
D ifferential
Equations

& Applications

Volume 8, Number 4 (2016), 535–546 doi:10.7153/dea-08-30

POSITIVE SOLUTIONS FOR INFINITE SEMIPOSITONE/

POSITONE QUASILINEAR ELLIPTIC SYSTEMS

WITH SINGULAR AND SUPERLINEAR TERMS

BRAHIM KHODJA AND ABDELKRIM MOUSSAOUI

(Communicated by Darko Žubrinić)

Abstract. We establish existence and regularity of positive solutions for a class of quasilinear
elliptic systems with singular and superlinear terms. The approach is based on sub-supersolution
methods for systems of quasilinear singular equations and the Schauder’s fixed point theorem.

1. Introduction and main result

Let Ω ⊂ R
N (N � 2) is a bounded domain with C1,α -boundary ∂Ω , α ∈ (0,1) ,

and let 1 < p,q � N . We deal with the following quasilinear singular elliptic problem⎧⎪⎪⎨⎪⎪⎩
−Δpu = λuα1 + vβ1 in Ω,

−Δqv = uα2 + λvβ2 in Ω,
u,v > 0 in Ω,
u,v = 0 on ∂Ω,

(1)

where λ is a real parameter. Here Δp and Δq denote the p -Laplacian and q -Laplacian
differential operators defined by Δpu = div(|∇u|p−2 ∇u) and Δqv = div(|∇v|q−2 ∇v) ,
respectively. We consider system (1) in a singular case assuming that

−1 < α1,β2 < 0. (2)

A solution of (1) is understood in the weak sense, which means a pair of functions
(u,v) ∈W 1,p

0 (Ω)×W 1,q
0 (Ω) which are positive a.e. in Ω such that{∫

Ω |∇u|p−2 ∇u∇ϕ dx =
∫

Ω(λuα1 + vβ1)ϕ dx∫
Ω |∇v|q−2∇v∇ψ dx =

∫
Ω(uα2 + λvβ2)ψ dx

for all (ϕ ,ψ) ∈W 1,p
0 (Ω)×W 1,q

0 (Ω) provided the integrals in the right-hand side of the
above equalities exist.
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We explicitly observe that under assumption (2) and depending on the sign of a
real number λ , it holds

lim
s→0+

(λ sα1 + sβ1) = lim
s→0+

(sα2 + λ sβ2) =
{

+∞ if λ > 0
−∞ if λ < 0.

Therefore, system (1) can be referred to as an infinite positone problem if λ > 0 and as
an infinite semipositone problem if λ < 0.

The principle fact in this work is that the singularity in problem (1) comes out
through nonlinearities which are (p−1)-superlinear and (q−1)-superlinear near +∞ .
Namely, we assume that

α2 > q−1 and β1 > p−1. (3)

In this context, system (1) has a cooperative structure, that is, for u (resp. v) fixed the
right term in the first (resp. second) equation of (1) is increasing in v (resp. u ). Further,
according to (3) we have

lim
s→+∞

(λ sα1 + sβ1)/sp−1 = lim
s→+∞

(sα2 + λ sβ2)/sq−1 = +∞.

This type of problem is rare in the literature. According to our knowledge, only
a positone-type singular system with superlinear terms was examined in [21]. There
the authors considered problem (1) depending on two positive parameters in the whole
space R

N . The existence of a positive entire solution is shown provided the parameters
are sufficiently small. Recall that in [21] an entire solution is defined to be a function
in C1(RN)×C1(RN) satisfying (1) at every point x ∈ R

N and vanishing at infinity.
The sublinear condition α2 < q− 1 and β1 < p− 1 for singular systems of type

(1) have been thoroughly investigated. For a complete overview on the study of the
infinite positone problem (1) we refer to [1, 2, 15, 17], while for the study of the infinite
semipositone problem (1), we cite [5, 13, 14]. We also mention [6, 7] focusing on the
semilinear case of (1), that is, when p = q = 2.

Another important class of singular problems considered in the literature is the
following ⎧⎪⎪⎨⎪⎪⎩

−Δpu = uα1vβ1 in Ω,

−Δqv = uα2vβ2 in Ω,
u,v > 0 in Ω,
u,v = 0 on ∂Ω.

