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Abstract. Consider the following nonlinear delay differential equation with a forcing term r(t) :

x′(t)+a(t)x(t)+b(t) f (x(t − τ(t))) = r(t), t � 0,

where a ∈ C[[0,∞), [0,∞)] , b,τ ∈C[[0,∞),(0,∞)] , r ∈C[[0,∞),R] , f ∈ C[(L,∞),(L,∞)] with
−∞ � L � 0 , and limt→∞(t − τ(t)) = ∞ . We establish a sufficient condition for every solution
of the equation to converge to zero. By applying the result to some special cases and differential
equation models from applications, we obtain several new criteria on the global convergence of
solutions.

1. Introduction

Consider the following nonlinear delay differential equation with a forcing term
r(t) :

x′(t)+a(t)x(t)+b(t) f (x(t− τ(t))) = r(t), t � 0, (1.1)

where a ∈C[[0,∞), [0,∞)],b,τ ∈C[[0,∞),(0,∞)],r ∈C[[0,∞),R], f ∈C[(L,∞),(L,∞)]
with −∞ � L � 0, and limt→∞(t − τ(t)) = ∞ . Our aim in this paper is to study the
global convergence of solutions of Eq.(1.1) and its applications.

Let t−1 = inft�0{t − τ(t)}. With Eq.(1.1) we associate an initial function of the
form

x(t) = φ(t) for t−1 � t � 0 where φ ∈C[[t−1,0],(L,∞)]. (1.2)

A function x(t) is said to be a solution of Eq.(1.1) if x(t) satisfies (1.2) and Eq.(1.1)
for t � 0.

When a(t) ≡ 0, Eq.(1.1) becomes

x′(t)+b(t) f (x(t− τ(t))) = r(t), t � 0. (1.3)

Furthermore, when a(t) ≡ 0 and f (x) = x , Eq.(1.1) reduces to the linear equation

x′(t)+b(t)x(t− τ(t)) = r(t), t � 0. (1.4)
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The global convergence of solutions of Eqs.(1.3) and (1.4) and applications have been
studied in [17] and [5] respectively. However, we notice that many equations derived
from applications are in the more general form (1.1). For instance, it is well-known that
many differential equations derived from mathematical biology (directly or by certain
transformations) have the form

y′(t) = p(t)[g(y(t− τ(t)))− y(t)], t � 0 (1.5)

where p,τ,g ∈ C[[0,∞),(0,∞)] . Numerous results for a positive equilibrium of the
equation, that is, a positive fixed point of g , to be a global attractor of all positive
solutions have been obtained. See, for example, [2-5, 7-10, 12-18] and the references
cited therein. In applications there are often some unknown factors which might affect
the differential models. Hence, it is realistic to add a small forcing term r(t) to Eq.(1.5)
which becomes

y′(t) = p(t)[g(y(t− τ(t)))− y(t)]+ r(t), t � 0 (1.6)

where r ∈C[[0,∞),R] . With Eq.(1.6), an initial condition of the form

x(t) = ψ(t) for t−1 � t � 0 where ψ ∈C[[t−1,0],(0,∞)] (1.7)

is associated, where t−1 is as defined above. Assume that the function g in Eq.(1.6)
has a positive fixed point y and let x(t) = y(t)− y . Then Eq.(1.6) can be written as

x′(t)+ p(t)x(t)+ p(t)[g(y)−g(x(t− τ(t))+ y)] = r(t), t � 0. (1.8)

Eq.(1.8) is in the form (1.1) with a(t) = b(t) = p(t) and f (x) = g(y)− g(x + y) for
x > −y and with the initial functions of the form

x(t) = ψ(t) for t−1 � t � 0 where ψ ∈C[[t−1,0],(−y,∞)].

In the next section, we will establish a sufficient condition such that every solution
x(t) of Eq.(1.1) converges to zero. Then in Section 3, we will apply the main result to
some special cases and differential equation models derived from mathematical biology
to obtain several new criteria on the global convergence of positive solutions.

