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HETEROGENEOUS ENVIRONMENTS ON SURFACES OF REVOLUTION
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Abstract. We use the variational concept of Γ -convergence to obtain sufficient conditions that
guarantee existence, stability and the geometric structure of four families of stationary solutions
to the singularly perturbed parabolic equation ∂t uε = ε2Δuε + f (uε ,x) on surfaces of revolution.
We consider the bistable function f (u,x) = −(u−a(x))(u−b(x))(u− c(x)) and the conditions
found relate the functions a,b,c to the geometry of the surface where such functions are defined.

1. Introduction

In this work we study the following problem

∂t uε = ε2Δguε + f (uε ,x), (t,x) ∈ IR+ ×M (1)

where ε > 0 is a small parameter and M ⊂ IR3 is a surface of revolution without
boundary with metric g . We consider

f (u,x) = −(u−a(x))(u−b(x))(u− c(x)), (2)

where a,b,c∈C1(M ) and a(x) < b(x) = (a(x)+c(x))/2 < c(x) for all x ∈ M . Such
f (u,x) is a typical example of the so-called bistable function.

There is a vast literature addressing the question of existence as well as nonex-
istence of nonconstant stable stationary solutions (herein referred to as patterns, for
short) to (1) in bounded domains of IRn when the roots of f are constants; we re-
fer to [16, 3, 5, 4] and references therein. For problems on surfaces of revolution see
[1, 6, 7, 19]. In these previous results, the effect of domain geometry and/or the effect
of diffusivity are considered.

Our concern herein is to find mechanisms of interaction between the functions
a(x) , b(x) , c(x) and the geometry of the domain so as to produce patterns to (1),
which develop inner transition layers as ε → 0.

For one-dimensional domains, i.e., when M = (0,1) for instance, subjected to
zero Neumann boundary conditions there are several results. In [18] it was proved
that if c(x)− a(x) is C2 and attains a nondegenerate local minimum at x0 ∈ (0,1)
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then there exists a stable solution uε such that uε(x) → c(x) on (0,x0) and uε(x) →
a(x) on (x0, l) . In [17] this result was extended to a degenerate setting. In [9] it was
generalized to two-dimensional domains using essentially the same ideas used here,
i.e., the variational concept of Γ−convergence. Indeed, our problem becomes simpler
since (1) can be treated as a one-dimensional problem and so our conditions for the
existence of patterns appear more naturally. Furthermore, another interesting aspect
of the case considered here is the possibility to construct simple examples where our
hypothesis for the existence of patterns are satisfied (see Subsection 3.2).

In [8], essentially the same problem was considered for bounded domains in IRn

(Ω ⊂ IRn , for instance), supplied with zero Neumann boundary condition, in a de-
generate environment. Unlike [9] and of this paper, is precisely this degenerate con-
dition on the roots of f that allows to consider n -dimensional domains and, mainly,
ensures the existence of patterns for the problem. To be more specific, in [8] is as-
sumed that the roots of f (u,x) = −(u−a(x))(u−b(x))(u− c(x)) are equal in Ω\D ,
D = (D1∪D2) ⊂ Ω , D1∩D2 = /0 where D1 and D2 are open and connected sets with
Lipschitz-continuous boundaries.

There are some works regarding the effect of heterogenous environments (i.e.
when the reaction term f , of type bistable or not, depends on the spatial variable x )
under different aspects, we cite [13, 14, 15] and references therein.

In order to introduce our results consider a smooth curve C ⊂ IR3 parametrized
by x = (x1,x2,x3) = (ψ(s),0,χ(s)) , s ∈ [0, l] with ψ(0) = ψ(l) = 0 and the borderless
surface of revolution M generated by C . We suppose that the functions a(x) , b(x)
and c(x) do not depend on the angular variable θ , so that, abusing notation, we set
a(x(s,θ )) = a(s) , b(x(s,θ )) = b(s) and c(x(s,θ )) = c(s) .

We find that a sufficient condition for existence of patterns to (1) is that the func-
tion ψ(c−a)3 : (0, l) → IR has an isolated local minimum in (0, l) . In particular, if a
and c are constant then the sufficient condition is satisfied as long as, roughly speaking,
M has a neck.