(4)

Relevant contributions regarding the cooperative case of system (4), that is α2,β1 > 0,
can be found in [8, 9, 18]. With regard to the complementary situation α2,β1 < 0 which
is the so called competitive structure for system (4), we quote the papers [9, 17, 19].
The semilinear case in (1) (i.e. p = q = 2) was examined in [6, 12, 20] where the
linearity of the principal part is essentially used. It is worth pointing out that in the
aforementioned works, singular problem (4) was examined only under the sublinear
condition max{α1,β1} < p− 1 and max{α2,β2} < q− 1. The assumptions imposed
therein, especially in [19], are not satisfied for our system (1) under hypothesis (3).
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Our main concern is the question of existence of a (positive) smooth solution for
a singular system a class of elliptic systems where the nonlinearities besides a singular
terms have superlinear terms. The main result is formulated in the next theorem.

THEOREM 1. Assume (2) and (3) hold. Then system (1) has a (positive) solution
(u,v) in (W 1,p

0 (Ω)∩C1,γ
0 (Ω))× (W 1,q

0 (Ω)∩C1,γ
0 (Ω)) for some γ ∈ (0,1) .

The proof of Theorem 1 is done in section 3. The main technical difficulty con-
sists in the presence of singular terms in system (1) that can occur under hypothesis (2).
This difficulty is heightened by the superlinear character of (1) that arise from (3). Our
approach is chiefly based on Theorem 2 proved in Section 2 via Schauder’s fixed point
theorem (see [22]) and adequate truncations. This is a version of the sub-supersolution
method for quasilinear singular elliptic systems with cooperative structure. We mention
that in Theorem 2 no sign condition is required on the right-hand side nonlinearities and
so it can be used for large classes of quasilinear singular problems. A significant feature
of our result lies in the obtaining of the sub- and supersolution. Due to the superlinear
character of the nonlinearities in (1), the latter cannot be constructed easily. At this
point, the choice of suitable functions with an adjustment of adequate constants is cru-
cial. Here we emphasize that the obtained sub- and supersolution are quite different
from functions considered in the aforementioned papers, especially those constructed
in [19].

This article is organized as follows. In section 2 we state and prove a general
theorem about sub and supersolution method for singular systems. Section 3 contains
the proof of Theorem 1.

2. Sub and supersolution theorem

Given 1 < p < +∞ , the spaces Lp(Ω) and W 1,p
0 (Ω) are endowed with the usual

norms

‖u‖p =
(∫

Ω
|u|pdx

)1/p
and ‖u‖1,p =

(∫
Ω
|∇u|pdx

)1/p
,

respectively. In the sequel, corresponding to 1 < p < +∞ , we denote p′ = p
p−1 . We

will also use the spaces C(Ω) and

C1,γ
0 (Ω) = {u ∈C1,γ(Ω) : u = 0 on ∂Ω}

with γ ∈ (0,1) . We denote by λ1,p and λ1,q the first eigenvalue of −Δp on W 1,p
0 (Ω)

and of −Δq on W 1,q
0 (Ω) , respectively. Let φ1,p be the normalized positive eigenfunc-

tion of −Δp corresponding to λ1,p , that is

−Δpφ1,p = λ1,pφ p−1
1,p in Ω, φ1,p = 0 on ∂Ω, ‖φ1‖p = 1

Similarly, let φ1,q be the normalized positive eigenfunction of −Δq corresponding to
λ1,q , that is

−Δqφ1,q = λ1,qφq−1
1,q in Ω, φ1,q = 0 on ∂Ω, ‖φ2‖q = 1.
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For later use we set

R = max

{
max

Ω
φ1,p,max

Ω
φ1,q

}
. (5)

We denote by d(x) the distance from a point x ∈ Ω to the boundary ∂Ω , where Ω =
Ω∪∂Ω is the closure of Ω ⊂ R

N . It is known that we can find a constant l > 0 such
that

φ1,p(x),φ1,q(x) � ld(x) for all x ∈ Ω, (6)

where d(x) := dist(x,∂Ω) (see, e.g., [10, page 121]).
Let us introduce the problem⎧⎪⎪⎨⎪⎪⎩

−Δpu = f (x,u,v) in Ω,
−Δqv = g(x,u,v) in Ω,
u,v > 0 in Ω,
u,v = 0 on ∂Ω,

(7)

where Ω is a bounded domain in R
N (N � 2) with smooth boundary, 1 < p,q <

∞ and f ,g : Ω× (0,+∞)× (0,+∞) → R are continuous functions which can exhibit
singularities when the variables u and v approach zero. We consider system (7) with
cooperative structure assuming that for u (resp. v) fixed the nonlinearity f (resp. g )
is increasing in v (resp. u ). This makes the sub-supersolution techniques applicable
for (7). For systems without cooperative structure, i.e. competitive systems, additional
assumptions are required (see [9]).

