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EXACT TRAVELING WAVES SOLUTIONS FOR

LONG WAVES AND BLOW–UP PHENOMENA
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(Communicated by Mervan Pašić)

Abstract. In this work we find exact traveling waves solutions to the fifth-order KDV-BBM
type model that appear to describe the propagation of long waves in shallow water. We study
the possibility of blow-up phenomenon of the fifth-order KDV-BBM type model under certain
restrictions on the coefficients. Moreover, by applying the Ince transformation we also establish
exact traveling waves solutions to the nonlinear evolution equation Benney-Lin type.

1. Introduction

In this work we will consider the fifth order BBM-KdV type equation

ηt + ηx− 1
6

ηxxt + δ1ηxxxxt + δ2ηxxxxx +
3
4
(η2)x + γ(η2)xxx − 1

12
(η2

x )x − 1
4
(η3)x = 0,

(1.1)
where η = η(x, t) is a real-valued function, and δ1 > 0, δ2,γ ∈ R . This model was
recently introduced by Bona et al [7] to describe the unidirectional propagation of water
waves. It was formally obtained as a second order approximation from the higher order
generalized Boussinesq system derived by Bona et al [10], which describes the two-way
propagation of water waves. The authors in [10] derived a first-order and second-order
correct Boussinesq systems from the the original Euler equations using respectively the
first and second order approximations.

In particular, to obtain an approximate one-way model, in the Boussinesq regime,
one generally uses a relation

ux = −ut +O(a,b) as a,b → 0, (1.2)

where a,b are small parameters related to small amplitude and long wavelength (see
references [10, 11]). For instance, if A is a typical amplitude of the wave in the channel
with constant depth h and l is a typical wavelengh, the conditions of the models are
a = A

h , b = h2/l2 , and then the Stokes number S will be S = a/b ≈ 1.
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In fact, using this sort of argument Korteweg-de Vries (KdV) and Benjamin-Bona-
Mahony (BBM) equations are derived from the Boussinesq system correct to first order
(see for example [6, 3] and references therein). However, if one uses the relation (1.2)
to obtain one-way model like the one in (1.1) from the Boussinesq system correct to
second order, there is some loss of information coming from the interacting terms, be-
cause that could be not so small. Consequently the resulting equation does not have a
correct dispersion relation. Taking this into consideration, a correction term is intro-
duced in [7] to obtain the fifth order mathematical model (1.1) describing long waves
propagating mainly in one direction. For the detailed explanation about derivation and
well-posedness theory of this model we refer to [7]. In particular the authors prove the
following local well-posedness result to the IVP associated to (1.1).

THEOREM 1. ([7]) Assume δ1 > 0 . For any s � 1 and for given η0 ∈ Hs(R) ,
there exist a time T = T (‖η0‖Hs) and a unique solution η ∈ C([0,T ];Hs) to the IVP
for (1.1) that depends continuously to the initial data.

Also, they prove the following global well-posedness result with more regularity
assumptions on the data and a further restriction on the coefficients appearing in the
equation.

THEOREM 2. ([7]) Assume δ1 > 0 . Let s � 3/2 and γ = 1/12 . Then the solution
to the IVP associated to (1.1) given by Theorem 1 can be extended to arbitrarily large
time intervals [0,T ] . Hence the problem is globally well posed in this case.

Finally we consider an equation of Benney-Lin type, that is,

ut + λ1 uxxxxx + λ2 uxxxx +uxxx + λ3 uxx +uux = 0, (1.3)

where x ∈ R, t > 0. u = u(x, t) is a unknown real-valued function. λ j ∈ R j = 1,2,3
are constant to be defined. When λ2 = λ3 �= 0, the above equation is known as Benney-
Lin equation and was derived from fluid mechanics by Benney [4] and Lin [22] (see
also [31]). Indeed, we have

ut + λ1 uxxxxx + λ2 (uxxxx +uxx)+uxxx +uux = 0, x ∈ R, t > 0, (1.4)

