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Abstract. In this paper we provide sufficient conditions for the existence of solutions to nonlinear
boundary value problems. We do so by applying a general abstract strategy for solving nonlinear
equations with a linear component. We apply this to general systems by first isolating a linear
periodic system and using the general theory of periodic solutions to find conditions on the
additional nonlinear components to guarantee solutions.

1. Introduction

In this paper we study general nonlinear systems of differential equations with
boundary conditions. The goal is to provide sufficient conditions under which solutions
exist. We do so by applying an abstract strategy previously used by the authors. We
first consider the linear portion of the problem, together with periodic boundary condi-
tions, and then analyze the requirements on the remaining nonlinearities to guarantee a
solution.

In Section 2, we layout the basic strategy for proving the existence of solutions
to general nonlinearly perturbed equations. This strategy had been used previously in
the context of Sturm-Liouville problems [20, 19, 18]. This approach provides a type of
global inverse function theorem, which can be seen as extending results from [6, 5].

For a textbook study of multiple solutions to boundary value problems, see [11].
[22] studied similar boundary value problems to the present paper, but for multipoint
boundary conditions. [21] provided conditions for when nonlinear boundary value
problems, such as those considered here, can be reduced to finite-dimensional alter-
native problems. [17] used Galerkin’s method to study nonlinear boundary value prob-
lems. For nonlinear boundary value problems with linear, Stieltjes boundary condi-
tions, see [16]. [15] studied nonlinear two-point boundary value problems, and [14]
covered the analagous case for partial differential equations. For the case of second
order differential equations with three point boundary conditions, see [4]. For second
order equations with boundary conditions that can be represented as continuous lin-
ear functionals, see [24]. Elliptic boundary value problems were considered by [2].
Boundary value problems with nonlocal, integral boundary conditions were studied in
[3, 23, 13, 10]
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Related applications of fixed point theorems in the setting of fractional differen-
tial equations were dealt with in [1, 7]. [8] studied nonlinear Hammerstein integral
equations with applications to elliptical partial differential equations.

Section 2 gives the general abstract theory that will be applied in Section 4. Section
3 describes the necessary background and defines the spaces on which we work. Section
4 applies the general theory to the case of nonlinear systems of differential equations.
Section 5 shows how the previous results on Sturm-Liouville problems can be seen in
the present context, and Section 6 provides an example of the application of the main
theorem of the present paper to a more general problem. Finally, in Section 7, we
discuss alternative choices of normed spaces and how these choices would affect the
main results.

2. General strategy

In this section, we present a general strategy for proving the solvability of nonlin-
ear equations when there is a linear component that is well-understood. This formalizes
the abstract results from [20].

Our first lemma describes the form of the inverse for a linear operator with two
components under special conditions. For a linear operator, L , let the kernel be denoted
by Ker(L) = L−1

({0}) .

LEMMA 1. Let D,X , and Y be vector spaces. Assume L : D → Y and B : D →
Z are linear operators, and define L =

(
L
B

)
. If L �Ker(B) and B �Ker(L) are both

bijections, then

L −1(y,z) ≡
(

L
B

)−1

(y,z) =
(
L �Ker(B)

)−1(y)+
(
B �Ker(L)

)−1(z). (1)

Proof. It is clear that Ker(L ) = {0} , which shows that L is injective. Applying
L and B to the right hand side of (1) shows that it is surjective, and that this is the
inverse of L . �

The general strategy pursued herewithin can be summarized in the following the-
orem:

THEOREM 1. Let X be a Banach space, Y and Z be normed linear spaces, and
D⊆ X be a subspace. Assume L : D→Y and B : D→ Z are linear operators. Assume
F1 : X →Y and F2 : X → Z are Lipschitz continuous with constants K1 and K2 , respec-
tively. Assume L �Ker(B) and B �Ker(L) are both bijections, their inverses are bounded
linear operators, and

K∗ ≡ K1

∥∥∥∥(
L �Ker(B)

)−1
∥∥∥∥+K2

∥∥∥∥(
B �Ker(L)

)−1
∥∥∥∥ < 1.
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If F =
(

F1

F2

)
, then

L −F ≡
(

L
B

)
−

(
F1

F2

)

is invertible, and, in particular,
(
L −F

)−1
is Lipschitz with constant

K =
(
1−K∗)−1

max

{∥∥∥(
L �Ker(B)

)−1
∥∥∥,

∥∥∥(
B �Ker(L)

)−1
∥∥∥
}

.