We recall that a sub-supersolution for (7) is any pair (u,v) , (u,v) ∈ (W 1,p
0 (Ω)∩

L∞(Ω))× (W 1,q
0 (Ω)∩L∞(Ω)) for which there hold (u,v) � (u,v) in Ω ,∫

Ω
|∇u|p−2 ∇u∇ϕ dx−

∫
Ω

f (x,u,ω2)ϕ dx

+
∫

Ω
|∇v|q−2 ∇v∇ψ dx−

∫
Ω

g(x,ω1,v)ψ dx � 0,

∫
Ω
|∇u|p−2 ∇u∇ϕ dx−

∫
Ω

f (x,u,ω2)ϕ dx

+
∫

Ω
|∇v|q−2 ∇v∇ψ −

∫
Ω

g(x,ω1,v)ψ dx � 0,

for all (ϕ ,ψ) ∈W 1,p
0 (Ω)×W 1,q

0 (Ω) with ϕ ,ψ � 0 a.e. in Ω and for all (ω1,ω2) ∈
W 1,p

0 (Ω)×W1,q
0 (Ω) satisfying u � ω1 � u and v � ω2 � v a.e. in Ω (see [4, p. 269]).

The main goal in this section is to prove Theorem 2 below, which is a key point in the
proof of Theorem 1.

THEOREM 2. Let (u,v) , (u,v) ∈ C1(Ω)×C1(Ω) be a sub and supersolution
pairs of (7) and suppose there exist constants k1,k2 > 0 and −1 < α,β < 0 such
that

| f (x,u,v)| � k1d(x)α and |g(x,u,v)| � k2d(x)β in Ω× [u,u]× [v,v]. (8)
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Then system (7) has a positive solution (u,v) in (W 1,p
0 (Ω)∩C1,γ

0 (Ω))× (W 1,q
0 (Ω)∩

C1,γ
0 (Ω)) for certain γ ∈ (0,1).

Proof. For each (z1,z2) ∈ C(Ω)×C(Ω), let (u,v) ∈ W 1,p
0 (Ω)×W 1,q

0 (Ω) be the
unique solution of the problem⎧⎨⎩−Δpu = f̃ (x,z1,z2) in Ω,

−Δqv = g̃(x,z1,z2) in Ω,
u,v = 0 on ∂Ω,

(9)

where
f̃ (x,z1,z2) = f (x, z̃1, z̃2) and g̃(x,z1,z2) = g(x, z̃1, z̃2) (10)

with
z̃1 = min(max(z1,u),u) and z̃2 = min(max(z2,v),v). (11)

On account of (11) it follows that u � z̃1 � u and v � z̃2 � v . Then, bearing in mind
(8) we have∣∣∣ f̃ (x,z1,z2)

∣∣∣ � k1d(x)α and |g̃(x,z1,z2)| � k2d(x)β for a.e. x ∈ Ω. (12)

We point out that the estimates (12) enable us to deduce that

f̃ (x,z1,z2) ∈W−1,p′(Ω) and g̃(x,z1,z2) ∈W−1,q′(Ω).

This is a consequence of Hardy-Sobolev inequality (see, e.g., [1, Lemma 2.3]), that can
be applied since the exponents α,β ∈ (−1,0) . Then the unique solvability of (u,v) in
(9) is readily derived from Minty-Browder Theorem (see, e.g., [3]).

Let us introduce the operator

T : C(Ω)×C(Ω) →C(Ω)×C(Ω)
(z1,z2) 	→ (u,v).

We note from (9) that any fixed point of T coincides with the weak solution of (7).
Consequently, to achieve the desired conclusion it suffices to prove that T has a fixed
point. To this end we apply Schauder’s fixed point theorem. Using (12) with α,β ∈
(−1,0) , there exists γ ∈ (0,1) such that

(u,v) ∈C1,γ
0 (Ω)×C1,γ

0 (Ω) and ‖u‖
C1,γ

0 (Ω) , ‖u‖C1,γ
0 (Ω) � C,

where C > 0 is independent of u and v (see [11, Lemma 3.1]). Then the compactness of
the embedding C1,γ

0 (Ω) ⊂C(Ω) implies that T (C(Ω)×C(Ω)) is a relatively compact
subset of C(Ω)×C(Ω) .