where u = u(x, t) is a unknown real-valued function, λ1 ∈ R and λ2 > 0. It describes
the propagation of one-dimensional small but finite amplitude long waves in certain
problems in fluids dynamics. An important feature of this model is that it includes both
conservative dispersive effects and nonconservative dissipative ones represented by the
terms λ1 uxxxxx +uxxx and uxxxx +uxx, respectively. (1.3) can also be regarded as an hy-
brid of the well-known Kawahara equation (λ2 = λ3 = 0) and the derivative Korteweg-
de Vries-Kuramoto-Sivashinsky(KdV-KS) equation (λ1 = 0 and λ2 = λ3 �= 0). In-
tegrable systems, both classical and quantum, are a fascinating subject. Decades of
research in this area have led to mathematical developments which are quite beautiful.
However, not all systems posed in physics are integrable (ref. [20]), for instance, the
Korteweg-de Vries-Burgers equation. Therefore the direct methods to solve nonlinear
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systems appear to be more powerful and important. In this paper we will propose an
exact solution to a general equation of Benney-Lin type (1.3).

Other fifth order long wave models that describe the unidirectional propagation are
also available in the literature, see for instance [16], [19], [21], [26], [28] and references
therein. Most of these models are derived as a second-order approximation from Euler
equations in the so-called Boussinesq regime. A well known fifth order such model is
the so called Kawahara equation (see [5] and references therein). We note that very few
fifth order models, as far as we know, have Hamiltonian structure and global solutions,
see for example [28] and [19] and references therein.

2. Exact traveling waves solutions for the fifth order BBM-KdV type equation

In this section we will prove the following theorem

THEOREM 3. If γ = −1/30 and δ1 , δ2 satisfy the relation

9
(
388

√
1069−8269

)
δ1 − 25650δ2 = 190,

then a exact traveling wave solution of (1.1) is

η(x, t) =
1( √

3
2|k| + sinh(kx−ωt)− cosh(kx−ωt)

)2 + α, (2.1)

where the constants k , α and ω are given by (2.34), (2.35) and (2.36) respectively.

Proof. The solution η of the equation (1.1) is redefined by

η(x,t) = ϕ(ξ ) (2.2)

where
ξ = kx−ωt (2.3)

and k and ω being constants to be determined. Substituting into (1.1) we have

(δ2k− δ1ω)k4ϕ(5) +
k2ω
6

ϕ ′′′ + γk3(ϕ2)′′′

+(k−ω)ϕ ′+
3
4
k(ϕ2)′ − k3

12
[(ϕ ′)2]′ − k

4
(ϕ3)′ = 0. (2.4)

Now we integrate (2.4) to get

(δ2k− δ1ω)k4ϕ(4) +
k2ω
6

ϕ ′′ + γk3(ϕ2)′′ +(k−ω)ϕ +
3
4
kϕ2 − k3

12
(ϕ ′)2 − k

4
ϕ3 = ϑ ,

(2.5)
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where ϑ is a constant of integration. Notice that equation (2.5) can not be integrated
directly, in this case to be a solution of (2.5) will use the same ideas given in [24, 30],
the novelty in our work is in solve a system of ordinary differential equations of high
order, see the system (2.9)-(2.14). Indeed, we consider the Ince transformation method,
see [18]. Let

ϕ(ξ ) = r(eξ )e2ξ + α (2.6)

where α is a constant. Deriving the equation (2.6) and replace it results in equation
(2.5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(δ2k− δ1ω)k4{r(4)e6ξ +14r′′′e5ξ +55r′′e4ξ +65r′e3ξ +16re2ξ }
+

k2ω
6

{r′′e4ξ +5r′e3ξ +4re2ξ }
+γk3{2

(
rr′′ +(r′)2

)
e6ξ +18rr′e5ξ +2(αr′′ +8r2)e4ξ +10αr′e3ξ +8αre2ξ }

− k3

12
{(r′)2e6ξ +4rr′e5ξ +4r2e4ξ }+(k−ω){re2ξ + α }

+
3k
4
{r2e4ξ +2αre2ξ + α2}− k

4
{r3e6ξ +3r2αe4ξ + 3rα2e2ξ + α3} = ϑ .