If L −1 is compact, then so is
(
L −F

)−1
.

Furthermore, if G : X →Y ×Z is a compact operator that satisfies: ∃M ∈N , such

that for ‖x‖ � M, ‖G (x)‖ � K−1

(
M−∥∥(

L −F
)−1(0)

∥∥)
, then the equation,

L (x)−F (x) = G (x)

has a solution in D. If L −1 is compact, then G need only be continuous.

Proof. L ≡
(

L
B

)
is invertible, and its inverse is given by Lemma 1. From this,

it is clear that

∥∥L −1
∥∥ � max

{∥∥∥∥(
L �Ker(B)

)−1
∥∥∥∥,

∥∥∥∥(
B �Ker(L)

)−1
∥∥∥∥
}

.

We also have that

L −1F (x) =
(
L �Ker(B)

)−1
F1(x)+

(
B �Ker(L)

)−1
F2(x).

It is clear from this that L −1F is Lipschitz with constant K∗ . Since, by assumption,
K∗ < 1, this satisfies the conditions of [20, Lemma 1].

Define H ≡ (
L −F

)−1 ◦G . If both operators are continuous, and either is com-
pact, then H is compact. Let B = {z ∈ D|‖z‖ � M} . Then,
∥∥(

L −F
)−1

G (x)
∥∥ �

∥∥(
L −F

)−1
G (x)− (

L −F
)−1(0)

∥∥+
∥∥(

L −F
)−1(0)

∥∥
� KK−1(M−∥∥(

L −F
)−1(0)

∥∥)
+

∥∥(
L −F

)−1(0)
∥∥

� M.

Therefore, H(B)⊆B , and, since B is clearly closed, bounded, and convex, by Schauder
fixed point theorem, H has at least one fixed point. �

REMARK 1. If the operator, G , satisfies a sublinear growth condition, that is

‖G (x)‖ � a+b‖x‖ε,

for some a,b ∈ R and ε < 1, then the growth condition in the previous theorem is
automatically satisfied.
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The second part of the previous theorem can be extended in the case that the growth
condition is made stricter. The proof of the following can be found in [20, Corollary 2].

COROLLARY 1. Assume the conditions of Theorem 1, but assume that for some
δ > 0 , ∃M ∈ N , such that for ‖x‖ � M, ‖G (x)‖ � K−1

(
M−∥∥(

L −F
)−1(0)

∥∥)−δ .
Consider Gε ≡ G + εH , where H : X → Y is continuous, such that

sup
‖x‖�M

‖H (x)‖ = H < ∞.

Then for every ε � Kδ/H , there exists at least one point, x0 ∈ D, such that L (x0)+
F (x0) = Gε(x0) .

3. Preliminaries

We start by defining the spaces that we will consider. First, let C[0,1] be the set of
continuous functions from [0,1] into R

n , and let C1[0,1] be those that are continuously
differentiable. Let

C(1) =
{

f : [0,1]→ R
n| f (0) = f (1)

}
. (2)

C1(1) =
{

f : [0,1] → R
n| f (0) = f (1)

}
. (3)

Let ‖x‖∞ = supt∈[0,1] |x(t)| , where | · | is the usual Euclidean norm on R
n . Let

C =
(
C[0,1],‖ · ‖∞

)
. We will also consider the following norm on C1[0,1] :

‖x‖C1 = sup
t∈[0,1]

|x(t)|+ sup
t∈[0,1]

|x′(t)|.

Then let

C 1
1 =

(
C1[0,1],‖ · ‖∞

)
, and C 1 =

(
C1[0,1],‖ · ‖C1

)
.

Note that the ‖ ·‖∞ -completion of C1(1) is C(1) , and the ‖ ·‖∞ -completion of C1[0,1]
is C[0,1] .

4. Nonlinear systems

In this paper we consider systems of ordinary differential equations on [0,1] of
the form

ẋ(t)− f (x)(t) = g(x)(t) (4)

x(0)− x(1)−η(x) = φ(x), (5)

where η and φ are operators from C[0,1] into R
n and f and g are operators from

C[0,1] to C[0,1] . We look for solutions to (4) in C1[0,1] . We first shift the differential
operator by a constant matrix, so that

ẋ−Ax− ( f (x)−Ax) = g(x) (6)
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x(0)− x(1)−η(x) = φ(x), (7)

where A is a constant n×n matrix. Let |λ1| � . . . � |λJ| be the eigenvalues of A . We
assume that for j = 1, . . . ,J , λ j �= 2π ik for any k ∈ Z .