The geometric profiles of these patterns are also given and moreover, we show
that two of four families of patterns found develop internal transition layers as ε → 0,
which are referred to in the literature as stable transition layers. Our approach provides
convergence, as ε → 0, of the stable transition layers in L1(Ω) rather than uniform
convergence in compact sets outside the interface. All these results remain true for a
surface of revolution with border under Neumann boundary condition and this case is
also considered in this work.

Note that our results extend [18] to surfaces of revolution. This can be seen by
taking ψ ≡ 1, which would correspond to a finite right circular cylinder, and then the
existence condition for patterns would be c(x)−a(x) having an isolated local minimum
in (0, l) , as found in [18]. In the end, some simple examples are given to illustrate
situations in which our results guarantee the existence of patterns.

2. Preliminaries

We begin with some definitions on BV -functions, Γ-convergence and known re-
sults from Differential Geometry which will be used in the following sections.
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2.1. Surface of revolution

Consider M = (M ,g) an n−dimensional Riemannian manifold with a metric
given in local coordinates x = (x1,x2, · · · ,xn) given by (using Einstein summation con-
vention) dr2 = gi jdxidx j , (gi j) = (g−1

i j ) , |g| = det(gi j) .
We will see how the operator Δgu can be expressed for the particular case where

M is a surface of revolution.
Given a smooth vector field X on M , the divergence operator of X is defined as

divgX =
1√|g|

∂
∂xi (

√
|g|Xi)

and the Riemannian gradient, denoted by ∇g , of a sufficiently smooth real function φ
defined on M , as the vector field

(∇gφ)i = gi j∂ jφ .

Let C be the curve of IR3 parametrized by⎧⎨
⎩

x1 = ψ(s)
x2 = 0 (s ∈ I := [0, l])
x3 = χ(s)

where ψ ,χ ∈C2(I) , ψ > 0 in (0, l) and (ψ ′)2 +(χ ′)2 = 1 in I . Moreover,

ψ(0) = ψ(l) = 0, (3)

and
ψ ′(0) = −ψ ′(l) = 1. (4)

Let M be the surface of revolution parametrized by⎧⎨
⎩

x1 = ψ(s)cos(θ )
x2 = ψ(s)sin(θ ) (s,θ ) ∈ [0, l]× [0,2π).
x3 = χ(s)

(5)

Setting x1 = s,x2 = θ then a surface of revolution in IR3 with the above parametriza-
tion is a 2-dimensional Riemannian manifold with metric

dr2 = ds2 + ψ2(s)dθ 2.

It follows from (3) and (4) that M has no boundary and we always assume that
M and the Riemannian metric g on it are smooth (see [2], for instance). The area
element on M is dσ = ψdθds and the gradient of u with respect to the metric g is
given by

∇gu =
(

us,
1

ψ2 uθ

)
.
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Thus

Δgu = uss +
ψs

ψ
us +

1
ψ2 uθθ . (6)

Although the functions a , b and c may depend on (s,θ ) , as stated in the Intro-
duction, throughout this work we suppose that they depend only on the variable s . Thus
abusing notation, for simplicity’s sake, we set

f (u,x(s,θ )) = f (u,s) = −(u−a(s))(u−b(s))(u− c(s)), (7)

for x = (ψ(s)cos(θ ),ψ(s)sin(θ ),χ(s)) ∈ M .
In short, we prove that the local minimum of the energy functional associated with

the problem below, are the desired patterns of problem (1)

∂tuε = ε2
(

∂ 2
ssuε +

ψs

ψ
∂suε +

1
ψ2 ∂ 2

θθ uε

)
+ f (u,s), (s,θ ) ∈ (0, l)× [0,2π). (8)

2.2. BV-functions

We say that u is a function of essential bounded variation in an interval I ⊂ IR
(and write u ∈ BV (I)) if its partial derivative in the sense of distributions is a measure
with finite total variation in I . In the sense of distributions, Du is a vector valued Radon
measure with finite total variation in I given by

|Du| = sup

{∫
I
uσ ′ds : σ ∈C∞

0 (I), |σ | � 1

}
.

