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Abstract. In this paper, we study the existence of solutions for a coupled system of two-point
fractional ∇ -difference boundary value problems of the form(

∇α
a+u(t)

∇β
a+v(t)

)
+
(

f (t,v(t)
g(t,u(t))

)
= 0,

(
u(a+1)
u(b+1)

)
=
(

0
0

)
=
(

v(a+1)
v(b+1)

)
,

where 1 < α ,β � 2, t ∈ [a + 2,b + 1]N = {a + 2,a + 3, ...,b,b + 1}, a,b ∈ Z such that a �
0,b � 3 and the functions f ,g : [a+ 2,b+ 1]N ×R → R are continuous. Our analysis relies on
the Green functions and the nonlinear alternative of Leray-Schauder and Krasnoselśkii-Zabreiko
fixed point theorems. At the end we give some numerical examples to illustrate the main results.

1. Introduction

The theory of fractional calculus basically acts on the differential operators as
Dα

t ≡ dα/dtα with arbitrary order α ∈ R , that generalize the integer order integration
and differentiation. In recent decades, it has been illustrated that many systems ap-
peared in science and engineering can be simulated by fractional derivatives rather than
integer ones [11, 12]. This is why we are interested to the study of the various fractional
based approaches related to the both theoretical and computational sciences interacted
with mathematics.

Despite the boom of developments in fractional differential equations, the ap-
proach of the fractional difference equations have been included to the collection of
some elementary analysis of fractional discrete boundary value problems in the early
last decade. In this way one can suggest the pioneering works of F. Atici and P. Eloe
[2, 3, 4, 5], C. Goodrich [7], C. Goodrich, A. C. Peterson [8], Y. Gholami and K. Ghan-
bari [9], R. A. C. Ferreira [6].

F. Atici and P. Eloe in [3], studied the two-point fractional Δ-difference boundary
value problem{−Δνy(t) = f (t + ν −1,y(t + ν −1)), t = 1,2, ...,b+1,

y(ν −2) = 0, y(ν +b+1) = 0,
(1.1)
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where 1 < ν � 2 is a real number and, b � 2 is an integer and Δν denotes fractional
Δ-difference operator of order ν > 0. They assumed that f : [ν,ν +b]Nν−1 ×R→ R is
continuous. In continuation of this work we consider the following coupled system of
two-point fractional ∇-difference boundary value problems(

∇α
a+u(t)

∇β
a+v(t)

)
+
(

f (t,v(t)
g(t,u(t))

)
= 0,

(
u(a+1)
u(b+1)

)
=
(

0
0

)
=
(

v(a+1)
v(b+1)

)
,

(1.2)

where 1 < α,β � 2, t ∈ [a+2,b+1]N = {a+2,a+3, ...,b,b+1}, a,b∈ Z such that
a � 0,b � 3. Suppose that f ,g : [a+2,b+1]N×R→ R are two continuous functions.
Note that ∇α

a+ denotes the fractional ∇-difference operator of order α > 0 that will be
defined later.

2. Preliminaries

We devote this section to the general description of ∇-fractional operators that will
be divided into the fractional ∇-summations and fractional ∇-differences. Afterward
we construct a relevant functional space needed in our work. To this aim, we begin
with fractional rising functions that make cornerstone of the kernels of the ∇-fractional
operators.

DEFINITION 1. [1],[[8], Chap. 3] Fractional rising function is defined by

tα =
Γ(t + α)

Γ(t)
, t ∈ R−{...,−2,−1,0}, 0α = 0. (2.1)

Note that ∇
(
tα)= αtα−1 .

DEFINITION 2. [1],[[8], Chap. 3] Fractional left sided ∇-sum of order α > 0 for
function f is defined by

∇−α
a+ f (t) =

1
Γ(α)

t

∑
s=a

(t − δ (s))α−1 f (s), t ∈ Na := {a,a+1,a+2, ...} (2.2)

where δ (s) = s − 1 . In accordance with fractional ∇-summations, fractional ∇-
difference of order α > 0 for function f is given by ∇α

a+ f (t) = ∇n∇α−n
a+ f (t) , where

t ∈ Na+n, n−1 < α � n and ∇ denotes the backward difference operator.