(2.7)
Organizing conveniently equation (2.7), we arrive at the expression⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(δ2k− δ1ω)k4r(4) +2γk3rr′′ +(2γk3− k3

12
)(r′)2 − k

4
r3 }e6ξ

+{14(δ2k− δ1ω)k4r′′′ +(18γ − 1
3
)k3 rr′ }e5ξ

+{ [55(δ2k− δ1ω)k4 +
k2ω
6

+2αγk3]r′′ +[
3k
4

+16γk3− k3

3
− 3

4
kα]r2 }e4ξ

+{65(δ2k− δ1ω)k4 +
5
6
k2ω +10αγk3}r′ e3ξ

+{16(δ2k− δ1ω)k4 +
2
3
k2c+8αγk3 +(k−ω)+

3
2
kα − 3

4
kα2 }r e2ξ

+{α(k−ω)+
3
4
kα2 − k

4
α3 } = ϑ .

(2.8)
Considering ϑ �= 0 we conclude that

(δ2k− δ1ω)k4r(4) +2γk3(rr′)′ − k3

12
(r′)2− k

4
r3 = 0, (2.9)

14(δ2k− δ1ω)k4r′′′ +(18γk3− k3

3
)rr′ = 0, (2.10)[

55(δ2k− δ1ω)k4 +
k2ω
6

+2αγk3
]
r′′ +

[
3k
4

+16γk3− k3

3
− 3

4
kα

]
r2 = 0, (2.11)
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65(δ2k− δ1ω)k4 +

5
6
k2ω +10αγk3

]
r′ = 0, (2.12)

and [
16(δ2k− δ1ω)k4 +

2
3
k2ω +8αγk3 +(k−ω)+

3
2
kα − 3

4
kα2

]
r = 0, (2.13)

α(k−ω)+
3
4
kα2 −α3 k

4
= ϑ , (2.14)

where in the first equation was used that rr′′ +(r′)2 = (rr′)′ . In the next we will go to
find a solution to the six equations above.

In order to find the constant ω ,α,k,γ and the function r , firstly we proceeded to
compare the equations (2.9) and (2.10), and in this process we will need that r should
to satisfy the following equation

k3

12
(r′)2 +

k
4
r3 = 0. (2.15)

Note that (2.15) is equivalent with the following equation

k2r′2 +3r3 = 0,
(2.16)

differentiating we obtain
2k2r′ r′′ +9r2 r′ = 0,

and to r′ �= 0, this equation is equivalent with

2k2r′′ +9r2 = 0. (2.17)

In the equation (2.11), we have

A r′′ +Br2 = 0, (2.18)

where

A = 55X k4 +
k2ω
6

+2αγk3 �= 0 and B = 16γk3− k3

3
+

3
4
k(1−α) �= 0,

(2.19)
and X = δ2k− δ1ω .

In order to obtain equation (2.17) is equal to equation (2.18), we need that

A =
2
9
B k2. (2.20)

Observe that (2.16) and

γ = − 1
30

, (2.21)
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implies that r satisfies the differential equations (2.9) and (2.10) (see the exact traveling
wave solution of (2.16) in formula (2.42)).

Let C1 such that

C1 X k4 =
k2ω
6

+2αγk3, (2.22)

thus
A = (55+C1)X k4. (2.23)

Considering the equation (2.12) and the equation (2.22) we obtain

65X k4 +5

(
k2ω
6

+2αγk3
)

= 5(13+C1)X k4 = 0,

which implies
C1 = −13. (2.24)

And also from (2.23) that
A = 42X k4. (2.25)

Differentiating the equation (2.18) we arrive to

A r′′′ +2Brr′ = 0. (2.26)