The total variation |Du| is a Radon measure itself.
We denote by BV (I,{α,β}) the class of all u∈BV (I) which take values α and β

only (α and β are constant functions or not). If u ∈ BV (I) , the integral of any positive
continuous function h with respect to the measure |Du| can be expressed as

∫
I
h |Du|= sup

{∫
I
uσ ′ds : σ ∈C∞

0 (I), |σ | � h

}
.

Given u ∈ L1
loc(I) , the jump set of u , denoted by Su , is the complement of the set

of Lebesgue points of u , i.e., the set of points where the upper and lower approximate
limits of u differ or are not finite. If u ∈ BV (I,{α,β}) , α and β constants, then
H 0(Su) < ∞ and (β −α)H 0(Su) agrees with the total variation |Du| of the derivative
Du . Here H 0 stands for the Hausdorff counting measure. For details the reader is
referred to [10], for instance.

DEFINITION 1. A family {Eε}ε>0 of real-extended functionals defined in L1(I)
is said to Γ-converge, as ε → 0 , to a functional E0 and we write

Γ− lim
ε→0

Eε(u) = E0(u)
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if:

(i) for each u ∈ L1(I) and for any sequence {uε} in L1(I) satisfying uε → u in L1(I) ,
as ε → 0, there holds E0(u) � lim

ε→0
infEε(uε) and

(ii) for each u ∈ L1(I) there is a sequence {uε} in L1(I) satisfying uε → u in L1(I) ,
as ε → 0, and E0(u) � lim

ε→0
supEε(uε) .

DEFINITION 2. We shall call u0 ∈ L1(I) a L1 -local minimizer of E0 if there
is μ > 0 such that E0(u0) � E0(u) whenever 0 < ‖u−u0‖L1(I) < μ . Moreover if

E0(u0) < E0(u) for 0 < ‖u−u0‖L1(I) < μ , then u0 is called an isolated L1 -local min-
imizer of E0 .

3. Sufficient conditions for existence of patterns

In this section we prove the main theorem of this paper. As usual χA denotes the
characteristic function of a set A.

THEOREM 1. If the function ψ(c−a)3 : [0, l]→ IR attains an isolated local min-
imum at s0 ∈ (0, l) then exist ε0 > 0 and four families of stable stationary solutions{

u j
ε

}
0<ε�ε0

, j = 1, . . . ,4 to (1) such that

(i) ‖u1
ε −u1

0‖L1(I)
ε→0−→ 0 where

u1
0(s) = a(s)χ(0,s0)(s)+ c(s)χ(s0,l)(s);

(ii) ‖u2
ε −u2

0‖L1(I)
ε→0−→ 0 where

u2
0(s) = c(s)χ(0,s0)(s)+a(s)χ(s0,l)(s);

(iii) ‖u3
ε −u3

0‖L1(I)
ε→0−→ 0 where u3

0(s) = a(s) in I ;

(iv) ‖u4
ε −u4

0‖L1(I)
ε→0−→ 0 where u4

0(s) = c(s) in I .

Remember that by a stationary solution of problem (1) we mean a solution to the
problem

ε2Δgu+ f (u,x) = 0, x ∈ M (9)

and a stationary solution uε is called stable if for every η > 0 there exists δ > 0 such
that ‖u(·, t)−uε‖∞ < η for all t > 0, whenever ‖u(·,0)−uε‖∞ < δ , where ‖·‖∞ stands
for the norm of the space L∞(M ) . If there exists δ1 > 0 such that ‖u(·,0)−uε‖∞ < δ1

implies that ‖u(·, t)−uε‖∞ → 0, as t → ∞ , then uε is called asymptotically stable. We
say that uε is unstable if it is not stable.



526 MAICON SÔNEGO, Differ. Equ. Appl. 8, No. 4 (2016), 521–533.

Consider the L1 -local minimizers of the family of functionals

Eε : L1(I) → IR ∪{∞}
defined by

Eε(u) =

⎧⎨
⎩

∫
I

[
εψ(s)

2

∣∣u′∣∣2 +
ψ(s)

ε
F(u,s)

]
ds, u ∈ H1(I)

∞, otherwise,
(10)

where

F(u,s) = −
∫ u

a(s)
f (ξ ,s)dξ =

1
4
(u−a)2(u− c)2.