LEMMA 1. [[8], Chap. 3] Assume that f is a real-valued function and μ > 0, 0�
n−1 < ν � n. Then

(Q1) ∇−μ
a+ ∇−ν

a+ f (t) = ∇−(μ+ν)
a+ f (t) = ∇−ν

a+ ∇−μ
a+ f (t),
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(Q2) ∇−ν
a+ ∇ν

a+ f (t) = f (t) + c1(t − a)ν−1 + c2(t − a)ν−2 + ... + cn(t − a)ν−n , ci ∈
R, i = 1,2, ...,n.

(Q3) ∇ν
a+ ∇−ν

a+ f (t) = f (t).

(Q4) ∇−ν
a+ (t−a)μ =

Γ(μ +1)
Γ(μ + ν +1)

(t−a)μ+ν , μ + ν +1 �∈ (−Z0) .

In this paper, we will use the Banach space

E = B×B, B =
({

x
∣∣ x : [a+2,b+1]N → R

}
,‖.‖B

)
, (2.3)

endowed with the norm

‖(x,y)‖E = ‖x‖B +‖y‖B, ‖x‖B = sup
t=a+2,...,b+1

|x(t)|. (2.4)

To establish solvability of the coupled system (1.2), we use the nonlinear alterna-
tive of the Leray-Schauder and Krasnoselśkii-Zabreiko fixed point theorems. One may
state these theorems as below respectively.

THEOREM 1. [13] Let C is a convex subset of a Banach space, U is an open
subset of C with 0 ∈U . Then every completely continuous map T :U →C has at least
one of the two following properties:

(E1) There exists an u ∈U such that Tu = u.

(E2) There exist an v ∈ ∂U and λ ∈ (0,1) such that v = λTv.

THEOREM 2. [10] Let X is a Banach space. Assume that T : X → X is a com-
pletely continuous mapping. If L : X → X be a linear bounded mapping such that 1 is
not an eigenvalue of L and

lim
‖u‖→∞

‖Tu−Lu‖
‖u‖ = 0, (2.5)

then T has a fixed point in X .

3. Main Results

As stated above, the Green function plays crucial role in this paper. So we begin
the main body of our study with unification of the Green function corresponding to the
fractional coupled system (1.2) as follows.

LEMMA 2. The two-point fractional ∇-difference boundary value problem{
∇α

a+u(t)+h(t) = 0, t ∈ [a+2,b+1]N,
u(a+1) = 0 = u(b+1), (3.1)
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uniquely solves the following fractional ∇-sum equation

u(t) =
b+1

∑
s=a+2

G (t,s)h(s), t = a+2,a+3, ...,b,b+1, (3.2)

in which

G (t,s) =
1

Γ(α)

⎧⎨
⎩

G1(t,s); a+2 � s � t � b+1,

G2(t,s); a+2 � t � s � b+1,
(3.3)

where

G1(t,s) =
(b−a−1)!(t−a)α−2(b− s+2)α−1

Γ(α +b−a−1)
(t −a−1)− (t− s+1)α−1,

G2(t,s) =
(b−a−1)!(t−a)α−2(b− s+2)α−1

Γ(α +b−a−1)
(t −a−1).

(3.4)

Proof. According to the property (Q2 ) in Lemma 1, fractional ∇-difference equa-
tion ∇α

a+u(t)+h(t) = 0 is equivalent to the fractional ∇-sum equation

u(t) = c1(t −a)α−1 + c2(t −a)α−2−∇−α
a+ h(t).