The study of asymptotic behavior of solutions of various unforced delay differ-
ential equations and difference equations has received a lot of attention by many au-
thors. However, results about the behavior of solutions of forced equations are rela-
tively scarce. For some studies of forced delay differential and difference equations, we
refer the reader to [5,6,11,17] and the references contained therein.

2. Main Results

In this section, we establish a sufficient condition such that every solution of
Eq.(1.1) converges to zero. We define

lim
f (x)→0

x = 0 (or x → 0 as f (x) → 0) (2.1)
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in the sense that for each number ε > 0, there is a number δ > 0 such that

|x| < ε whenever | f (x)| < δ .

THEOREM 1. Assume that (2.1) holds and there is a positive constant β such that

| f (x)| � β |x|, and x f (x) > 0 f or x �= 0. (2.2)

Suppose also that ∫ ∞

0
e
∫ t
0 a(s)dsb(t)dt = ∞, (2.3)

β lim
t→∞

sup
∫ t

t−τ(t)
e−

∫ t
u a(s)dsb(u)du < 1 (2.4)

and

lim
t→∞

r(t)
b(t)

= 0. (2.5)

Then every solution x(t) of Eq.(1.1) tends to zero as t → ∞.

Proof. First, we assume that x(t) is an eventually monotonic solution. We assume
that x(t) is eventually positive; the proof for the case that x(t) is eventually negative
is similar and will be omitted. To this end, let x(t) → l as t → ∞. Then 0 � l � ∞ .
Clearly, it suffices to show that l = 0. Assume, for the sake of contradiction, that l > 0.
We claim that

liminf
t→∞

f (x(t − τ(t))) > 0. (2.6)

Otherwise, there is a positive sequence {sn} with sn → ∞ as n→ ∞ such that f (x(sn−
τ(sn))) → 0 as n → ∞ . Then in view of (2.1), it follows that x(sn − τ(sn)) → 0 as
n → ∞ . This implies that l = 0 which is a contradiction. Hence (2.6) holds. By noting
(2.5) and (2.6) we see that there are positive numbers λ and t0 such that

r(t)
b(t)

� λ and f (x(t − τ(t))) � 2λ , t � t0.

Observe that

x′(t)+a(t)x(t) = b(t)
(

r(t)
b(t)

− f (x(t− τ(t)))
)

� −λb(t), t � t0

which yields (
e
∫ t
0 a(s)dsx(t)

)′
� −λe

∫ t
0 a(s)dsb(t), t � t0.
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Integrating both sides of the above inequality from t0 to t , we have

e
∫ t
0 a(s)dsx(t)− e

∫ t0
0 a(s)dsx(t0) � −λ

∫ t

t0
e
∫ u
0 a(s)dsb(u)du

and so

x(t) � e−
∫ t
0 a(s)ds

[
e
∫ t0
0 a(s)dsx(t0)−λ

∫ t

t0
e
∫ u
0 a(s)dsb(u)du

]
.

By noting (2.3), we see that the right side of the above inequality is negative when t is
large. Clearly, this is a contradiction. Hence, l = 0.

Next, we show that every solution x(t) which is not eventually monotonic con-
verges to zero also. First by noting (2.4), there are positive numbers μ and T0 with
μ < 1 such that

β
∫ t

t−τ(t)
e−

∫ t
u a(s)dsb(u)du < μ for t � T0.

Since x(t) is not eventually monotonic, there is a sequence {tn} with

T0 � t1 < t2 < · · · < tn < · · · and tn → ∞ as n → ∞

such that x(t) has relative extrema at tn,n = 1,2, · · · . Clearly, to show that x(t) → 0 as
t → ∞ , it suffices to show that x(tn) → 0 as n → ∞ . Since x′(tn) = 0, it follows from
Eq. (1.1) that

a(tn)x(tn)+b(tn) f (x(tn − τ(tn))) = r(tn), n = 1,2, · · · . (2.7)

In addition, from Eq. (1.1) we see that(
e
∫ t
0 a(s)dsx(t)

