
γ

Y |∇Y |p−2 dξ̂ +
∫

∂B

Y |∇Y |p−2 ∂Y
∂νB

dsξ −
∫

∂B

ξn|∇Y |p−2 ∂ξn

∂νB
dsξ −C(B).

Multiply the equation of the problem (5.1) with Y , integrate by parts the obtained
equality over ΠR \B and pass to the limit as R → +∞ . Then we get

0 = −
∫

Π\B
|∇Y |p dξ +

∫
∂B

∂Y
∂νB

|∇Y |p−2Y dsξ +
∫
γ

Y |∇Y |p−2 dξ̂ . (5.4)

Hence,

C(B) =
∫

Π\B
|∇Y |p dξ −

∫
∂B

|∇Y |p−2ξn
∂ξn

∂ν
dsξ . (5.5)

Integrating by parts the left-hand side of

0 =
∫
B

|∇Y |p−2ξnΔpξndξ ,

we get that ∫
∂B

|∇Y |p−2ξn
∂ξn

∂ν
dsξ =

∫
B

n

∑
i=1

∂
∂ξi

(|∇Y |p−2ξn)dξ , (5.6)

where ν is outer normal vector to B . Hence, combining (5.5) and (5.6), we get the
formula

C(B) =
∫

Π\B
|∇Y |p dξ +

∫
B

n

∑
i=1

∂
∂ξi

(|∇Y |p−2ξn)dξ .

Define

X(ξ ) = Y (ξ )+ ξn.

The definition of Y implies that X can be extended as a 1-periodic function of ξi.
Keeping the same notation for the extended function, we set

v1(ξ ; x̂) = α1
0 (x̂)X(ξ ). (5.7)

Then, by virtue of (5) and (4.12), v1 is a 1-periodic function of ξi that solves problem
(4.15) and

v1(ξ ; x̂) = V1(ξn; x̂)+O(e−δξn), as ξn → +∞, (5.8)

for α0
1 (x̂) = α1

0 (x̂)C(B). (5.9)

In particular, the properties of α1
0 give that

∂v1

∂xi
(ξ ; x̂) = 0 at xi = ±1

2
, i = 1,n−1, (5.10)

what is required in Lemma 1. The formula (5.9) together with (4.7) imply that

λ1 = −C(B)(p−1)
∫
Γ0

|∇u0|p−2(α1
0 )2 dx̂. (5.11)

Analogously one can construct the function v2.
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6. Verification of the asymptotics.

In the sequel we assume that p− 2 > ε. Let χ(t) be an infinitely differentiable
cutoff function that vanishes identically for t < 1 and equals unity for t > 2, and let

χβ (xn) = χ
(

xn
εβ

)
. Define

Ûε(x) = χβ (xn) ûε(x)+
(
1− χβ (xn)

)
v̂ε(x).

Obviously,
lim
ε→0

‖Ûε‖Lp(Ωε ) � 1. (6.1)

Now we show that the function Uε approximate the solution to problem (2.2) in domain
Ωε and verify the constructed asymptotic expansions.

6.1. Homogenization theorems

We use the results from [17]. The following facts were proved

THEOREM 3. Assume that F ∈ Lq(Ω), 1
p + 1

q = 1, 2 � p < ∞, q > 1 and K is
an arbitrary compact set belonging to the complex plane C, K does not contain the
eigenvalues of the problem (3.8). Then the following statements hold:

1. There exists a number ε0 > 0, such that the unique solution to the problem⎧⎪⎨⎪⎩
−ΔpUε(x) = λ |Uε |p−2Uε +F in Ωε ,

Uε = 0 on Γε ,
∂Uε
∂pν ≡ |∇Uε |p−2(∇Uε ,ν) = 0 on ∂Ω,

(6.2)

does exist for all ε < ε0 and for all λ ∈K. Moreover, the uniform (in ε and λ ) estimate

‖Uε‖W1,p � C‖F‖Lq (6.3)

is valid, where C does not depend on Uε and F ;
2. It yields that

‖Uε −U0‖W1,p → 0 when ε → 0, (6.4)

where U0 is the unique solution of the problem⎧⎪⎨⎪⎩
−ΔpU0(x) = λ |U0|p−2U0 +F in Ω,

U0 = 0 on Γ0,
∂U0
∂pν ≡ |∇U0|p−2 ∂U0

∂ν = 0 on ∂Ω\Γ0.