We identify such minimizers with stationary solutions of (1) that are independent
of the angular variable θ and then we proved its stability. Note that these local mini-
mizers (critical points of {Eε} ) are stationary solutions of (8).

Thus our first step is to find local minimizers of Eε and for this purpose we will
use the following theorem (see [12]) which also provides the behavior of such local
minimizers.

THEOREM 2. Suppose that {Eε} , a sequence of real-extended functionals, Γ-
converges to a real-extended functional E0 and also that the following hypotheses are
satisfied:

(i) Any sequence {uε}ε>0 such that Eε � C < ∞ for all ε > 0 , is compact in L1 .

(ii) There exists an isolated L1 -local minimizer u0 of E0 .
Then there exists an ε0 > 0 and a family {uε}0<ε<ε0

such that

(i) uε is an L1 -local minimizer of Eε and

(ii) ‖uε −u0‖L1 → 0 , as ε → 0 .

The next result concerns the computation of the Γ− limit of the family of func-
tionals {Eε} (defined in (10)) and its proof can be found in [21] (Theorem 2) for N -
dimensionals domains (N � 2) and ψ constant. Essentially the same proof can be
adapted to our case (the presence of the positive function ψ adds no significant diffi-
culty, see [7] for instance) thus yielding

THEOREM 3. Consider E0 : L1(I) → IR ∪{∞} defined by

E0(u) =

{∫
I
h(s)ψ(s)

∣∣Dχ{u=a}
∣∣ , u ∈ BV (I,{a,c})

∞, otherwise

where

h(s) =
√

2
∫ c(s)

a(s)

√
F(ξ ,s)dξ =

√
2

12
(c(s)−a(s))3. (11)

Then
Γ− lim

ε→0
Eε(u) = E0(u).
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The functional E0 can be thought of as a perimeter functional type with weight
hψ .

In order to apply Theorem 2 we need to find an isolated L1 -local minimizer of E0 .
The fact that condition (2) of Theorem 2 holds for (10) was proved in [21] under more
general conditions than those addressed here. Indeed, this hypothesis would follow if
the minimizers were uniformly bounded in L1 (see [21], Proposition 3, for instance),
but this is really the case and it can be accomplished by an application of the maximum
principle.

THEOREM 4. If the function ψ(c−a)3 : [0, l]→ IR attains an isolated local min-
imum at s0 ∈ (0, l) then

(i) u1
0(s) = a(s)χ(0,s0)(s)+ c(s)χ(s0,l)(s);

(ii) u2
0(s) = c(s)χ(0,s0)(s)+a(s)χ(s0,l)(s);

(iii) u3
0(s) = a(s);

(iv) u4
0(s) = c(s)

are isolated L1(I)-local minimizers of E0 .

Proof. We render the proofs for u1
0 and u3

0 only since the other cases are similar.
By hypothesis there exists δ0 > 0 such that

ψ(c−a)3(s0) < ψ(c−a)3(s)

for 0 < |s− s0| < δ0 . Take

δ =
1
2

min

{∫ s0

s0−δ0

{c(s)−a(s)}ds,
∫ s0+δ0

s0
{c(s)−a(s)}ds

}
(12)

and u ∈ BV (I,{a,c}) such that

0 <
∥∥u−u1

0

∥∥
L1(I) < δ . (13)

Note that if u /∈ BV (I,{a,c}) then E0(u) > E0(u1
0) .

Let Su ⊂ (0, l) be the jump set of the function u . If Su ∩ (s0 − δ0,s0 + δ0) = /0 ,
then ∥∥u−u1

0

∥∥
L1(I) =

∫
I

∣∣u−u1
0

∣∣ds

�
∫ s0+δ0

s0−δ0

∣∣u−u1
0

∣∣ds

> 1
2 min

{∫ s0

s0−δ0

{c(s)−a(s)}ds,
∫ s0+δ0

s0
{c(s)−a(s)}ds

}
= δ

which contradicts (13). Thus Su∩(s0−δ0,s0 +δ0) �= /0 and there exists s1 ∈ Su∩(s0−
δ0,s0 + δ0) .
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If s1 �= s0 we have that

E0(u) =
√

2
12

∫
I
(ψ(c−a)3)(s)