)′
= e

∫ t
0 a(s)dsr(t)− e

∫ t
0 a(s)dsb(t) f (x(t − τ(t))), t � 0. (2.8)

Integrating (2.8) from tn− τ(tn) to tn , we find that

x(tn) = e−
∫ tn
0 a(s)ds

[
e
∫ tn−τ(tn)
0 a(s)dsx(tn − τ(tn))+

∫ tn

tn−τ(tn)
e
∫ t
0 a(s)dsr(t)dt

−
∫ tn

tn−τ(tn)
e
∫ t
0 a(s)dsb(t) f (x(t − τ(t)))dt

]

= e
−∫ tn

tn−τ(tn) a(s)ds
x(tn− τ(tn))+

∫ tn

tn−τ(tn)
e−

∫ tn
t a(s)dsr(t)dt

−
∫ tn

tn−τ(tn)
e−

∫ tn
t a(s)dsb(t) f (x(t− τ(t)))dt, n = 1,2, · · · . (2.9)

Let δ be a positive number such that 2δ + μ < 1. We claim that there is a subsequence
{tnm} of {tn} such that for any positive integer m ,

if x(tn) � 0, then e
−∫ tn

tn−τ(tn) a(s)ds
x(tn − τ(tn)) < δm for n � nm (2.10)
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and

if x(tn) < 0, then e
−∫ tn

tn−τ(tn) a(s)ds
x(tn− τ(tn)) > −δm for n � nm. (2.11)

We now show that (2.10) holds. When x(tn − τ(tn)) � 0, (2.10) is clearly true. Hence,
we only need to consider the case that x(tn − τ(tn)) > 0. Then f (x(tn − τ(tn))) > 0.
Since x(tn) � 0, from (2.7) we see that

b(tn) f (x(tn − τ(tn))) � r(tn), n = 1,2, · · ·
which yields

f (x(tn − τ(tn))) � r(tn)
b(tn)

, n = 1,2, · · · .

From (2.4) we know that r(tn)
b(tn) → 0 as n → ∞ . Hence, f (x(tn − τ(tn))) → 0 as n → ∞ .

Then by the hypotheses on f , it follows that x(tn − τ(tn)) → 0 as n → ∞ . This fact
implies that (2.10) holds. By a similar argument, we see that (2.11) holds. Clearly,
{tnm} could be chosen such that{

for any n � n1,t − τ(t) � 0 when t � tn− τ(tn), and
for any n � nm+1, t − τ(t) � tnm when t � tn− τ(tn), m = 1,2, · · · . (2.12)

In addition, observing∣∣∣∣
∫ t

t−τ(t)
e−

∫ t
u a(s)dsr(u)du

∣∣∣∣ �
∫ t

t−τ(t)
e−

∫ t
u a(s)ds

∣∣∣∣ r(u)
b(u)

∣∣∣∣b(u)du

�
(

sup
u�t−τ(t)

∣∣∣∣ r(u)
b(u)

∣∣∣∣
)∫ t

t−τ(t)
e−

∫ t
u a(s)dsb(u)du,

we see that (2.4) and (2.5) yield

lim
t→∞

∫ t

t−τ(t)
e−

∫ t
u a(s)dsr(u)du = 0.

Hence, we may assume that∣∣∣∣
∫ tn

tn−τ(tn)
e−

∫ tn
t a(s)dsr(t)dt

∣∣∣∣< δm, n � nm. (2.13)