Now implementing the boundary conditions u(a+1) = 0 and u(b+1) = 0, the coef-
ficients c1 and c2 are uniquely determined as below:

c1 =
(b−a−1)!∇−α

a+ h(t)
∣∣∣∣
t=b+1

Γ(α +b−a−1)
, c2 =

−(α −1)(b−a−1)!∇−α
a+ h(t)

∣∣∣∣
t=b+1

Γ(α +b−a−1)
. (3.5)

Therefore we have

u(t) =
(b−a−1)!(t−a)α−1

Γ(α)Γ(α +b−a−1)

b+1

∑
s=a+2

(b− s+2)α−1h(s)

− (α −1)(b−a−1)!(t−a)α−2

Γ(α)Γ(α +b−a−1)

b+1

∑
s=a+2

(b− s+2)α−1h(s)

− 1
Γ(α)

t

∑
s=a+2

(t− s+1)α−1h(s)

=

[
(b−a−1)!(t−a)α−1

Γ(α)Γ(α +b−a−1)

t

∑
s=a+2

(b− s+2)α−1

− (α −1)(b−a−1)!(t−a)α−2

Γ(α)Γ(α +b−a−1)

t

∑
s=a+2

(b− s+2)α−1
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− 1
Γ(α)

t

∑
s=a+2

(t− s+1)α−1

]
h(s)

+

[
(b−a−1)!(t−a)α−1

Γ(α)Γ(α +b−a−1)

b+1

∑
s=t+1

(b− s+2)α−1

− (α −1)(b−a−1)!(t−a)α−2

Γ(α)Γ(α +b−a−1)

b+1

∑
s=t+1

(b− s+2)α−1

]
h(s)

=
1

Γ(α)

t

∑
s=a+2

{
(b−a−1)!(t−a)α−1(b− s+2)α−1

Γ(α +b−a−1)

− (α −1)(b−a−1)!(t−a)α−2(b− s+2)α−1

Γ(α +b−a−1)
− (t− s+1)α−1

}
h(s)

+
1

Γ(α)

b+1

∑
s=t+1

{
(b−a−1)!(t−a)α−1(b− s+2)α−1

Γ(α +b−a−1)

− (α −1)(b−a−1)!(t−a)α−2(b− s+2)α−1

Γ(α +b−a−1)

}
h(s).

Finally using the identity

(t−a)α−1 = (α + t−a−2)(t−a)α−2,

we reach the following:

u(t) =
1

Γ(α)

t

∑
s=a+2

{
(b−a−1)!(t−a)α−2(b− s+2)α−1

Γ(α +b−a−1)
(t −a−1)

− (t− s+1)α−1

}
h(s)

+
1

Γ(α)

b+1

∑
s=t+1

{
(b−a−1)!(t−a)α−2(b− s+2)α−1

Γ(α +b−a−1)
(t −a−1)

}
h(s)

=
b+1

∑
s=a+2

G (t,s)h(s). (3.6)

LEMMA 3. The Green function G (t,s) given by (3.3) and (3.4), satisfies:

sup
t∈[a+2,b+1]N

G (t,s) =
1

Γ(α)

{
Oeven, a+b : even,

Oodd, a+b : odd,
(3.7)
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where

Oeven =
(b−a−1)!(

b−a
2

−1

)
!

(
b−a

2

)
!
.

Γ
(

b−a
2

+ α −1

)
Γ
(

b−a
2

+ α
)

Γ(α +b−a−1)
,

Oodd =
(b−a−1)!(

b−a+1
2

−1

)
!

(
b−a+1

2

)
!
.

Γ
(

b−a+1
2

+ α −1

)
Γ
(

b−a+1
2

+ α
)

Γ(α +b−a−1)
.

Proof. As stated above, the Green’s function G (t,s) defined by (3.3) and (3.4) is
given as follows

G (t,s) =
1

Γ(α)

{
G1(t,s); a+2 � s � t � b+1,
G2(t,s); a+2 � t � s � b+1,

(3.8)

where

G1(t,s) =
(b−a−1)!(t−a)α−2(b− s+2)α−1

Γ(α +b−a−1)
(t−a−1)− (t− s+1)α−1,

G2(t,s) =
(b−a−1)!(t−a)α−2(b− s+2)α−1

Γ(α +b−a−1)
(t−a−1).

