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COUPLED SYSTEMS OF FRACTIONAL

∇–DIFFERENCE BOUNDARY VALUE PROBLEMS
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Abstract. In this paper, we study the existence of solutions for a coupled system of two-point
fractional ∇ -difference boundary value problems of the form(
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where 1 < α ,β � 2, t ∈ [a + 2,b + 1]N = {a + 2,a + 3, ...,b,b + 1}, a,b ∈ Z such that a �
0,b � 3 and the functions f ,g : [a+ 2,b+ 1]N ×R → R are continuous. Our analysis relies on
the Green functions and the nonlinear alternative of Leray-Schauder and Krasnoselśkii-Zabreiko
fixed point theorems. At the end we give some numerical examples to illustrate the main results.
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