Let L,LA : C 1
1 ⊂ C → C be defined by Lz(t) = ż(t) and LAz(t) = ż(t)−Az(t) .

Now, let B : C 1
1 ⊂ C → R

n be defined by Bz = z(0)− z(1) , and consider the operators
L ,LA : C 1

1 ⊂ C → C ×R
n , where

L ≡
[

L
B

]
and LA ≡

[
LA

B

]
. (8)

Then we have the following:

LEMMA 2. Let h ∈C[0,1] have the Fourier series h(t) L2

= ∑∞
k=−∞ αke2π ikt for j =

1, . . . ,n. Then, LA �Ker(B): Ker(B) ⊂ C 1
1 → C is an invertible map, whose inverse is

given by
(

LA �−1
Ker(B)

)
h (t) =

∞

∑
k=−∞

(
2π ikI−A

)−1αke
2π ikt , (9)

where the convergence is uniform.

Proof. If h ∈ C[0,1] , h = LAz , with Fourier series, h(t) ∼ ∑k αke2π ikt . All solu-
tions to h = LAz are given by the variations of constants formula. With the restriction
that z(0) = z(1) , there is a unique solution for any h ∈C[0,1] obtained by solving for
the initial condition. Thus, LAz = h has a solution in C1(1) given by

z(t) = eAt(I− eA)−1
eA

∫ 1

0
e−Ash(s)ds+ eAt

∫ t

0
e−Ash(s)ds, (10)

which has a uniformly convergent Fourier series since it is a member of C1(1) . Let z be
in the domain of LA with Fourier series, ∑k βke2π ikt . It is well known that the Fourier
series of an absolutely continuous function can be differentiated termwise [9, 2.3.4].
Also, multiplication by a constant matrix can clearly be moved inside the infinite sum.
Therefore, the Fourier series (in the L2 sense) of LAz is given by

LAz(t) = ∑
k

(2π ikI−A)βke
2π ikt .

Equating coefficients, we see the given form for the inverse. �
The following lemma provides estimates that will help to bound the operator norm

of this inverse.

LEMMA 3.
∥∥∥∥(

LA �Ker(B)
)−1

h

∥∥∥∥
∞

�
(

∑
k

∥∥∥∥(
2π ikI−A

)−1
∥∥∥∥

2)1/2

‖h‖∞ ≡ a1‖h‖∞ (11)
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Proof. To show that ∑k

∥∥(
2π ikI−A

)−1∥∥2
is summable, note that

∥∥∥∥(
2π ikI−A

)−1
∥∥∥∥

2

= max
j

σ j

((
2π ikI−A

)−1
)2

,

where σ j is the jth singular value. Then we have

max
j

σ j

((
2π ikI−A

)−1
)

= min
j

σ j
(
2π ikI−A

)−1 �
(

min
j

σi(A)−2πk

)−1

.

The inequality comes from the fact [12, Theorem 3.3.16] that

σ j(2π ikI−A) � σ j(A)−2πk.

Now, for the inequality,∣∣∣∣∑
k

(2π ikI−A)−1αke
2π ikt

∣∣∣∣ � ∑
k

∥∥∥∥(
2π ikI−A

)−1
∥∥∥∥
∣∣αk

∣∣

� ∑
k

∥∥∥∥(
2π ikI−A

)−1
∥∥∥∥

2

∑
k

|αk|2

� ∑
k

∥∥∥∥(
2π ikI−A

)−1
∥∥∥∥

2

‖h‖2
∞.

LEMMA 4. It holds:((
B �Ker(L)

)−1

v
)
(t) = eAt(I− eA)−1

v. (12)

Proof. The kernel of LA is
{
eAtw|w ∈ R

n
}

. On this set, Bx = v if and only if

x(t) = eAt
(
I− eA

)−1
v . �

The following immediately follows from the form of the inverse.