Next, we show that T is continuous with respect to the topology of C(Ω)×C(Ω) .
Let (z1,n,z2,n) → (z1,z2) in C(Ω)×C(Ω) for all n . Denote (un,vn) = T (z1,n,z2,n) ,
which reads as ∫

Ω |∇un|p−2 ∇un∇ϕ =
∫

Ω f̃ (x,z1,n,z2,n)ϕ dx (13)
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and ∫
Ω |∇vn|q−2 ∇vn∇ψ =

∫
Ω g̃(x,z1,n,z2,n)ψ dx (14)

for all (ϕ ,ψ)∈W 1,p
0 (Ω)×W1,q

0 (Ω) . Inserting (ϕ ,ψ) = (un,vn) in (13) and (14), using
(8) we get

‖un‖1,p =
∫

Ω
f̃ (x,z1,n,z2,n)un dx �

∫
Ω

dαundx (15)

and
‖vn‖1,q =

∫
Ω

g̃(x,z1,n,z2,n)vn dx �
∫

Ω
dβ vndx. (16)

Since −1 < α,β < 0, by virtue of the Hardy-Sobolev inequality (see, e.g., [1]), the last
integrals in (15) and (16) are finite which in turn imply that {un} and {vn} are bounded
in W 1,p

0 (Ω) and W 1,q
0 (Ω), respectively. So, passing to relabeled subsequences, we can

write the weak convergence in W 1,p
0 (Ω)×W1,q

0 (Ω)

(un,vn) ⇀ (u,v) (17)

for some (u,v) ∈W 1,p
0 (Ω)×W1,q

0 (Ω) . Setting ϕ = un − u in (13) and ψ = vn − v in
(14), we find that∫

Ω |∇un|p−2 ∇un∇(un −u) =
∫

Ω f̃ (x,z1,n,z2,n)(un−u) dx

and ∫
Ω |∇vn|p−2 ∇vn∇(vn− v) =

∫
Ω g̃(x,z1,n,z2,n)(vn− v) dx.

Lebesgue’s dominated convergence theorem ensures that

lim
n→∞

〈−Δpun,un−u
〉

= lim
n→∞

〈−Δqvn,vn − v
〉

= 0.

The S+ -property of −Δp on W 1,p
0 (Ω) and of −Δq on W 1,q

0 (Ω) (see, e.g. [16, Propo-
sition 3.5]), along with (17), implies

un → u in W 1,p
0 (Ω) and vn → v in W 1,q

0 (Ω).

Then, through (13), (14) and the invariance of C(Ω)×C(Ω) by T , we infer that
(u,v) = T (z1,z2) . On the other hand, from (13) and (14) we know that the sequence
{(un,vn)} is bounded in C1,γ

0 (Ω)×C1,γ
0 (Ω) for certain γ ∈ (0,1) . Since the embedding

C1,γ
0 (Ω)⊂C(Ω) is compact, along a relabeled subsequence there holds (un,vn)→ (u,v)

in C(Ω)×C(Ω) . We conclude that T is continuous.
We are thus in a position to apply Schauder’s fixed point theorem to the map T ,

which establishes the existence of (u,v) ∈C(Ω)×C(Ω) satisfying (u,v) = T (u,v).
Let us justify that

u � u � u and v � v � v in Ω.

Put ζ = (u−u)+ and suppose ζ 
= 0. Then, bearing in mind that system (7) is cooper-
ative, from (11), (9) and (10), we infer that∫

{u<u}
|∇u|p−2∇u∇ζdx =

∫
Ω
|∇u|p−2∇u∇ζ dx
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=
∫
{u<u}

f̃ (x,u,v)ζ dx =
∫
{u<u}

f (x, ũ, ṽ)ζdx

=
∫
{u<u}

f (x,u, ṽ)ζ dx �
∫
{u<u}

|∇u|p−2∇u∇ζ dx.

This implies that ∫
{u<u}

(|∇u|p−2∇u−|∇u|p−2∇u)∇ζ dx � 0,

a contradiction. Hence u � u in Ω . A quite similar argument provides that v � v in
Ω . In the same way, we prove that u � u and v � v in Ω .