So, the equations (2.10) and (2.26) are equal if we take B such that

B = −7
5
k3, (2.27)

combining (2.19), (2.21) and (2.27) it is easy to see that

α =
32
45

k2 +1, (2.28)

and combining (2.20), (2.25) and (2.27) gives

B = −7
5
k3 =

9A

2k2 = 189X k2, (2.29)

thus

X = − k
135

. (2.30)

Now (2.13), (2.22), (2.24) and (2.30) give

ω =
−16(− k

135)k
4 + 3

4 (α −2)kα + 4
15αk3 − k

2
3k2 −1

=
2
5
kα −78(− k

135
)k2. (2.31)

From (2.31) it is not hard to show that k satisfies

3(16k4−45α2 +66α +60) = 104k2, (2.32)
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and using (2.28) we can show that

38k4 +291k2 =
3645

8
, (2.33)

and from this equation we obtain the following solutions

k1 =
1
2

√
3
19

(
4
√

1069−97

)
≈ 1.1548, k2 = −k1. (2.34)

The function f (x) = 38x4 +291x2−3645/8 is shown in the Figure 1.

Figure 1: The graph of the function f (x) = 38x4 +291x2−3645/8.

Considering the value of k := k1 , the equality (2.28) gives

α =
32

√
1069−491
285

≈ 1.9483. (2.35)

From (2.31) we obtain

ω = k

(
194
225

k2 +
2
5

)
=

1
2

√
3
19

(
4
√

1069−97
)388

√
1069−8269
2850

≈ 1.78965.

(2.36)

Also from (2.30) and (2.36) we have

X = δ2 k− δ1 k

(
194
225

k2 +
2
5

)
= − k

135
(2.37)

consequently

δ2 − δ1
388

√
1069−8269
2850

= − 1
135

, (2.38)

or equivalently

δ1
388

√
1069−8269
190

=
1
9
(135δ2 +1).
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We will to find a solution to (2.16). First we make a change of variable s(x) =
−r(x) , then s is solution of

k2s′2 −3s3 = 0, (2.39)

or equivalently
|k|s′ =

√
3s3/2.

Now, let s(x) = v(x)2 , then v satisfies the following equation(
− 1

v

)′
=

v′

v2 =
√

3
2|k| , (2.40)

and integrating this equation we arrive to the solution

v(x) =
v(0)

1− k0v(0)x
, (2.41)

where k0 =
√

3
2|k| ≈ 0,74995, and as r(x) = −v(x)2 , we have

r(x) =
r(0)

(1− k0(−r(0))1/2 x)2
, (2.42)

we need that r(0) < 0. Considering r(0) =−1 and by (2.2), (2.6) and (2.42) we obtain
the following solution of (1.1)

η(x, t) = − e2(kx−ωt)

(1− k0ekx−ωt )2 + α

= − 1

(e−(kx−ωt) − k0)2
+ α

=
sech2(kx−ωt)(

1− tanh(kx−ωt)− k0sech(kx−ωt)
)2 + α.

�

REMARK 1. We have the following observations:

(i) In order to obtain the compatibility of the equations (2.9) and (2.10) using this
method, we obtain the unique value γ = −1/30. We do not know whether other meth-
ods given other values of γ to obtain exact traveling wave solution of (1.1).

(ii) If we define

C+
k =

{
1 if k > 0,

0 if k < 0,
and C−

k =

{
1 if k < 0,

0 if k > 0,
(2.43)

then

lim
x→±∞

η(x,t) = α − 4k2

3
C±

k . (2.44)
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3. Blow up phenomena

We start by recalling the concept of the blow-up solution. Let T be the maximal
time of existence of the solution η(x,t) . We say that the solution η has the blow-up
property in the space X if and only if

sup
t∈[0,T )

‖η(t)‖X = ∞.

We say that the solution η does not have blow-up property in the space X if

sup
t∈[0,T )

‖η(t)‖X < ∞.

The solution in (2.1) have singularity along the line

s(t) =
w
k

t− lnk0

k
, t � 0, (3.1)

where

w
k

=
388

√
1069−8269
2850

≈ 1.54978, − lnk0

k
= −

ln

(
19

4
√

1069−97

)
√

3
19

(
4
√

1069−97
) ≈ 0.2492.