LEMMA 5. It holds:∥∥∥∥
((

B �Ker(L)
)−1

v

)∥∥∥∥
∞

� sup
t∈[0,1]

∥∥∥∥eAt(I− eA)−1
∥∥∥∥‖v‖ ≡ a2‖v‖. (13)

We now consider the left-hand side nonlinearities. Since we have shifted the linear
portion by a constant matrix, we shift the nonlinear operator correspondingly. Define
F , FA , and G as

F ≡
[

f
η

]
,FA ≡

[
f −A

η

]
, and G ≡

[
g
φ

]
. (14)

The original problem, (4), can now be written as

L −F = LA −FA = G . (15)

The following provides conditions on FA so that L −F is invertible; it is a direct
consequence of Theorem 1.
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THEOREM 2. Assume that f −A and η are Lipschitz continuous, with constants
K1 and K2 , respectively.

Let FA : C → C ×R
2 and LA : C 1

1 ⊂ C → C , as above. If

K∗ = a1K1 +a2K2 < 1,

Then for any h ∈ C[0,1] and v ∈ R
n , there exists a solution, x0 ∈ C1[0,1] , such that

L (x0)−F (x0) = (h,v) .

To give an idea of the types of problems covered by the previous theorem, we give
examples of Lipschitz functions that could appear in the boundary conditions.

EXAMPLE 1. Let {ti}n
i=1 ⊆ [0,1] and h : R → R

n Lipschitz.

1. η : C → R
2 , η(x) = ∑n

j=1 h(x(t j)) ,

2. η : C → R
2 , η(x) =

∫ 1
0 h(x(t))dt .

The importance of this example is to notice that both multipoint evaluations and global
boundary conditions can be considered in this framework. The following is a direct
consequence of the last portion of Theorem 1.

THEOREM 3. Assume the conditions of Theorem 2. Let

K = (1−K∗)−1 max{a1,a2}. (16)

If G : C →C ×R
2 is such that there exists an M ∈N such that for ‖x‖� M, ‖G (x)‖�

K−1
(
M−∥∥(

L −F
)−1(0)

∥∥)
, then there exists at least one point, x0 ∈ C1[0,1] such

that

L (x0)−F (x0) = G (x0).

Correspondingly, the following is a direct consequence of Corollary 1. It allows
for further small perturbations.

THEOREM 4. Assume the conditions of Theorem 2. Let K be defined in (16),
δ > 0 , and H : C → C ×R

2 be continuous such that sup‖x‖�M ‖H (x)‖ = H < ∞ . If

G : C → C ×R
2 is such that there exists an M ∈ N such that for ‖x‖ � M,

‖G (x)‖ � K−1
(

M−∥∥(
L −F

)−1(0)
∥∥)

− δ ,

then, if ε < Kδ/H there exists at least one point, x0 ∈ C 1 such that

L (x0)−F (x0) = G (x0)+ εH (x0).
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5. Comparison to previous results

The results presented in this paper allow us to establish sufficient conditions for
the solvability of systems of differential equations that do not fall within the framework
of [20] and [19]. Conversely, the examples of Sturm-Liouville problems that appear
in [20] and [19] can be studied within the framework of the present results, and this
is what we present in this section. It is important to note, however, that the sufficient
conditions from those previous papers neither imply, nor are consequences of, the suf-
ficient conditions in the present paper. Results in the present paper allow us to consider
more general problems, but do not take advantage of special properties that exist in
more specific contexts. In the previous paper, differential equations on [0,1] that were
considered were of the form

(p(t)x′(t))′ +q(t)x(t)+ ψ(x)(t) = G(x)(t), (17)

subject to boundary conditions of the form

αx(0)+ βx′(0)+ η1(x) = φ1(x) (18a)

γx(1)+ δx′(1)+ η2(x) = φ2(x). (18b)

Clearly this can be rewritten as the following two dimensional problem:

x′1(t)− x2(t) = 0 (19)

x′2(t)+
1

p(t)
(
p′(t)x2(t)+q(t)x1(t)+ ψ(x)(t)

)
=

1
p(t)

G(x)(t) (20)

subject to boundary conditions of the form

x1(0)− x1(1)+ (α −1)x1(0)+ βx2(0)+ η1(x) = φ1(x) (21a)

x2(0)− x2(1)+ γx1(1)+ (δ −1)x2(1)+ η2(x) = φ2(x). (21b)

Thus, a choice can be made as to which theorems to apply. The main practical consid-
eration would typically come down to whether the eigenvalues for the linear Sturm-
Liouville problem are easily calculated compared with the Lipschitz constants and
growth conditions for the transformed problem.