Obviously G2(t,s) � 0 for t = a+2, ...,b+1 and (t − s+1)α−1 � 0 for a+2 � s �
t � b+1. So one has

sup
t=a+2,...,b+1

G (t,s) = sup
t=a+2,...,b+1

G2(t,s)
Γ(α)

, s ∈ [a+2,b+1]N.

On the other hand, using ΔsG2(t,s) � 0, it follows that

sup
t=a+2,...,b+1

G (t,s) =
G2(s,s)
Γ(α)

, s ∈ [a+2,b+1]N. (3.9)

Consequently by means of the definition of G2(s,s) , we have for s ∈ [a+2,b+1]N that

ΔG2(s,s) =
(b−a)!

Γ(α +b−a−1)
Γ(α + s−a−2)Γ(α +b− s)

(s−a−1)!(b− s+1)!
[(a+b+2)−2s].
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Accordingly, it is clear that G2(s,s) is increasing for s < a+b
2 +1 and is decreasing for

s > a+b
2 +1. Therefore

max
s∈[a+2,b+1]N

G2(s,s) = G2

(
a+b

2
+1,

a+b
2

+1

)
=

(b−a−1)!(
b−a

2
−1

)
!

(
b−a

2

)
!
.

Γ
(

b−a
2

+ α −1

)
Γ
(

b−a
2

+ α
)

Γ(α +b−a−1)
,

(3.10)

provided that a+b is even and

max
s∈[a+2,b+1]N

G2(s,s) = G2

(
a+b+1

2
+1,

a+b+1
2

+1

)
=

(b−a−1)!(
b−a+1

2
−1

)
!

(
b−a+1

2

)
!
.

Γ
(

b−a+1
2

+ α −1

)
Γ
(

b−a+1
2

+ α
)

Γ(α +b−a−1)
,

(3.11)

if a+b is odd. This completes the proof.
We now define the operator T : E → E as

T(u,v)(t) = ((T1v) (t),(T2u)(t)) , [a+2,b+1]N (3.12)

where

(T1)v(t)=
b+1

∑
s=a+2

G (t,s) f (s,v(s)), (T2)u(t)=
b+1

∑
s=a+2

H (t,s)g(s,u(s)), [a+2,b+1]N.

(3.13)
Note that H (t,s) is also the Green function obtained by replacing α with β in G (t,s) .

REMARK 1. We notice that the operator T can be written in the form of the fol-
lowing vector equation

T(u,v)(t) =
b+1

∑
s=a+2

(
G (t,s)
H (t,s)

)(
f (s,v(s)) 0

0 g(s,u(s))

)
. (3.14)

Thereby, one can deduce that the coupled system of two-point fractional ∇-difference
boundary value problems (1.2) solves uniquely the vector equation (3.14).

Achieving to the first part of the main results, we consider the following hypotheses.

HYPTHESES 1. There exist positive continuous functions φi,ψi, i = 1,2 with ψi

increasing, such that

(H1) | f (t,v)| � φ1(t)ψ1(|v|), (t,v) ∈ [a+2,b+1]N×R;
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(H2) |g(t,u)|� φ2(t)ψ2(|u|), (t,u) ∈ [a+2,b+1]N×R .

REMARK 2. Finitely discrete nature of the summation operator T given by (3.12)
and (3.13) together with the Hypotheses 1, implies that T is trivially completely con-
tinuous.

Now we are ready to state and prove the main results of the paper as follows.

THEOREM 3. Assume that the hypotheses (H1) and (H2) are satisfied. If there
exist a positive constant ρ such that(

1
M

+
1
N

)
>

2
ρ

[
ψ1(ρ)

b+1

∑
a+2

|φ1(s)|+ ψ2(ρ)
b+1

∑
a+2

|φ2(s)|
]
, (3.15)

where M ∈ {Meven,Modd} and N ∈ {Neven,Nodd} , in which

Meven =
(b−a−1)!(

b−a
2

−1

)
!

(
b−a

2

)
!
.

Γ
(

b−a
2

+ α −1

)
Γ
(

b−a
2

+ α
)

Γ(α)Γ(α +b−a−1)
,

Modd =
(b−a−1)!(

b−a+1
2

−1

)
!