∣∣Dχ{u=a}
∣∣

=
√

2
12

∫
Su

(ψ(c−a)3)(s)dH 0

=
√

2
12 ∑

s∈Su

(ψ(c−a)3)(s)

�
√

2
12 (ψ(c−a)3)(s1)

>
√

2
12 (ψ(c−a)3)(s0) = E0(u0)

as desired.
If s1 = s0 , there are two possibilities: either u ≡ u1

0 or u ≡ u2
0 . Both cases contra-

dict (13).
For u3

0 we consider δ given by (12) and as Su3
0
= /0 we have that

E0(u3
0) =

∫
I
(ψ(c−a)3)(s)

∣∣∣Dχ{u3
0=a}

∣∣∣
=

∫
S
u3
0

(ψ(c−a)3)(s)H 0 = 0.

Then if u ∈ BV (I,{a,c}) and satisfies 0 <
∥∥u−u3

0

∥∥
L1(I) < δ , similarly to the

previous case, it is easy to conclude that E0(u) > 0 and therefore E0(u) > E0(u3
0) . The

theorem is proved. �

REMARK 1. The proof above occurs due to our hypothesis of symmetry on f ,
making it possible to study the problem in a one-dimensional setting. In fact, in [9] (see
Theorem 3.2) – where the problem is considered in open subsets of IR2 – a much more
complicated proof is required for a similar result.

Before the next result, we recall that for the linearized problem ((1) around of uε )

ε2Δgφ + fu(uε ,x)φ + λ φ = 0 in M , (14)

the first eigenvalue λ1 is given by

λ1 = min
{

Ruε (φ) : φ ∈ H1(M ),‖φ‖L2(M ) = 1
}

(15)

where

Ruε (φ) =
∫

M

{
ε
∣∣∇gφ

∣∣2 − fu(uε ,x)φ2

ε

}
dσ .

It is well known that if λ1 > 0 then uε is asymptotically stable and if λ1 < 0 then
uε is unstable. If λ1 = 0 then stability or instability can occur. Moreover, if φ1 is
its corresponding eigenfunction then φ1 can be assumed positive in M . The classical
argument of linearized stability can be applied to the present situation (e.g., see [20,
Chapter 11]).
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THEOREM 5. Let
{
ul

ε
}

0<ε�ε0
( l = 1, . . . ,4 ) be the family of local minimizers of

Eε provided by Theorems 2, 3 and 4. Then every ul
ε ( l = 1, . . . ,4 ) is a stable stationary

solution to (1).

Proof. Each local minimizer uε of Eε is a stationary solution to (8) and, by (6),
uε is also a stationary solution to (1).

Consider the following eigenvalue problem obtained by linearizing problem (8)
around the local minimizer uε of Eε

ε2
(

∂ 2
ssφ +

ψs

ψ
∂sφ +

1
ψ2 ∂ 2

θθ φ
)

+ fu(uε ,s)φ + λ φ = 0. (16)

Claim: if φ1 is an eigenfunction corresponding to the first eigenvalue λ1 of prob-
lem (16) then φ1 is independent of θ .

We first observe that for any θ0 > 0, φ1(s,θ + θ0) is also an eigenfunction corre-
sponding to λ1 . Moreover we have that φ1 is 2π -periodic in θ and

∫ l

0

∫ 2π

0
φ2

1 (s,θ )ψdθds = 1. (17)

It is well known that λ1 is a simple eigenvalue, i.e., that the eigenspace corre-
sponding to λ1 is one-dimensional. We outline the proof for the reader’s convenience.
We suppose that φ2 (= φ1(s,θ +θ0) , for instance) also satisfies (16) and prove that φ1

differs from φ2 by a multiplicative constant.
Note that φ1 and φ2 satisfy the equation

ε2Δgφ + fu(uε ,x)φ + λ1φ = 0 in M . (18)

We can assume φ1 > 0 and φ2 > 0 and is not difficult to see that

0 = φ1ε2Δgφ2 −φ2ε2Δgφ1

= ε2∇g(φ1∇gφ2 −φ2∇gφ1)
= ε2∇g(φ2

1 ∇g(φ2/φ1)).