When (2.10) holds, it follows from (2.9) and (2.13) that

|x(tn)| = x(tn) � e
−∫ tn

tn−τ(tn) a(s)ds
x(tn − τ(tn))+

∣∣∣∣
∫ tn

tn−τ(tn)
e−

∫ tn
t a(s)dsr(t)dt

∣∣∣∣
+
∫ tn

tn−τ(tn)
e−

∫ tn
t a(s)dsb(t)| f (x(t − τ(t)))|dt

� 2δm + β
∫ tn

tn−τ(tn)
e−

∫ tn
t a(s)dsb(t)|x(t− τ(t))|dt, n � nm.
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When (2.11) holds, it follows from (2.9) and (2.13) that

|x(tn)| = −x(tn) � −e
−∫ tn

tn−τ(tn) a(s)ds
x(tn− τ(tn))+

∣∣∣∣
∫ tn

tn−τ(tn)
e−

∫ tn
t a(s)dsr(t)dt

∣∣∣∣
+
∫ tn

tn−τ(tn)
e
∫ tn
t a(s)dsb(t)| f (x(t − τ(t)))|dt

� 2δm + β
∫ tn

tn−τ(tn)
e−

∫ tn
t a(s)dsb(t)|x(t− τ(t))|dt, n � nm.

Hence, in any case we have

|x(tn)| � 2δm + β
∫ tn

tn−τ(tn)
e−

∫ tn
t a(s)dsb(t)|x(t− τ(t))|dt, n � nm. (2.14)

Let
M = max

0�t�tn1

{|x(t)|}.

In the following, we show that for any positive integer m ,

|x(tn)| � (2δ + μ)m(M +1), n � nm. (2.15)

First, we show that (2.15) is true when m = 1. In fact, from (2.14) and noting (2.12)
we see that

|x(tn1)| � 2δ + β
∫ tn1

tn1−τ(tn1 )
e−

∫ tn1
t a(s)dsb(t)|x(t− τ(t))|dt

� 2δ + μM � (2δ + μ)(M +1).

Now, assume that

|x(tn)| � (2δ + μ)(M +1) for n1 � n � k. (2.16)

Since tk+1 > tk � tn1 and (2.12) holds,

0 � t− τ(t) � tk+1 when tk+1 − τ(tk+1) � t � tk+1.

By noting the property of {x(tnm)} , we see that

|x(t − τ(t))| � M if 0 � t− τ(t) � tn1 ,

(2.16) yields

|x(t − τ(t))| � (2δ + μ)(M +1) � M +1 if tn1 � t− τ(t) � tk,

and
|x(t− τ(t))| � max{|x(tk)|, |x(tk+1)|} if tk � t− τ(t) � tk+1.
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Hence,

|x(t− τ(t))| � max{M +1, |x(tk+1)|} when tk+1− τ(tk+1) � t − τ(t) � tk+1

and so it follows from (2.14) that

|x(tk+1)| � 2δ + β
∫ tk+1

tk+1−τ(tk+1)
e−

∫ tk+1
t a(s)dsb(t)|x(t− τ(t))|dt

� 2δ +max{M +1, |x(tk+1)|}β
∫ tk+1

tk+1−τ(tk+1)
e−

∫ tk+1
t a(s)dsb(t)dt

� 2δ +max{M +1, |x(tk+1)|}μ . (2.17)

We claim that

|x(tk+1)| � M +1. (2.18)

Otherwise |x(tk+1)| > M +1. From (2.17) we see that

|x(tk+1)| � 2δ + |x(tk+1)|μ

which implies that

|x(tk+1)| � 2δ
1− μ

.

Then it follows that
2δ

1− μ
> M +1

which contradicts the fact that 2δ + μ < 1. Hence, (2.18) holds, and so (2.17) yields

|x(tk+1)| � 2δ +(M +1)μ � (2δ + μ)(M +1).

Therefore, by induction, (2.15) holds when m = 1.
Next, assume that

|x(tn)| � (2δ + μ)k(M +1) for n � nk. (2.19)

We are going to show that

|x(tn)| � (2δ + μ)k+1(M +1) for n � nk+1.

In fact, in view of (2.12) and (2.19), it follows from (2.14) that

|x(tn)| � 2δ k+1 + β
∫ tn

tn−τ(tn)
e−

∫ tn
t a(s)dsb(t)|x(t− τ(t))|dt

� 2δ k+1 +(2δ + μ)k(M +1)β
∫ tn

tn−τ(tn)
e−

∫ tn
t a(s)dsb(t)dt

� 2δ k+1 +(2δ + μ)k(M +1)μ , n � nk+1. (2.20)
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Since
2δ k+1 +(2δ + μ)kμ � (2δ + μ)k+1,

(2.20) yields

|x(tn)| � (2δ + μ)k+1(M +1) for n � nk+1.