Finally, thanks to [11, Lemma 3.1] one has (u,v) ∈ C1,γ
0 (Ω)×C1,γ

0 (Ω) for some
γ ∈ (0,1) . This completes the proof.

3. Proof of the main result

This section is devoted to the proof of Theorem 1. It relies on sub-supersolution
techniques shown by Theorem 2.

Let y1 and y2 be the unique solutions of the problems⎧⎨⎩
−Δpy1 = yα1

1 in Ω
y1 > 0 in Ω
y1 = 0 on ∂Ω

and

⎧⎨⎩−Δqy2 = yβ2
2 in Ω

y2 > 0 in Ω
y2 = 0 on ∂Ω,

(18)

respectively, which are known to satisfy

c1φ1,p(x) � y1(x) � c2φ1,p(x) and c3φ1,q(x) � y2(x) � c4φ1,q(x), (19)

with constants c2 � c1 > 0 and c4 � c3 > 0 (see Lemma 3.1, Theorem B.1 and the
proof of Lemma A.7 in [10]). For δ > 0 sufficiently small we denote

Ωδ = {x ∈ Ω : dist (x,∂Ω) < δ}
and μ = μ(δ ) > 0 a constant such that

φ1,p (x) ,φ1,q (x) � μ in Ω\Ωδ . (20)

Let u and v satisfy

−Δpu(x) = C

{
yα1
1 (x) if x ∈ Ω\Ωδ
−yα1

1 (x) if x ∈ Ωδ
, u = 0 on ∂Ω (21)

and

−Δqv(x) = C

{
yβ2
2 (x) if x ∈ Ω\Ωδ
−yβ2

2 (x) if x ∈ Ωδ
, v = 0 on ∂Ω, (22)

with a constant C > 1 to be chosen later on. The Hardy-Sobolev inequality (see e.g. [1])
guarantees that the right hand side of (21) and (22) are in W−1,p′(Ω) and W−1,q′(Ω) ,
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respectively. This allows to apply the Minty-Browder theorem (see [3, Theorem V.15])
to deduce the existence of unique solutions u and v for problems (21) and (22), respec-
tively. Moreover, (18), (19), (21), (22) and the monotonicity of the operators −Δp and
−Δq together with [11, Corollary 3.1] imply that⎧⎨⎩

c1
2 C

1
p−1 φ1,p(x) � u(x) � c2C

1
p−1 φ1,p(x),

c3
2 C

1
q−1 φ1,q(x) � v(x) � c4C

1
q−1 φ1,q(x) in Ω.

(23)

For λ � 0, the positivity of u,v,y1,y2 and C enable us to have

−Cyα1
1 −λuα1 � 0 � vβ1 in Ωδ (24)

and
−Cyβ2

2 −λvβ2 � 0 � uα2 in Ωδ . (25)

For λ < 0, (19), (23) and (2) imply

−Cyα1
1 −λuα1 � (−Ccα1

2 −λ ( c1
2 C

1
p−1 )α1)φα1

1,p � 0 � vβ1 in Ωδ (26)

and
−Cyβ2

2 −λvβ2 �
(
−Cq−1cβ2

4 −λ ( c3
2 C

1
q−1 )β2

)
φβ2

1,q � 0 � uα2 in Ωδ , (27)

provided that C is sufficiently large. Now we deal with the corresponding estimates on
Ω\Ωδ . If λ � 0, we get from (19), (23), (20), (6) and (2) that

(Cyα1
1 −λuα1)v−β1 � Cyα1

1 v−β1 � C1− β1
q−1 cα1

1 (
c3

2
l)−β1φα1−β1

1,p

� C1− β1
q−1 cα1

1 (
c3

2
l)−β1 μα1−β1 � 1 in Ω\Ωδ (28)

and

(Cyβ2
2 −λvβ2)u−α2 � Cyβ2

2 u−α2 � C1− α2
p−1 cβ2

3 (
c1
2

l)−α2φβ2−α2
1,q

� C1− α2
p−1 cβ2

3 (
c1
2

l)−α2 μβ2−α2 � 1 in Ω\Ωδ , (29)

provided that C is sufficiently large. For λ < 0, (19), (23), (20), (6) and (2) imply

