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PATTERNS IN A BALANCED BISTABLE EQUATION WITH

HETEROGENEOUS ENVIRONMENTS ON SURFACES OF REVOLUTION

MAICON SÔNEGO

Abstract. We use the variational concept of Γ -convergence to obtain sufficient conditions that
guarantee existence, stability and the geometric structure of four families of stationary solutions
to the singularly perturbed parabolic equation ∂t uε = ε2Δuε + f (uε ,x) on surfaces of revolution.
We consider the bistable function f (u,x) = −(u−a(x))(u−b(x))(u− c(x)) and the conditions
found relate the functions a,b,c to the geometry of the surface where such functions are defined.
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