Hence, by induction, we see that (2.15) holds. Clearly, (2.15) implies that x(tn) → 0 as
n → ∞ . The proof is complete.

REMARK 1. In the above theorem, we assume that (2.1) and (2.2) hold on f .
Clearly, when f is increasing and (2.2) holds, (2.1) holds automatically.

EXAMPLE 1. Consider the following equation

x′(t)+a(t)x(t)+b(t)x(t− τ(t))
(

1− 1
2

sinx(t − τ(t))
)

= r(t), t � 0. (2.21)

Let f (x) = x(1− 1
2 sinx) . Clearly, f (x) is not an increasing function, but x → 0 as

f (x) → 0. In addition, | f (x)| � 3
2 |x| and x f (x) > 0 for x �= 0. Hence, by Theorem 1,

if (2.3)- (2.5) are satisfied with β = 3/2, then every solution of Eq. (2.21) tends to zero
as t → ∞.

3. Some Special Cases and Applications

In this section, we consider some special cases of Eq. and their applications. When
a(t) ≡ 0, Eq. (1.1) reduces to

x′(t)+b(t) f (x(t− τ(t))) = r(t), t � 0. (3.1)

The following result is a direct consequence of Theorem 1.

COROLLARY 1. Assume that (2.1) holds, and there is a positive constant β such
that

| f (x)| � β |x|, and x f (x) > 0 f or x �= 0. (3.2)

Suppose also that

∫ ∞

0
b(t)dt = ∞, β lim

t→∞
sup

∫ t

t−τ(t)
b(u)du < 1 (3.3)

and

lim
t→∞

r(t)
b(t)

= 0. (3.4)

Then every solution x(t) of Eq. (3.1) tends to zero as t → ∞.
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The global convergence of solutions of Eq.(3.1) with τ(t)≡ τ a positive constant,
has been studied in [17] and the following result has been obtained.

Theorem A Assume that ∫ ∞

0
b(t)dt = ∞.

Then every solution x(t) of Eq.(3.1) converges to zero as t → ∞ if either

x f (x) > 0, | f (x)| < |x| f or x �= 0

and

sup
t�0

∫ t

t−τ
b(s)ds = μ � 3/2,

∫ ∞

0
t|r(t)|dt < ∞,

or there is a number α ∈ (0,1) such that

x f (x) > 0, | f (x)| < α|x| f or x �= 0

and

sup
t�0

∫ t

t−τ
b(s)ds = μ � 3/2,

∫ ∞

0
|r(t)|dt < ∞.

Clearly, Corollary 1 is different from Theorem A. Indeed, when b(t) is a positive
constant function, (3.4) becomes

lim
t→∞

r(t) = 0,

which is different from either
∫ ∞
0 t|r(t)|dt < ∞ or

∫ ∞
0 |r(t)|dt < ∞ assumed in Theorem

A.

When r(t) ≡ 0, Eq.(1.1) reduces to

x′(t)+a(t)x(t)+b(t) f (x(t− τ(t))) = 0, t � 0. (3.5)

The following result is a direct consequence of Theorem 1.

COROLLARY 2. Assume that (2.1) holds, and there is a positive number β such
that (3.2) holds. Suppose also that∫ ∞

0
e
∫ t
0 a(s)dsb(t)dt = ∞ (3.6)

and

β lim
t→∞

sup
∫ t

t−τ(t)
e−

∫ t
u a(s)dsb(u)du < 1. (3.7)

Then every solution of Eq.(3.5) tends to zero as t → ∞.
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When f (x) = x , Eq.(3.5) reduces to the linear equation

x′(t)+a(t)x(t)+b(t)x(t− τ(t)) = 0, t � 0. (3.8)

The following conclusion comes from Corollary 2 directly.