(6.5)

Here the solutions to problems (6.2) and (6.5) are understood in the weak sense

i.e. iff Uδ ,δ =

{
ε,

0
satisfies to the integral identity:

∫
Ω

n

∑
j=1

|∇Uδ (x)|p−2 ∂Uδ (x)
∂x j

∂ϕ(x)
∂x j

dx = λ
∫
Ω

|Uδ |p−2Uδ ϕ dx+
∫
Ω

Fϕ dx (6.6)
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for every ϕ ∈W 1,p(Ω,Γ0).
In addition, an estimate for the solution to problem (6.2) in a neighborhood of λ 1

0
was obtained.

LEMMA 3. Let λ is close to λ 1
0 and λ 1

ε converges to λ 1
0 . Then the following

estimate holds:

‖Uε‖p
W 1,p � C

‖F‖2
Lq

|λ 1
ε −λ | . (6.7)

We need to obtain the estimates for the constructed functions. According to our
notations,

ûε = u0 + εu1 + ε2u2, λ̂ε = λ0 + ελ1 + ε2λ2.

LEMMA 4. The function ûε solves the problem{
−Δpûε = λ̂ ε |ûε |p−2ûε + f̂ u

ε in Ωε ,
∂ ûε
∂pν = 0 on ∂Ω\Γ0,

(6.8)

where

‖ f̂ u
ε ‖Lq(Ωε ) = O(ε3). (6.9)

Proof. We define f̂ u
ε through

− f̂ u
ε = Δpûε + λ̂ ε |ûε |p−2ûε .

By using the expansions (3.3)–(3.7), equating terms with the same power of ε and
taking into account boundary-value problems for u0,u1,u2, we derive that

− f̂ u
ε = Δpûε + λ̂ ε |ûε |p−2ûε = Δpu0 + λ0|u0|p−2u0

+ ε
( n

∑
j=1

∂
∂x j

(
(p−2)|∇u0|p−4(∇u0,∇u1)

∂u0

∂x j
+ |∇u0|p−2 ∂u1

∂x j

)
+(λ1u0 + λ0u1)|u0|p−2 +(p−2)λ0u0|u0|p−3|u1|

)
+ . . .+O(ε3).

Due to the boundary-value problems for u0 and u1, u2 the terms in front of ε0, ε and
ε2 becomes 0, thus

− f̂ u
ε = O(ε3), and ‖ f̂ u

ε ‖Lq = O(ε3).

The boundary conditions for ûε is fulfilled by the boundary conditions for u0 , u1 and
u2 . �
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LEMMA 5. The function v̂ε satisfies

|Δpv̂ε + λ̂ ε |v̂ε |p−2v̂ε | = O(εβ (p−1)) as xn < 2εβ (6.10)

and

v̂ε = 0 on ∂Γε , |∇v̂ε |p−2 ∂ v̂ε
∂ν

= 0 on (∂Ω\Γ0)∩{xn < 2εβ}. (6.11)

Proof. The proof is analogous to the previous theorem. We shall use the definition
of v̂ε and asymptotics v1 ∼ α1

0 ξn + α0
1 , v2 ∼ α1

1 ξn + α0
2 as xn → 0 to deduce that

v̂ε = O(εβ ). The next step consists of rewriting operator Δp in (x,ξ )− coordinates

and estimating the function f v
ε = −Δpv̂ε − λ̂ ε |v̂ε |p−2v̂ε . We omit the details.

The boundary conditions (6.11) follows directly from the definition of v̂ε . �

LEMMA 6. If εβ < xn < 2εβ then

ûε − v̂ε = O(ε3β ),
∂

∂xn
(ûε − v̂ε) = O(ε2β )

and
n

∑
i=1

∣∣∣∣∣∂Ûε
∂xi

∣∣∣∣∣
p

− λ̂ε |Ûε |p = O(εβ p).

Proof. Now we estimate the function

Ûε = χβ ûε +(1− χβ)v̂ε

on the set εβ < x < 2 εβ . By the definition,

ûε − v̂ε = α1
0 xn + εα0

1 + εα1
1 xn + ε2α0

2 +O(x3
n + εx2

n + ε2xn)

− εα1
0 ξn− εα0

1 − ε2(α1
1 ξn + α0

2 ) = O(ε3β ).