Considering the approximate values of k , ω , k0 and α we draw the graphics of the
approximate solution

η(x,t) = 1.9483− e−3.5793 t

(e−1.1548x−0.74995e−1.78965 t)2 .

Figure 2: The graph of the approximate solution η(x,t) .

In Figure 2 we present the graphics of the approximate solution η(x,t) and in
Figure 3 we have the graph of the blow-up contour of η(x,t) . In figure 4 we have the
graphics of the function f (x) = η(x,1) , observe the blow-up in

s(1) =
w
k
− lnk0

k
≈ 1.79898.

In [15] was proved the following result. For the purpose of completing our paper
we present the proof here
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Figure 3: The graph of the blow-up contour of η(x,t) .

Figure 4: The graph of the approximate solution f (x) = η(x,1) with blow-up in s(1) .

THEOREM 4. Let T be the maximal time of existence of the solution η(x, t) to
the IVP (1.1). If δ1 > 0 and γ � 1/42 , then the corresponding solution blows-up in H4

if and only if

liminf
t→T− inf

x∈R

ηx(x,t) = −∞ or limsup
t→T−

sup
x∈R

|η(x,t)| = ∞. (3.2)

Proof. Suppose that

liminf
t→T− inf

x∈R

ηx(x,t) > −∞ and limsup
t→T−

sup
x∈R

|η(x,t)| < ∞. (3.3)

We will prove that, under this assumption, the solution to the IVP (1.1) does not blow-
up in H4 . In turn, this would show that, if the solution satisfies condition (3.2), it will
blow-up in finite time.

Note that, our assumption (3.3) implies that there are constants L1 > 0 and L2 > 0
such that for any x ∈ R and t ∈ [0,T ) , one has

ηx(x,t) � −L1 and |η(x,t)| � L2. (3.4)

Using the relation (η2)xxx = 2ηηxxx +6ηxηxx , we write the equation in the initial
value problem (1.1) in the following form

ηt + ηx− 1
6

ηxxt + δ1ηxxxxt + δ2ηxxxxx +
3
2

ηηx +2γηηxxx +Kγηxηxx − 3
4

η2ηx = 0,

(3.5)
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where Kγ = 6γ −1/6.

Multiplying (3.5) by Ψ(η) := η − 1
6 ηxx + δ1ηxxxx and integrating, we get

1
2

∂t

∫ [
η − 1

6
ηxx + δ1ηxxxx

]2
dx =−

∫
(ηx + δ2ηxxxxx)Ψ(η)dx− 3

2

∫
ηηxΨ(η)dx

−2γ
∫

ηηxxxΨ(η)dx−Kγ

∫
ηxηxxΨ(η)dx

+
3
4

∫
η2ηxΨ(η)dx

=:
5

∑
i=1

Ji.

(3.6)

We use integration by parts, to obtain

J1 = 0, (3.7)

J2 = −1
8

∫
ηx

(
ηx

)2
dx− 15

4
δ1

∫
ηx

(
ηxx

)2
dx, (3.8)

J3 = −2γ
∫

ηx
(
ηx

)2
dx− γ

6

∫
ηx

(
ηxx

)2
dx+ γδ1

∫
ηx

(
ηxxx

)2
dx, (3.9)

J4 =
Kγ

2

∫
ηx

(
ηx

)2
dx+

Kγ

6

∫
ηx

(
ηxx

)2
dx+Kγδ1

∫
ηx

(
ηxxx

)2
dx. (3.10)

Now, combining (3.6)-(3.10), we obtain

1
2

∂t

∫ [
η − 1

6
ηxx + δ1ηxxxx

]2
dx

=
(
− 1

8
+

Kγ

2
−2γ

)∫
ηx

(
ηx

)2
dx+

(
− 15δ1

4
+

Kγ

6
− γ

6

)∫
ηx

(
ηxx

)2
dx

+ δ1(Kγ + γ)
∫

ηx
(
η2)dx+

3
4

∫
η2ηxΨ(η)dx. (3.11)