COROLLARY 3. Assume that (3.6) and (3.7) hold. Then every solution x(t) of
Eq.(3.8) tends to zero as t → ∞ and so the equation is asymptotically stable.

Asymptotic stability of the linear equation (3.8) has been studied by numerous au-
thors, see for example, [1, 3] and the references cited therein. Note that the following
result, which is different from Corollary 3, was obtained in [1] recently.

Theorem B Assume that a(t) � 0,b(t) � 0 and a(t)+b(t) > 0 ,∫ ∞

0
(a(t)+b(t))dt = ∞, limsup

t→∞

∫ t

t−τ(t)
(a(s)+b(s))ds < ∞

and

limsup
t→∞

b(t)
a(t)+b(t)

∫ t

t−τ(t)
(a(s)+b(s))ds < 1+

1
e
.

Then Eq.(3.8) is asymptotically stable.

In the following, we show the applications of our results to some equations derived
from mathematical biology. As we mentioned in Section 1, many equations derived
from mathematical biology have the form

y′(t) = p(t)[g(y(t− τ(t)))− y(t)], t � 0 (3.9)

where p,τ ∈C[[0,∞),(0,∞)] and g ∈C[(0,∞),(0,∞)] . When a perturbation term r(t)
is added, Eq.(3.9) becomes

y′(t) = p(t)[g(y(t− τ(t)))− y(t)]+ r(t), t � 0 (3.10)

where r ∈C[[0,∞),R] . By Theorem 1, we have the following result.

THEOREM 2. Let y be a positive fixed point of g . Assume that x → 0 as g(y)−
g(x+ y) → 0 , and there is a positive number β such that

|g(y)−g(x+ y)| � β |x| and x(g(y)−g(x+ y)) > 0 f or x > −y, x �= 0. (3.11)

Suppose also ∫ ∞

0
p(t)dt = ∞, (3.12)

β limsup
t→∞

(
1− e−

∫ t
t−τ(t) p(s)ds

)
< 1, (3.13)
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and

lim
t→∞

r(t)
p(t)

= 0. (3.14)

Then every positive solution y(t) of Eq.(3.10) tends to y as t → ∞.

Proof. Let x(t) = y(t)− y . Then Eq.(3.10) can be written as

x′(t)+ p(t)x(t)+ p(t)[g(y)−g(x(t− τ(t))+ y)] = r(t), t � 0. (3.15)

which is in the form (1.1) with a(t) = b(t) = p(t) and f (x) = g(y)−g(x+ y) , x >−y .
Clearly, f satisfies the conditions assumed in Theorem 1. By noting

∫ ∞

0
e
∫ t
0 a(s)dsb(t)dt =

∫ ∞

0
e
∫ t
0 p(s)dsp(t)dt = e

∫ ∞
0 p(t)dt −1

and ∫ t

t−τ(t)
e−

∫ t
u a(s)dsb(u)du =

∫ t

t−τ(t)
e−

∫ t
u p(s)dsp(u)du = 1− e−

∫ t
t−τ(t) p(s)ds

we see that all the conditions assumed in Theorem 1 are satisfied. Hence, every solution
x(t) of Eq.(3.15) tends to zero as t → ∞ . Then it follows that every solution y(t) of
Eq.(3.10) tends to y as t → ∞ . The proof is complete.

In the following, we consider some specific equation models derived from mathe-
matical biology. First, consider the equation

y′(t) = q(t)
[
−αy(t)+

c
1+ yγ(t− τ(t))

]
+ r(t), t � 0 (3.16)

where α,γ and c are positive numbers and q ∈ C[[0,∞),(0,∞)] . When r(t) ≡ 0,
asymptotic behavior of positive solutions of this equation has been studied in [2] re-
cently. Rewrite Eq.(3.16) as

y′(t) = αq(t)
[

c/α
1+ yγ(t− τ(t))

− y(t)
]
+ r(t), t � 0

which is in the form of (3.9) with p(t) = αq(t) and g(y) = c/α
1+yγ , y > 0. Clearly, g is

decreasing and has a unique positive fixed point y . Let

f (x) = g(y)−g(x+ y), x > −y.