Thus, using the asymptotics for v̂ε , we derive that

Uε = χβ (ûε − v̂ε)+ v̂ε = O(ε3β )+O(εβ ) = O(εβ ),

therefore the term λ̂ ε |Uε |p = O(εβ p). Next we estimate the derivatives of Uε . Thinking
analogously, one has for i = 1, . . . ,n−1 :

∂Ûε
∂xi

= O
(

εβ
)
⇒
∣∣∣∣∣∂Ûε

∂xi

∣∣∣∣∣
p

= O(εβ p).

For i = n one has

∂
∂xn

(ûε − v̂ε) = α1
0 + εα1

1 +O(x2
n + εxn + ε2)−α1

0 − εα1
1 = O(ε2β ) as xn < 2εβ ,
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hence ∣∣∣∣∣∂Ûε

∂xn

∣∣∣∣∣
p

= O(ε2β p).

Summing up, we get that

n

∑
i=1

∣∣∣∣∣∂Ûε
∂xi

∣∣∣∣∣
p

− λ̂ε |Ûε |p = O(εβ p). �

THEOREM 4. The function Ûε satisfies the boundary-value problem⎧⎪⎨⎪⎩
−ΔpUε = λ̂ ε |Uε |p−2Uε +Fε in Ωε ,

Uε = 0 on Γε ,
∂Uε
∂pν = 0 on Γ,

(6.12)

where

‖F̂ε‖Lq(Ωε ) = O(ε
β(p+1)

q ). (6.13)

Proof. First we observe that the boundary conditions are fulfilled due to the def-
inition of Ûε and boundary conditions for u0,u1,u2,α1

0 ,α0
1 ,α1

1 ,α0
2 . Consider now the

equation for Ûε . Denote

−F̂ε = ΔpÛε + λ̂ ε |Ûε |p−2Ûε .

Then the integral identity

∫
Ω

n

∑
i=1

∣∣∣∂Ûε
∂xi

∣∣∣p dx = λ̂ε

∫
Ω

|Ûε |p dx+
∫
Ω

F̂εÛε dx

holds. Let us estimate now∣∣∣∣∣∣
∫
Ω

F̂εÛε dx

∣∣∣∣∣∣=
∣∣∣∣∣∣
∫
Ω

n

∑
i=1

∣∣∣∣∣∂Ûε
∂xi

∣∣∣∣∣
p

dx− λ̂ε

∫
Ω

|Ûε |p dx

∣∣∣∣∣∣= I1 + I2 + I3,

where

I1 =

∣∣∣∣∣∣∣
∫

Ω∩{x>2εβ }

(
n

∑
i=1

∣∣∣∣∂ ûε
∂xi

∣∣∣∣p− λ̂ε |ûε |p
)

dx

∣∣∣∣∣∣∣ ,

I2 =

∣∣∣∣∣∣∣
∫

Ω∩{εβ <x<2εβ }

(
n

∑
i=1

∣∣∣∣∣∂Ûε
∂xi

∣∣∣∣∣
p

− λ̂ε |Ûε |p
)

dx

∣∣∣∣∣∣∣ ,
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I3 =

∣∣∣∣∣∣∣
∫

Ω∩{x<2εβ }

(
n

∑
i=1

∣∣∣∣∂ v̂ε
∂xi

∣∣∣∣p− λ̂ε |v̂ε |p
)

dx

∣∣∣∣∣∣∣ .
Let us estimate each integral Ik,k = 1,2,3. Taking into account the properties of

χβ and Lemma 4 one derive

I1 =
∫

Ω∩{x>2εβ }
|Δpûε + λ̂ ε |ûε |p−2ûε |q dx = O(ε3),

therefore∣∣∣∣∣∣∣
∫

Ω∩{x>2εβ }
F̂εÛε dx

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣

∫
Ω∩{x>2εβ }

F̂ε ûε dx

∣∣∣∣∣∣∣= O(ε3) ⇒ F̂ε = O(ε3) as x > 2εβ .

