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DIFFUSIVE SOLUTIONS OF THE
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Abstract. In the present work we show by means of explicit construction that three new types
of solutions exist for the one dimensional competitive Lotka-Volterra reaction-diffusion system.
The new solutions constructed are (i) space-time separated solutions, (ii) unbounded solutions,
and (iii) solutions of Gaussian type, with the constructions being based largely on the standard
methods for constructing solutions to the one-dimensional heat equation. From these exact solu-
tions a new and interesting phenomena is found, namely diffusion-induced long-term coexistence
of three species. In addition, the approach to constructing explicit solutions presented here can
readily be applied to other reaction-diffusion systems.
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