Using integration by parts it follows that

0 =
∫

M
ε2(φ2/φ1)∇g

[
φ2

1 ∇g(φ2/φ1)
]
dσ

=
∫

M
ε2φ2φ1Δ(φ2/φ1)dσ +

∫
M

ε2(φ2/φ1)∇g(φ2)∇g(φ2/φ1)dσ

=
∫

M
ε2φ2φ1Δ(φ2/φ1)dσ −

∫
M

ε2φ2
1 ∇g[(φ2/φ1)∇g(φ2/φ1)]dσ

= −
∫

M
ε2φ2

1

∣∣∇g(φ2/φ1)
∣∣2 dσ .

This prove that λ1 is simple.
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Hence, there exists a constant k such that

φ1(s,θ ) = kφ1(s,θ + θ0),

and by (17) ∫ l

0

∫ 2π

0
φ2

1 (s,θ + θ0)ψdθds =
∫ l

0

∫ 2π+θ0

θ0

φ2
1 (s,θ )ψdθds

=
∫ l

0

∫ 2π

0
φ2

1 (s,θ )ψdθds = 1,

then

1 =
∫ l

0

∫ 2π

0
φ2

1 (s,θ )ψdθds = k2
∫ l

0

∫ 2π

0
φ2

1 (s,θ + θ0)ψdθds = k2.

It follows that k = ±1 for any θ0 > 0, 0 � s � l and 0 < θ < 2π which proves
the claim.

Recall that uε is a local minimizer of Eε , then for all φ ∈ H1(I)

E ′′
ε (uε)(φ) =

∫ l

0

{
εψ(φ ′)2 − ψ fu(uε ,s)φ2

ε

}
ds � 0. (19)

Therefore, if φ1 is the eigenfunction corresponding to the first eigenvalue λ1 , we
have that φ1 is independent of θ and thus

λ1 = Ruε (φ1)

=
∫

M

{
ε
∣∣∇gφ1

∣∣2− fu(uε ,x)φ2
1

ε

}
dσ

= 2π
∫ l

0

{
εψ(φ ′

1)
2 − ψ fu(uε ,s)φ2

1

ε

}
ds

= 2πE ′′
ε (uε)(φ1) � 0.

If λ1 > 0 then uε is stable.
Now if λ1 = 0, since λ1 is a simple eigenvalue, there is a local one-dimensional

critical manifold W (uε) , tangent to the eigenspace spanned by the principal eigenfunc-
tion φ1 , at uε , such that if uε is stable in W (uε) then it is also stable in H1(M ) . For
this matter we refer to Theorem 6.2.1 in [11], which proof can be adapted to fit our
case.

But now the stability of uε in W (uε) (which is one-dimensional) follows from
the fact that the semigroup generated by (1) defines a gradient flow in H1(M ) . To be
more specific the functionals Eε(uε(x,t)) defines a Lyapunov function and along each
solution uε(x, t) it holds that

d
dt

Eε(uε(x,t)) � 0, t � 0.

This concludes the proof of Theorem 5. �
Finally we conclude the proof of the main theorem of this work:

Proof. (of Theorem 1) Follows directly from the combination of Theorems 2, 3, 4
and 5. �
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3.1. The Neumann boundary condition case

Now, we discuss the case where the domain is a surface of revolution with bound-
ary. Let the surface of revolution M be as before and let D ⊂ M be the domain
delimited by two circles Cs1 and Cs2 , 0 < s1 < s2 < l , parametrized in the local coor-
dinates (s,θ ) as follows:

Cs1 :

{
s(t) = s1

θ (t) = t
and Cs2 :

{
s(t) = s2

θ (t) = t

with t ∈ [0,2π) .
Let ν be the outer normal vector of ∂D lying in the tangent space Tp(M ) for any

p∈ ∂D . We shall assume that ∂D is orientable so that the outer normal is well-defined
and continuous.

The derivative of u in the direction of ν at ∂D is given by

∂u
∂ν

=
〈
∇gu,ν

〉
,

where ν = ν1
∂
∂ s + ν2

∂
∂θ and

{
∂
∂ s ,

∂
∂θ

}
is the basis of Tp(M ) .