In view of Lemma 6 we can estimate

I2 =

∣∣∣∣∣∣∣
∫

Ω∩{εβ <x<2εβ }

(
n

∑
i=1

∣∣∣∣∣∂Ûε
∂xi

∣∣∣∣∣
p

− λ̂ε |Ûε |p
)

dx

∣∣∣∣∣∣∣= O(εβ p)εβ = O(εβ (p+1))

which yields∣∣∣∣∣∣∣
∫

Ω∩{εβ <x<2εβ }
F̂εÛε dx

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣

∫
Ω∩{εβ <x<2εβ }

F̂εO(εβ )dx

∣∣∣∣∣∣∣= O(εβ (p+1)) ⇒

F̂ε = O(εβ (p−1)) as εβ < x < 2εβ .

Finally, due to Lemma 5

I3 =

∣∣∣∣∣∣∣
∫

Ω∩{x<2εβ }

(
n

∑
i=1

∣∣∣∣∂ v̂ε
∂xi

∣∣∣∣p dx− λ̂ε |v̂ε |p dx

)∣∣∣∣∣∣∣= O(εβ p)εβ = O(εβ (p+1))

and analogously, that implies the asymptotics

F̂ε = O(εβ (p−1)) as x < εβ .

Consequently,

‖F̂ε‖Lq(Ωε ) =

⎛⎜⎝ ∫
Ω∩{x>2εβ }

F̂q
ε dx+

∫
Ω∩{εβ <x<2εβ }

F̂q
ε dx+

∫
Ω∩{x<εβ}

F̂q
ε dx

⎞⎟⎠
1
q

=
(
O(ε3q)+2O(εqβ (p−1)+β)

) 1
q = |(p−1)q = p| = O(εβ (p+1)

q ). �
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THEOREM 5. The asymptotics

λε = λ0 + ελ1 +O(ε
2β(p+1)

q ), 0 < β < 1, (6.14)

holds for the first eigenvalue to spectral problem (2.2), where λ1 is given by (5.11).

Proof. Due to the estimate (6.7) the solution to (6.12) satisfies

‖Ûε‖p
Lp(Ωε ) � C

‖F̂‖2
Lq(Ωε )∣∣λ ε

1 − λ̂ ε
∣∣ .

This together with (6.1) implies∣∣λε − λ̂ ε∣∣� C‖F̂‖2
Lq(Ωε ) = O(ε

2β(p+1)
q ),

hence the asymptotic (6.14) holds. �

7. Asymptotics of the sharp constant in the Friedrichs inequality.

The obtained rate of the convergence between λ 1
ε and λ 1

0 gives the following
statement:

THEOREM 6. Let Kε be the sharp constant for the Friedrichs inequality∫
Ωε

up
ε dx � Kε

∫
Ωε

|∇uε |p dx, uε ∈W 1,p(Ωε ,Γε ).

Then it converges to K the sharp constant in the inequality∫
Ω

up dx � K
∫

Ωε

|∇u|p dx, u ∈W 1,p(Ω,Γ0)

and the rate of convergence can be estimated as

|Kε −K|� C(ε + ε
2β(p+1)

q ), 0 < β < 1. (7.1)

Proof. We remark that if one choose ϕε as uε in the integral identity (2.3) and ϕ
as u0 in (3.8) then it reads as∫

Ωε

|∇uε(x)|p dx = λε

∫
Ωε

|uε |p dx and
∫
Ω

|∇u0(x)|p dx = λ0

∫
Ω

|u0|p dx.

From the variational definition it holds that

λ 1
ε = inf

uε∈W1,p(Ωε ,Γε )\{0}

∫
Ωε

|∇uε |p dx∫
Ωε

|uε |p dx
, and λ 1

0 = inf
u0∈W1,p(Ω,Γ0)\{0}

∫
Ω
|∇u0|p dx∫

Ω
|u0|p dx

,
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thus, the sharp constants in corresponding Friedrichs inequalities are Kε = (λ 1
ε )−1 and

K = (λ 1
0 )−1. The estimates (7.1) follows evidently from asymptotics (6.14):

|Kε −K| =
∣∣λ 1

ε −λ 1
0

∣∣∣∣λ 1
0

∣∣ |λ 1
ε |

�
∣∣λ 1

ε −λ 1
0

∣∣∣∣λ 1
0

∣∣2 = εC1 + ε
2β(p+1)

q C2 � C(ε + ε
2β(p+1)

q ). �
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