(
b−a+1

2

)
!
.

Γ
(

b−a+1
2

+ α −1

)
Γ
(

b−a+1
2

+ α
)

Γ(α)Γ(α +b−a−1)
,

Neven =
(b−a−1)!(

b−a
2

−1

)
!

(
b−a

2

)
!
.

Γ
(

b−a
2

+ β −1

)
Γ
(

b−a
2

+ β
)

Γ(β )Γ(β +b−a−1)
,

Nodd =
(b−a−1)!(

b−a+1
2

−1

)
!

(
b−a+1

2

)
!
.

Γ
(

b−a+1
2

+ β −1

)
Γ
(

b−a+1
2

+ β
)

Γ(β )Γ(β +b−a−1)
,

then the coupled system of two-point fractional ∇-difference boundary value problems
(1.2) has at least one solution in E .

Proof. Let us consider the following coupled system of fractional λ -parametric
∇-difference boundary value problems(

∇α
a+u(t)

∇β
a+v(t)

)
+ λ

(
f (t,v(t)
g(t,u(t))

)
= 0,

(
u(a+1)
u(b+1)

)
=
(

0
0

)
=
(

v(a+1)
v(b+1)

)
, (3.16)

for λ ∈ (0,1) . So solving (3.16) is equivalent to solving the fixed point problem
(u,v) = λT(u,v) where T is given by (3.12)-(3.13). Define

Ω =
{
(u,v) ∈ E| ‖u‖B,‖v‖B < ρ/2

}
. (3.17)
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We have to prove that (u,v) �= λT(u,v) for (u,v) ∈ ∂Ω and λ ∈ (0,1) . To this aim
suppose on the contrary that there exists (u,v) ∈ ∂Ω such that (u,v) = λT(u,v) =
λ (T1v,T2u) . So for λ ∈ (0,1) it follows that

‖u‖B = λ sup
t∈[a+2,b+1]N

|T1v|

� sup
t∈[a+2,b+1]N

∣∣∣∣ b+1

∑
s=a+2

G (t,s) f (s,v(s))
∣∣∣∣

� M
b+1

∑
s=a+2

| f (s,v(s))|

� Mψ1(ρ)
b+1

∑
s=a+2

|φ1(s)|.

(3.18)

Therefore it follows that

ρ � 2Mψ1(ρ)
b+1

∑
s=a+2

|φ1(s)|. (3.19)

Similarly one has from v = λT2u that

ρ � 2Nψ2(ρ)
b+1

∑
s=a+2

|φ2(s)|. (3.20)

Inequalities (3.19) and (3.20), yield(
1
M

+
1
N

)
� 2

ρ

[
ψ1(ρ)

b+1

∑
a+2

|φ1(s)|+ ψ2(ρ)
b+1

∑
a+2

|φ2(s)|
]
,

which contradicts (3.15). This contradiction proves that the second part of Theorem
1, namely (E2 ) is not satisfied. Thereby we conclude that there exists an (u,v) ∈ Ω
such that (u,v) = T(u,v) . Equivalently the coupled system of two-point fractional ∇-
difference boundary value problems (1.2) has at least one solution in E . The proof is
completed.

HYPTHESES 2. Assume that the following assumptions are satisfied in what fol-
lows.

(S1) lim
‖v‖B→∞

f (t,v)
v

= Θ1(t);

(S2) lim
‖u‖B→∞

g(t,u)
u

= Θ2(t) .

THEOREM 4. Let the assumptions (S1) and (S2) be satisfied. Suppose

b+1

∑
s=a+2

G (t,s) < ‖Θ1‖−1
B ,

b+1

∑
s=a+2

H (t,s) < ‖Θ2‖−1
B , t ∈ [a+2,b+1]N. (3.21)
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Then the coupled system of two-point fractional ∇-difference boundary value problems
(1.2) has at least one solution in E .