Suppose furthermore that

χ ′(s) � 0, s ∈ (s1,s1 + δ )∪ (s2− δ ,s2) (20)

for some δ > 0. Thus there holds ν = (∂/∂ s) on Cs2 and ν = −(∂/∂ s) on Cs1 .
Except for a few natural changes, the proof of the following theorem is similar to

that we rendered for domains without boundary.

THEOREM 6. If ψ(c− a)3 attains an isolated local minimum s0 ∈ (s1,s2) and

f is given by (7), then there exist four families
{

u j
ε

}
0<ε�ε0

( j = 1, . . . ,4 ), for some

ε0 > 0 , of nonconstants stables stationary solutions to the problem{
∂tuε = ε2Δguε + f (uε ,x), (t,x) ∈ IR+ ×D
∂νuε = 0, x ∈ ∂D

(21)

satisfying

(i) ‖u1
ε −u1

0‖L1(s1,s2)
ε→0−→ 0 where

u1
0(s) = a(s)χ(s1,s0)(s)+ c(s)χ(s0,s2)(s);

(ii) ‖u2
ε −u2

0‖L1(s1,s2)
ε→0−→ 0 where

u2
0(s) = c(s)χ(s1,s0)(s)+a(s)χ(s0,s2)(s);

(iii) ‖u3
ε −u3

0‖L1(s1,s2)
ε→0−→ 0 where u3

0(s) = a(s) in (s1,s2);

(iv) ‖u4
ε −u4

0‖L1(s1,s2)
ε→0−→ 0 where u4

0(s) = c(s) in (s1,s2) .
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REMARK 2. (i) As stated in the Introduction, the families of solutions
{
u1

ε
}

and{
u2

ε
}

derived from Theorems 1 and 6 develop internal transition layer as ε → 0.

(ii) Standard bootstrap arguments ensure that each solution u j
ε , of the problem with or

without boundary, is a classical solution.

As a consequence of the Theorems 1 and 6 many examples of existence of patterns
can be created. In the sequel we look at some simple examples.

3.2. Examples

For the sake of illustration let us consider the following surfaces and functions
a(x) , c(x) (recall that b(x) = (a(x) + c(x))/2) for which our results guarantee the
existence of patterns to (1).

(i) We take M to be the unit sphere then ψ(s) = sin(s) , χ(s) = cos(s) and I = (0,π) .
In this case if c(s) = sin2(2s) (c(x) = 4x2

3(x
2
1 + x2

2) , x ∈ M ) and a(s) = −2, a simple
calculation shows that ψ(c−a)3 attains an isolated local minimum in (0,π) . The same
happens if we take c(s) = cos2(s) (c(x) = x2

3 , x ∈ M ) and a(s) = −1, for instance.

(ii) D1 a cylindrical surface given by ψ1(s) = 1 and χ1(s) = s + 1, s ∈ [0,1] . If
c(s) = (s−1)2 (c(x) = (x3 −2)2 , x ∈ D1 ) and a(s) = −s (a(x) = −x3 +1, x ∈ D1 ),
then s0 = 1/2 ∈ (0,1) is an isolated local minimum of ψ1(c−a)3 .

(iii) D2 given by ψ2(s) = s2/4+1/2 and χ2(s) = s/4
√

4− s2+arcsin(s/2) , s∈ (0,1),
unlike M and D1 , has negative Gaussian curvature (namely, −ψ ′′

2 /ψ2 < 0) and if

c(s) = s2 (c(x) = 4
√

x2
1 + x2

2− 2, x ∈ D2 ) and a(s) = s− 1 (a(x) = 2((x2
1 + x2

2)
1/2 −

1/2)1/2 , x ∈ D2 ) we have that ψ2(c− a)3 also attains an isolated local minimum in
(0,1) .

The surfaces M and D1 illustrate simple situations where our results can be ap-
plied. In particular, if f (u,x) = f (u) , was proved in [1, Theorem 3.3] the non existence
of patterns in such cases which show the importance of roots a(x),b(x),c(x) of f (u,x) .
On the other hand, D2 is just one example with negative Gaussian curvature and, as is
well known, the Gaussian curvature has key role in the search for patterns on surfaces
of revolution. For more details on this matter see [1, 6, 7, 19] and the references therein.
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