(Cyα1
1 −λuα1)v−β1 �

(
Ccα1

1 −λC
α1
p−1 (

c1

2
)α1

)
C− β1

q−1 (
c3

2
l)−β1φα1−β1

1,p

= C1− β1
q−1 cα1

1

(
1−λC

α1
p−1−12−α1

)
(
c3

2
l)−β1φα1−β1

1,p

� C1− β1
q−1 cα1

1

(
1−λ2−α1

)
(
c3

2
l)−β1 μα1−β1 � 1 in Ω\Ωδ

and

(Cyβ2
2 −λvβ2)u−α2 �

(
Ccβ2

3 −λC
β2
q−1 (

c3

2
)β2

)
C− α2

p−1 (
c1

2
l)−α2φβ2−α2

1,q
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=C1− α2
p−1 cβ2

3

(
1−λC

β2
q−1−12−β2

)
(
c1

2
l)−α2φβ2−α2

1,q

� C1− α2
p−1 cβ2

3

(
1−λ2−β2

)
(
c1

2
l)−α2 μβ2−α2 � 1 in Ω\Ωδ ,

provided that C is sufficiently large. This is equivalent to

Cyα1
1 � λuα1 + vβ1 in Ω\Ωδ (30)

and
Cyβ2

2 � uα2 + λvβ2 in Ω\Ωδ , (31)

for all λ ∈ R.
Due to the definition of u and v (see (21) and (22)) we actually have∫

Ω |∇u|p−2 ∇u∇ϕ dx =
∫

Ω\Ωδ
Cyα1

1 ϕ dx− ∫
Ωδ

Cyα1
1 ϕ dx (32)

and ∫
Ω |∇v|q−2 ∇v∇ψ dx =

∫
Ω\Ωδ

Cyβ2
2 ψ dx− ∫

Ωδ
Cyβ2

2 ψ dx, (33)

where (ϕ ,ψ) ∈W 1,p
0 (Ω)×W 1,q

0 (Ω) with ϕ ,ψ � 0. Then combining (24)-(27), (30),
(31) with (32), (33), it is readily seen that∫

Ω |∇u|p−2 ∇u∇ϕ dx �
∫

Ω(λuα1 + vβ1)ϕ dx

and ∫
Ω |∇v|q−2 ∇v∇ψ dx �

∫
Ω(uα2 + λvβ2)ψ dx,

for all (ϕ ,ψ)∈W 1,p
0 (Ω)×W 1,q

0 (Ω) with ϕ ,ψ � 0, showing that (u,v) is a subsolution
of problem (1).

Next, we construct a supersolution part for problem (1). To this end, let Ω̃ be
a bounded domain in R

N with C1,α boundary ∂Ω̃ , α ∈ (0,1) , such that Ω ⊂ Ω̃.

We denote by λ̃1,p and λ̃1,q the first eigenvalue of −Δp on W 1,p
0 (Ω̃) and of −Δq

on W 1,q
0 (Ω̃) , respectively. Let φ̃1,p be the normalized positive eigenfunction of −Δp

corresponding to λ̃1,p , that is

−Δpφ̃1,p = λ̃1,pφ̃ p−1
1,p in Ω̃, φ̃1,p = 0 on ∂Ω̃.

Similarly, let φ̃1,q be the normalized positive eigenfunction of −Δq corresponding to

λ̃1,q , that is

−Δqφ̃1,q = λ̃1,qφ̃q−1
1,q in Ω, φ̃1,q = 0 on ∂Ω̃.

By the definition of Ω̃ and the strong maximum principle, there exists a constant ρ > 0
sufficiently small such that

φ̃1,p (x) , φ̃1,q (x) > ρ in Ω. (34)
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Without lost of generality we assume that

R = max

{
max

Ω
φ̃1,p,max

Ω
φ̃1,q

}
. (35)

Let ξ1,ξ2 ∈C1
(

Ω̃
)

be the solutions of the homogeneous Dirichlet problems:{
−Δpξ1 = Cδ (p−1)ξ θ1

1 in Ω̃
ξ1 = 0 on Ω̃

,

{
−Δqξ2 = Cδ (q−1)ξ θ2

2 in Ω̃
ξ2 = 0 on Ω̃,

(36)

with constants δ , θ1 and θ2 satisfying

θ1 ∈ (α1,0), θ2 ∈ (β2,0) and δ < min{ 1
θ1

, 1
θ2
} < 0. (37)

Functions ξ1 and ξ2 verifying

Cδ c0φ̃1,p � ξ1 � Cδ cφ̃1,p and Cδ c′0φ̃1,q � ξ2 � Cδ c′φ̃1,q, (38)

for some positive constants c0,c′0,c and c′ (see [10]). Set

(u,v) = C−δ (ξ1,ξ2). (39)

Then we have (u,v) � (u,v) in Ω . Indeed, on the one hand, through (21), (22) and
(36), one has

−Δpu � −Δpu and −Δpv � −Δpv in Ωδ .