Proof. Consider the linear bounded mappings Li : E → E, i = 1,2 given by

L1v(t) =
b+1

∑
s=a+2

G (t,s)v(s)Θ1(s), L2u(t) =
b+1

∑
s=a+2

H (t,s)u(s)Θ2(s). (3.22)

Obviously one can derive

‖L1v‖B �
b+1

∑
s=a+2

G (t,s)‖v‖B‖Θ1‖B < ‖v‖B, (3.23)

which demonstrates that 1 can not be an eigenvalue of L1 . In the same way L2 can not
admit 1 as its eigenvalue. Therefore if we define L(u,v) = (L1v,L2u) , then (1,1) can
not be the eigenvalue of L . Now considering the limit approach of the hypotheses (S1)
and (S2) , for arbitrary ε > 0 we have

‖T1v−L1v‖B �
b+1

∑
s=a+2

G (t,s)‖ f (t,v)− vΘ1‖B

�
b+1

∑
s=a+2

G (t,s)ε‖v‖B < (b−a)Mε‖v‖B.

(3.24)

Similarly we deduce that

‖T2u−L2u‖B < (b−a)Nε‖u‖B. (3.25)

Note that M and N appeared in (3.24) and (3.25) are defined as in Theorem 3. Thus
using inequalities (3.24) and (3.25), we have

lim
(u,v)→(∞,∞)

‖T(u,v)−L(u,v)‖E

‖(u,v)‖E
� lim

‖u‖B→∞
‖v‖B→∞

{
‖T1v−L1v‖B

‖v‖B
+

‖T2u−L2u‖E

‖u‖B

}

< ε(b−a)(M+N),
(3.26)

for arbitrary ε > 0. Thereby Theorem 2 ensures that the vector equation T(u,v) defined
by (3.12)-(3.13) has at least one fixed point in E . Equivalently the coupled system
of two-point fractional ∇-difference boundary value problems (1.2) has at least one
solution in E . This completes the proof.

4. Numerical Examples

EXAMPLE 1. Consider the following coupled system of two-point fractional ∇-
difference boundary value problems⎛

⎝∇
3
2
0+u(t)

∇
3
2
0+v(t)

⎞
⎠+

(
f (t,v(t)
g(t,u(t))

)
= 0,

(
u(1)
u(9)

)
=
(

0
0

)
=
(

v(1)
v(9)

)
. (4.1)
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Actually system (4.1) is updated with setting α = β = 3
2 and a = 0, b = 8. Taking into

account that a + b is even, we have M = Meven and N = Neven . Therefore choosing
ρ = 5 and taking

f (t,v) = exp(−t)︸ ︷︷ ︸
φ1

tan−1(v)︸ ︷︷ ︸
ψ1

, g(t,u) = exp(−t)︸ ︷︷ ︸
φ2

ln(1+u)︸ ︷︷ ︸
ψ2

, (4.2)

we find that the conditions (H1) and (H2) hold. Consequently a direct calculation
demonstrates that(

1
M

+
1
N

)
≈ 1.022715 > 0.633032≈ 2

ρ

[
ψ1(ρ)

b+1

∑
a+2

|φ1(s)|+ ψ2(ρ)
b+1

∑
a+2

|φ2(s)|
]
.

Therefore Theorem 3 implies that the coupled system (4.1) admits at least one solution
in E .

EXAMPLE 2. Let us consider the coupled system (4.1). Suppose that

f (t,v) = (t +1)−2︸ ︷︷ ︸
Θ1

v, g(t,u) = exp(−t)︸ ︷︷ ︸
Θ2

u, t ∈ [2,9]N. (4.3)

Thus hypotheses (S1) and (S2) are satisfied. Since a+ b is even, we have M = N =
4.5686585. On the other hand a simple computation shows that ‖Θ1‖B = 0.2 and
‖Θ2‖B ≈ 0.135335. Thus we have

9

∑
s=2

G (t,s) ≈ 4.5686585 < 5 = ‖Θ1‖−1
B ,

9

∑
s=2

H (t,s) ≈ 4.5686585 < 7.389056≈ ‖Θ2‖−1
B .

Thereby in accordance with Theorem 4, the coupled system (4.1) has at least one solu-
tion in E .
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