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CONTINUOUS DEPENDENCE FOR SOLUTIONS

TO 2–D BOUSSINESQ SYSTEM CHANNEL FLOW

YUANFEI LI AND CHANGHAO LIN

Abstract. This paper considers the 2-D Boussinesq system in a semi-infinite channel. By making
use of the earlier work of [19] and some Soblev inequalities, the continuous dependence on the
coefficient of the system is obtained. The authors also show how to bound the total energy.

Mathematics subject classification (2010): 35K05,35K20,35K55.
Keywords and phrases: Boussinesq equations, Continuous dependence, Channel flow.

RE F ER EN C ES

[1] H. ABIDI AND T. HMIDI, On the global well-posedness for Boussinesq system, J. Differ. Equ., 233,
(2007), 199–220.

[2] D. ADHIKARI, C. CAO AND J. WU, The 2-D Boussinesq equations with vertical viscosity and vertical
diffusivity, J. Differ. Equ., 249, (2010), 1078–1088.

[3] D. ADHIKARI, C. CAO AND J. WU, Global regularity results for the2DBoussinesq equations with
vertical dissipation, J. Differ. Equ., 251, (2011), 1637–1655.

[4] B.A. BOLEY, Some observations on Saint-Venant’s principle, in: Proc. 3rd US Nat, Congr. Appl.
Mech., ASME, New York, (1958), 259-264.

[5] J.R. CANNON AND D. ZACHMANN, Parameter determination in parabolic partial differential equa-
tions from overspecified boundary data, Internat.J.Engrg.Sci., 20, (1982), 779–788.

[6] CH. CAO AND J. WU, Global Regularity for the Two-Dimensional Anisotropic Boussinesq Equations
with Vertical Dissipation, Arch. Rational Mech. Anal., 208,(2013), 985–1004.

[7] D. CHAE, Global regularity for the 2-D Boussinesq equations with partial viscosity terms, Adv.Math.,
203, (2006), 497–513.

[8] D. CHAE, S. K. KIM AND H.S. NAM,Local existence and blow-up criterion of Hölder continuous
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