Again, it should be noted that by applying the present results to these types of
problems ignores the special structure of Sturm-Liouville problems.

6. Example

In this section we establish the solvability of a system of integro-differential equa-
tions that could not be established using the results of [20] and [19]. Since the theorems
herewithin can cover more than 2-dimensional problems, we provide a more concrete
example of a 3-dimensional system to which our main theorems apply.
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COROLLARY 2. Let {s j,i}⋃{t j,i}⋃{u j,i}⊆ [0,1] . Consider the multipoint bound-
ary value problem on the interval [0,1]

x′(t)+ x(t)+ f1
(
x(t),y(t),z(t)

)
=

∫ 1

0
ψ

(
y(s),t

)
ds

y′(t)+ y(t)+ f2
(
x(t),y(t),z(t)

)
= g1

(
x(t),y(t),z(t)

)
z′(t)+ z(t)+ f3

(
x(t),y(t),z(t)

)
= g2

(
x(t),y(t),z(t)

)

subject to the boundary conditions

x(0)− x(1)+
N

∑
i=1

h1,i(x(s1,i),y(t1,i),z(u1,i)) = φ1(x,y,z)

y(0)− y(1)+
N

∑
i=1

h2,i(x(s2,i),y(t2,i),z(u2,i)) = φ2(x,y,z)

z(0)− z(1)+
N

∑
i=1

h3,i(x(s3,i),y(t3,i),z(u3,i)) = φ3(x,y,z)

where {h j,i} : R
3 → R are Lipschitz continuous functions with constants {k j,i} . Let

ψ : R
n → R be bounded, and { fi} : R

3 → R are Lipschitz continuous with constants
{ci} . Let C1 = ∑3

j=1 ci and C2 = ∑3
j=1 ∑N

i=1 k j,i . Assume ∃ ai,bi ∈ R,ζ ∈ [0,1) , such

that |gi(x,y,z)| � ai + bi|(x,y,z)|ζ for all t ∈ R and i = 1,2 . Let φi : C → R
3 be

continuous and additionally assume that ∃ Ai,Bi ∈R,ξ ∈ [0,1) , such that |φi(x,y,z)|�
Ai +Bi‖(x,y,z)‖ξ

∞ for all (x,y,z) ∈ C and i = 1,2,3 . Let K1 =
(
.5coth(.5)

)1/2
, K2 =

e/(1− e) , and assume that, C1K1 +C2K2 < 1 . Then there exists at least one solution
to the above problem.

This example particularly shows the flexibility of Theorem 3. It can handle relatively
large nonlinearities along with multipoint boundary conditions, and even in the context
of integro-differential problems.

7. Discussion

In the language of Theorem 1, we have been working in the following spaces:

D = C 1
1 ,X = C ,Y = C ,Z = R

n.

In this case, D is not complete, but can be seen as a subset of its completion, X. One
possible modification would be to consider the following spaces:

D = C 1,X = C 1,Y = C 1,Z = R
n.

This has the effect of allowing more flexibility in the nonlinearities that can be consid-
ered since they would only need to be defined on a smaller set. For example, functions
of the derivative could be considered. This comes at the expense of larger constants
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to consider when formulating an analogue to Theorem 2. This type of trade-off is dis-
cussed in detail in [20].

Two other sets of spaces should be mentioned as well, and also correspond closely

with the choices in [20]. Let ‖x‖2 =
(∫

[0,1] |x|2
)1/2

, and consider

‖x‖1,2 =
(∫

[0,1]
|x|2

)1/2

+
(∫

[0,1]

∣∣x′∣∣2
)1/2

.

We use the notation, x′ , to denote the weak derivative. Let H1 denote the Sobolev
space of square integrable functions whose weak derivatives are also members of L2 .
Then let

H 1
2 =

(
H1,‖ · ‖2

)
and H 1 =

(
H1,‖ · ‖1,2

)
.

Analagously to the previous paragraph, the following pair of choices can be considered:

D = H 1
2 ,X = L 2,Y = L 2,Z = R

n

D = H 1,X = H 1,Y = H 1,Z = R
n.

Again, there is a trade-off between the types of nonlinearities that can be covered by
the corresponding version of the major theorems and the constants that become part of
the sufficient conditions for the existence of solutions.
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