When γ � 1, it has been shown in [2] that

0 <
f (x)
x

� cγ yγ−1

α(1+ yγ)2 =
γ yγ

1+ yγ < 1.
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Hence, (3.11) and (3.13) hold with β = γyγ

1+yγ . When γ > 1, observing

f ′(x) =
cγ(x+ y)γ−1

α(1+(x+ y)γ )2 and f ′′(x) =
cγ(x+ y)γ−2((γ −1)− (γ +1)(x+ y)γ)

α(1+(x+ y)γ )3 ,

we see that

0 < f ′(x) � f ′
((

γ −1
γ +1

)1/γ
)

=
c

4αγ
(γ −1)1−1/γ(1+ γ)1+1/γ.

Hence, (3.14) holds with β = c
4αγ (γ − 1)1−1/γ(1+ γ)1+1/γ . Then by Theorem 2, we

have the following conclusion.

COROLLARY 4. Let y be the unique positive fixed point of the function g(y) =
c/α
1+yγ in Eq.(3.16) and assume that

∫ ∞

0
q(t)dt = ∞ (3.17)

and

lim
t→∞

r(t)
q(t)

= 0.

Then every positive solution of Eq.(3.16) tends to y as t → 0 if either

0 < γ � 1, (3.18)

or

γ > 1 and
c

4αγ
(γ −1)1− 1

γ (1+ γ)1+ 1
γ limsup

t→∞

(
1− e−α

∫ t
t−τ(t) q(s)ds

)
< 1. (3.19)

When r(t) ≡ 0, Eq.(3.16) reduces to

y′(t) = q(t)
[
−αy(t)+

c
1+ yγ(t− τ(t))

]
, t � 0. (3.20)

In particular, when q(t) ≡ 1 and τ(t) ≡ τ a positive constant, Eq.(3.20) becomes

y′(t) = −αy(t)+
c

1+ yγ(t − τ)
, t � 0. (3.21)

Eq.(3.21) was proposed by Mackey and Glass [13] as a model of haematopoiesis (blood
cell production) and the global behavior of positive solutions of this equation has been
studied by numerous authors.

The following result is a direct consequence of Corollary 4.
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COROLLARY 5. Assume that (3.17) holds, and that either (3.18) or (3.19) holds.
Then every positive solution of Eq.(3.20) tends to the positive equilibrium as t → ∞.

The following result on the global convergence of positive solutions of Eq.(3.20)
has been obtained in [2].

Theorem C Assume that one of the following holds:
(a) 0 < γ � 1;
(b) γ > 1 and cρ limsupt→∞

∫ t
t−τ(t) q(s)ds < 1+ 1

e ;

(c) γ > 1 and cρ
α < 1

where ρ = 1
4γ (γ −1)1−1/γ(1+ γ)1+1/γ . Then every positive solution of Eq.(3.20) tends

to the positive equilibrium as t → ∞ .

Comparing Corollary 5 and Theorem C, we see that (3.19) is an improvement of (c).

Next, consider the equation

y′(t) = q(t)[−αy(t)+ ce−γy(t−τ(t))]+ r(t), t � 0 (3.22)

where α,γ and c are positive numbers, and g∈C[[0,∞),(0,∞)] . When r(t)≡ 0,q(t)≡
1 and τ(t) ≡ τ a positive constant, Eq.(3.22) reduces to

y′(t) = −αy(t)+ ce−γy(t−τ), t � 0 (3.23)

which was used by Wazewska-Czyzewska and Lasota [18] as a model for the survival
of red blood cells in an animal.

Rewrite Eq.(3.22) as

y′(t) = αq(t)
[ c

α
e−γy(t−τ(t)) − y(t)

]
+ r(t), t � 0 (3.24)

which is in the form of (3.10) with p(t) = αq(t) and g(y) = c
α e−γy,y > 0. Clearly, g

is decreasing and has a unique positive fixed point y . Let

f (x) = g(y)−g(x+ y), x > −y.