Observe that

−Aγ :=
(
− 1

8
+

Kγ

2
−2γ

)
� 0 if and only if γ � 5

24
, (3.12)

−Aγ,δ1
:=

(
− 15δ1

4
+

Kγ

6
− γ

6

)
� 0 if and only if γ � 1

30
+

9
2

δ1, (3.13)

and

−Bγ := Kγ + γ � 0 if and only if γ � 1
42

. (3.14)

On the other hand the hypotheses (3.4) and inequalities (3.12)-(3.14) imply that



568 X. CARVAJAL, P. GAMBOA, O. VERA, Differ. Equ. Appl. 8, No. 4 (2016), 557–573.

1
2

∂t

∫
[η − 1

6
ηxx + δ1ηxxxx]2dx �AγL1

∫ (
ηx

)2
dx+Aγ,δ1

L1

∫ (
ηxx

)2
dx

+ δ1BγL1

∫ (
ηxxx

)2
dx+

3
4
L2

2

∫ ∣∣ηxΨ(η)
∣∣dx.

(3.15)

Let

X (t) := ‖Ψ(η)‖2
L2 =

∫ (
η− 1

6
ηxx +δ1ηxxxx

)2
dx =

∫ (
1+

1
6

ξ 2 +δ1ξ 4
)2|η̂(ξ )|2dξ .

Note that
X (t) ∼δ1

‖η‖2
H4 .

As |ξ |� 3(1+ξ 2/6) and |ξ |3 � 3(ξ 2/6)+ξ 4/2 = 3(ξ 2/6)+ 1
2δ1

(
δ1ξ 4

)
, one has that

∫ (
ηx

)2
dx � 9X (t),

∫ (
ηxx

)2
dx � 36X (t),

∫ (
ηxxx

)2
dx �

(
9+

1

4δ 2
1

)
X (t).

Also using Cauchy-Schwartz inequality, we have∫ ∣∣ηxΨ(η)
∣∣ � 3X (t).

Now, using these inequalities, one obtains from (3.15) that

1
2

∂tX (t) �K0X (t), (3.16)

where

K0 = 9AγL1 +36Aγ,δ1
L1 + δ1BγL1

(
9+

1

4δ 2
1

)
+

9
4
L2

2.

An application of the Gronwell’s inequality implies

X (t) � X (0)e2K0t ,

for any t ∈ [0,T ) and therefore

‖η(t)‖2
H4 � ‖η(0)‖2

H4e
2K0t .

From this last inequality, one can conclude the proof of the theorem. �

As our solution satisfies supx∈R |η(x,t)|= ∞ we concludes that η(x, t) have blow-
up in H4 .
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4. Exact traveling waves solutions for an equation of Benney-Lin type

The main result in this section is

THEOREM 5. An exact traveling wave solution of (1.3) is

u(x, t) = − 1(
Ck,λ1

+C3 cosh(kx−ωt)−C3 sinh(kx−ωt)
)4 + α1,

where

Ck,λ1
=

1
2k

(
1

105λ1

)1/4

and k,ω ,λ1,α1 are given in (4.6) and C3 is an integration constant.

Proof. Travelling wave solutions to (1.3) are sought by taking

u(x, t) = φ(ξ ) (4.1)

where

ξ = k x−wt (4.2)

and k and w are constants to be determined.
Substituting into (1.3) we have

−wφξ + λ1 k5 φξ ξ ξ ξ ξ + λ2 k4 φξ ξ ξ ξ + k3 φξ ξ ξ + λ3 k2 φξ ξ +
k
2

(φ2)ξ = 0.

