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NONLINEAR MODEL OF QUASI–STATIONARY

PROCESS IN CRYSTALLINE SEMICONDUCTOR

B. JUAREZ-CAMPOS, ELENA KAIKINA AND HECTOR F. RUIZ-PAREDES

Abstract. We consider the question of global existence and asymptotics of small, smooth, and
localized solutions of a certain pseudoparabolic equation in one dimension, posed on half-line
x > 0 , ⎧⎪⎨

⎪⎩

(
1−∂ 2

x

)
ut = ∂ 2

x (u+α2 (|u|q2 u))+α1 |u|q1 u, x ∈ R+, t > 0,

u(0,x) = u0 (x) , x ∈ R+,

u(0,t) = h(t),

(0.1)

where αi ∈ R,qi > 0, i = 1,2,u : R+
x × R+

t ∈ C. This model is motivated by the a wave
equation for media with a strong spatial dispersion, which appear in the nonlinear theory of the
quasy-stationary processes in the electric media. We show that the problem (0.1) admits global
solutions whose long-time behavior depend on boundary data. More precisely, we prove global
existence and modified by boundary scattering of solutions.
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