By noting

0 < f ′(x) =
c
α

γe−γ(x+y) � c
α

γ

we see that f is increasing,

| f (x)| � c
α

γ|x|, and x f (x) > 0 for x �= 0.

Hence, by Theorem 2, we have the following conclusion.

COROLLARY 6. Let y be the unique positive fixed point of the function g(y) =
c
α e−γy in Eq.(3.22) and assume that∫ ∞

0
q(t)dt = ∞,
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cγ
α

limsup
t→∞

(
1− e−α

∫ t
t−τ(t) q(s)ds

)
< 1

and

lim
t→∞

r(t)
q(t)

= 0.

Then every positive solution of Eq.(3.22) tends to y as t → ∞ .

REMARK 2. As direct consequences of Corollaries 5 and 6, we see that if

either 0 < γ � 1, or γ > 1 and
c

4αγ
(γ −1)1− 1

γ (1+ γ)1+ 1
γ
(
1− e−ατ)< 1,

then every positive solution of Eq.(3.21) converges to its positive equilibrium; if

cγ
α

(1− e−ατ) < 1

then every positive solution of Eq.(3.23) converges to its positive equilibrium. These
two conditions have been obtained in [14] and [16] by using different approaches. �

Finally, consider the equation

y′(t)
y(t)

= p(t)
K− y(t− τ(t))
K +dy(t− τ(t))

+ r(t), t � 0. (3.25)

When p(t) ≡ p and τ(t) ≡ τ are positive constants and d = cp , Eq.(3.25) reduces to

y′(t)
y(t)

= p
K− y(t− τ)

K + cpy(t− τ)
+ r(t), t � 0. (3.26)

In particular, when r(t) ≡ 0, Eq.(3.26) was proposed by Gopalsamy et al. [7] as a
“food-limited” population model which is a generalization of the well-known delay
logistic equation. The global convergence of positive solutions of Eq.(3.26) has been
studied in [17] and the following result has been obtained.

Theorem D Assume that either

pτ = 3/2 and
∫ ∞

0
s|r(s)|ds < ∞

or
pτ < 3/2 and

∫ ∞

0
|r(s)|ds < ∞

holds, and cp > 1/3 . Then every positive solution of Eq.(3.26) goes to K as t → ∞ .

Now, by using Corollary 1, we may get a different condition for K to be a global
attractor. Consider Eq.(3.25) and let y(t) be a positive solution. The change of variable
y(t) = Kex(t) transforms Eq.(3.25) to the equation

x′(t)+ p(t)
ex(t−τ(t)) −1

1+dex(t−τ(t)) = r(t), t � 0, (3.27)
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which is in the form (3.1). To show that y(t) → K as t → ∞ , it suffices to show that
x(t) → 0 as t → ∞ . Let

f (x) =
ex −1
1+dex .

By noting

f ′(x) =
(1+d)ex

(1+dex)2 and f ′′(x) = (1+d)
ex(1−dex)
(1+dex)3 ,

we see that

0 < f ′(x) � f ′
(

ln
1
d

)
=

1+d
4d

.

Hence, f is increasing, x f (x) > 0 for x �= 0 and | f (x)| � 1+d
4d |x| . The following

conclusion follows from Corollary 1 immediately.

COROLLARY 7. ∫ ∞

0
p(t)dt = ∞,

1+d
4d

limsup
t→∞

∫ t

t−τ(t)
p(u)du < 1

and

lim
t→∞

r(t)
p(t)

= 0.

Then every positive solution of Eq.(3.25) tends to K as t → ∞.

For Eq.(3.26), we have the following result coming from Corollary 7 directly.

COROLLARY 8. Assume that

1+ cp
4c

τ < 1 and lim
t→∞

r(t) = 0.

Then every positive solution of Eq.(3.26) tends to K as t → ∞.

Clearly, Corollary 8 is different from Theorem D. In particular, cp > 1/3 is not
required in Corollary 8.
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