On the other hand, on the basis of (21), (22), (36), (38), (19), (20), (35), (37) and for C
large enough, we achieve

−Δpu = C−δ (p−1)Cδ (p−1)ξ θ1
1 = ξ θ1

1 � Cδθ1(cφ̃1,p)θ1

� Cδθ1(cR)θ1 � C(c1μ)α1

� C(c1φ1,p)α1 = Cyα1
1 = −Δpu in Ω\Ωδ ,

and

−Δqv = C−δ (q−1)Cδ (q−1)ξ θ2
2 = ξ θ2

2 � Cδθ2(c′φ1,q)θ2

� Cδθ2(c′R)θ2 � C(c3μ)β2

� C(c3φ1,q)β2 � Cyβ2
2 = −Δqv in Ω\Ωδ .

Then the monotonicity of the operators −Δp and −Δq leads to the conclusion.
Now, taking into account (37), (38), (35), (34) and (2), for all λ ∈ R , we derive

that in Ω one has⎧⎨⎩ξ θ1
1 � Cδθ1(cφ1,p)θ1 � Cδθ1(cR)θ1 � λ (c0ρ)α1 +(c′R)β1

λ (c0φ̃1,p)α1 +(c′φ̃1,q)β1 � λ (C−δ ξ1)α1 +(C−δ ξ2)β1 = λuα1 + vβ1 in Ω
(40)
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and⎧⎨⎩ξ θ2
2 � Cδθ2(c′φ1,q)θ2 � Cδθ2(c′R)θ2 � λ (cR)α2 +(c′0ρ)β1

λ (cφ̃1,p)α1 +(c′0φ̃1,q)β1 � λ (C−δ ξ1)α1 +(C−δ ξ2)β1 = λuα1 + vβ1 in Ω
(41)

provided that C is sufficiently large. Consequently, it turns out from (36), (40) and (41)
that ∫

Ω |∇u|p−2 ∇u∇ϕ dx =
∫

Ω ξ θ1
1 ϕ �

∫
Ω(λuα1 + vβ1)ϕ dx

and ∫
Ω |∇v|q−2 ∇v∇ψ dx =

∫
Ω ξ θ2

2 ψ �
∫

Ω
(
uα2 + λvβ2

)
ψ dx,

for all (ϕ ,ψ) ∈W 1,p
0 (Ω)×W1,q

0 (Ω) . This proves that the pair (u,v) is a supersolution
for problem (1).

Finally, owing to Theorem 2 problem (1) has a positive solution (u,v)∈C1,γ
0 (Ω)×

C1,γ
0 (Ω) , for certain γ ∈ (0,1) , within [u,u]× [v,v] . This completes the proof.
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[3] H. BRÉZIS, Analyse fonctionnelle, theorie et applications, Masson, Paris, 1983.
[4] S. CARL, V. K. LE, D. MOTREANU, Nonsmooth variational problems and their inequalities. Com-

paraison principles and applications, Springer, New York, 2007.
[5] S. EL MANOUNI, K. PERERA, R. SHIVAJI, On singular quasimonotone (p,q)-Laplacian systems,

Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 585–594.
[6] M. GHERGU, Lane-Emden systems with negative exponents, J. Functional Anal., 258 (2010), 3295–

3318.
[7] M. GHERGU, Lane-Emden systems with singular data, Proc. Royal Society of Edinburgh: Section A

(Math.) 141 (2011), 1279–1294.
[8] J. GIACOMONI, J. HERNANDEZ, A. MOUSSAOUI,Quasilinear and singular systems: the cooperative

case, Contemporary Math., Amer. Math. Soc., Providence, R.I., 540 (2011), 79–94.
[9] J. GIACOMONI, J. HERNANDEZ, P. SAUVY, Quasilinear and singular elliptic systems, Adv. Nonl.

Anal., 2 (2013), 1–41.
[10] J. GIACOMONI, I. SCHINDLER, P. TAKAC, Sobolev versus Hölder local minimizers and existence
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