Thus, integrating yields

− wφ +
k
2

φ2 + λ1 k5 φξ ξ ξ ξ + λ2k
4 φξ ξ ξ + k3 φξ ξ + λ3 k2 φξ =C, (4.3)

where C is the constant of integration and u(x, t) = φ(ξ ). Equation (4.3) cannot be
integrated directly, hence for to solve (4.3) we used the same idea given in [24, 30].
Indeed, we consider the Ince transformation method (ref. [18], pp. 333-334)

φ(ξ ) = r(eξ )e4ξ + α1 (4.4)

to reduce (4.3) to a directly integrable differential equation for r. Replacing (4.4) into
(4.3) and performing straightforward calculations we obtain that (where the first con-
stant of integration is taken to be C = 0)

λ1 k4 r′′′′ +
1
2

r2 = 0 ⇐⇒ r′′′′ =
−1

2λ1 k4 r2 (4.5)
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k =
−22
179λ2

, λ1 =
179
484

λ 2
2 , λ3 =

14036
32041λ2

,

α1 =
813120

5735339λ 2
2

and w =
−8944320

1026625681λ 3
2

.
(4.6)

By integration (ref. [29], pp. 644), the equation (4.5) reduce to

2r′ r′′′ − (r′′)2 =
−1

3λ1 k4 r3 +
4
3

C1 (4.7)

where C1 is an arbitrary constant. The substitution

z(r) = (r′)3/2 ⇐⇒ r′ξ = [z(r(ξ ))]2/3 (4.8)

leads to a second order equation

z′′r =
( −1

4λ1 k2 r3 +C2

)
z−5/3. (4.9)

With loss of generality, we consider the case C2 = 0 which correspond to the Emden-
Fowler equation. Then from (4.9) we obtain

z′′r =
−1

4λ1 k4 r3 z−5/3. (4.10)

Our goal is to get a real solution to equation (1.3). For this, let us consider the following
change of variable

r = −s and φ(s) = z(r). (4.11)

Replacing (4.11) into (4.10) we obtain

φ ′′
s =

1
4λ1 k4 s3 φ−5/3, (4.12)

where the solution is given by (ref. [17])

φ(s) =
(

16
105λ1 k4

)3/8

s15/8. (4.13)

Replacing (4.13) into (4.8) and taking in account (4.11) we obtain, after performing
straightforward calculations, that

r(eξ ) = −
[

1
2k

(
1

105λ1

)1/4

eξ +C3

]−4

(4.14)

satisfies (4.5). Combining (4.4) and (4.14) the resulting solutions for u is
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u(x, t) = −[
Ck,λ1

ekx−wt +C3
]−4

e4kx−4wt + α1,

= − 1[
Ck,λ1

+C3 e−(kx−wt)
]4 + α1,

= − sech4(kx−ωt)
[C3−C3 tanh(kx−ωt)+Ck,λ1

sech(kx−ωt) ]4
+ α1

(4.15)

where

Ck,λ1
=

1
2k

(
1

105λ1

)1/4

and k, w, λ1 , α1 are given in (4.6) and C3 is an integration constant. �

REMARK 2. We have the following remarks:

(i) If we define

C+
k =

{
1, k > 0,

0, k < 0,
and C−

k =

{
1, k < 0,

0, k > 0,
(4.16)

then

lim
x→±∞

u(x,t) = α1 −
C±

k

C4
k,λ1

. (4.17)

From (4.15) we have

• If x →−∞, then C3 e−(κ x−wt) −→ 0 (κ < 0). Hence,

u(x, t) ≡ u− −→− 1

C4
k,λ1

+ α1. (4.18)

• If x → +∞, then C3 e−(κ x−wt) −→ ∞ (κ < 0). Hence,

u(x, t) ≡ u+ −→ α1. (4.19)

The function (u− �= u+ )

u(x, t) =

{
u−, x →−∞,

u+, x → +∞,

is called the shock wave connecting u− to u+ and w the corresponding shock speed.
Moreover, it satisfies the Rankine-Hugoniot relation

w =
κ
2

(u+−u−) (4.20)

(ii) When λ2 = 0 and λ3 = 0, the whole shock structure disappears. This is a direct
consequence of the very delicate balance needed between a solitary wave (Korteweg de
Vries Kawahara) and a shock wave (Benney-Lin) to form combined solution.
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