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Abstract. We consider the question of global existence and asymptotics of small, smooth, and
localized solutions of a certain pseudoparabolic equation in one dimension, posed on half-line
x > 0 , ⎧⎪⎨⎪⎩

(
1−∂ 2

x

)
ut = ∂ 2

x (u+α2 (|u|q2 u))+α1 |u|q1 u, x ∈ R+, t > 0,

u(0,x) = u0 (x) , x ∈ R+,

u(0,t) = h(t),

(0.1)

where αi ∈ R,qi > 0, i = 1,2,u : R+
x × R+

t ∈ C. This model is motivated by the a wave
equation for media with a strong spatial dispersion, which appear in the nonlinear theory of the
quasy-stationary processes in the electric media. We show that the problem (0.1) admits global
solutions whose long-time behavior depend on boundary data. More precisely, we prove global
existence and modified by boundary scattering of solutions.

1. Introduction

We consider the initial-boundary value problem on a half-line for the nonlinear
pseudoparabolic equation⎧⎪⎨⎪⎩

(
1− ∂ 2

x

)
ut = ∂ 2

x (u+N2 (u))+N1 (u) , x ∈ R+, t > 0,

u(0,x) = u0 (x) , x ∈ R+,

u(0,t) = h(t),
(1.1)

where u : R+
x × R+

t ∈ C ,

N1 (u) = α1 |u|q1 u, N2 (u) = α2 |u|q2 u, αi ∈ R, qi > 0, i = 1,2.

This model is motivated by the question of global existence of solutions of the
wave equation for media with a strong spatial dispersion, which appear in the nonlinear
theory of the quasy-stationary processes in the electric media (see subsection 1.1 for a
longer discussion).
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We are interested in the initial-boundary value problem with small initial data
u(x,t) |t=0 = u0(x) and Dirichlet boundary data u(x, t) |x=0 = h(t) given in a suitable
weighted Lebesgue spaces. We show that problem (1.1) admits global solutions whose
long-time behavior depends on the boundary data.

Let the usual Lebesgue space Lp = {φ ∈ S′;‖φ‖Lp < ∞} , where the norm

‖φ‖Lp =
(∫

R+
|φ (x)|p dx

)1/p

if 1 � p < ∞

and
‖φ‖L∞ = ess. sup

x∈R+
|φ (x)| if p = ∞ .

Weighted Lebesgue space is Lp,k = {φ ∈ S′;‖φ‖Lp,k < ∞} , where the norm

‖φ‖Lp,k =
∥∥∥(·)k φ (·)

∥∥∥
Lp

, k � 0.

We now state the main result of this paper.

THEOREM 1. Assume that the initial data u0 ∈ X = L∞ ∩L1,1+a, a ∈ (0,1) , h ∈
Y = L∞,β , max{q−1

1 ,q−1
2 } < min{β ,1} are sufficiently small such that

‖u0‖X +‖h‖Y � ε.

Then the initial-boundary value problem (1.1) has a unique global solution

u(x,t) ∈ C([0,∞);X) .

Furthermore, the solution possesses the following modified scattering behavior:
1) if β > 1, then there exists a constant A such that

sup
t>0

〈t〉1+γ
∥∥∥u− t−1AG0(xt−

1
2 )

∥∥∥
L∞

� Cε,

where

A =
∫ ∞

0
dτ

∫ ∞

0
x
(
N1 (u)+N2 (u)− e−xN2 (h(τ))

)
dx

+
∫ ∞

0
xu0dx+

∫ ∞

0
h(τ)dτ < ∞,

G0(s) =
i
4
se−

s2
4 ,

2) if β < 1, then there exist a function Λ(ξ ) ∈ L∞ such that

sup
t>0

〈t〉β+γ
∥∥∥u−h(t)Λ(xt−

1
2 )

∥∥∥
L∞

� Cε,
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where

Λ(ξ ) = 1+ ξ
∫ 1

0
e
− 1

4
ξ2

(1−z) (1− z)−
3
2 (1− zβ )z−β dz+

√
2
π

∫ ∞

0
e−z2z−1 sinzξdz,

3) if β = 1, then

sup
t>0

〈t〉
∥∥∥∥u− ln t

t
G0(xt−

1
2 ) lim

t→∞
t−1h(t)

∥∥∥∥
L∞

� Cε.

REMARK 1. We have the following three cases of the influence of the boundary
data h(t) ∼ t−β as t → ∞ :

1. If β > 1 then effects of the boundary data become negligible when time tends
to infinity, the solutions are said to scatter to a unperturbed asymptotic state (short range
case). The decay rate of solutions is O

(
t−1

)
as t → ∞, which is similar to the case of

homogeneous boundary data.
2. If β < 1 then the influence of the boundary data becomes essential when time

goes to infinity, the solutions are said to scatter to the asymptotic profile of the boundary
data.

3. If β = 1 then the solutions decay as t−1 ln t as in the long range case (i.e. the
modified scattering profile). Some resonance behavior appears: the solutions have a
more slow decay rate comparing with the boundary data and unperturbed asymptotic
state.

1.1. Motivation: Mathematical model of quasi-stationary process in crystalline
semiconductor

Equation (1.1) is a wave equation for media with a strong spatial dispersion, which
appears in the nonlinear theory of the quasy-stationary processes in the electric media
(see [20]). For example, this equation describes the creation, propagation, and collapse
of the so-called electric domains in semiconductors. From the mathematical standpoint,
the main property of semiconductors is the fact that nonstationary processes observed in
them are described by the system of quasy-stationary field equations. These equations
relate the electric field E and the electric displacement D and also the electric field E
and the semiconductor current density J . In the general case, the system of equations
in an appropriate Cartesian coordinate system has the following form [3]:

divD = −4πen, rot E = 0,D = E +4πP, (1.2)

nt = divJ +Q,Ji =
3

∑
i=1

σi jE j, i, j = 1,2,3, (1.3)

where P is the polarization vector, σi j is the tensor of medium conductivity. Here
we, as usual, have divided electrons in the semiconductor lattice into two groups: free
and bound charges [21]. The term “free charges” means charges free to move over
macroscopic distances. On the other side, the term “bound charges” means charges
that cannot move by macroscopic distances; they only initiate the polarization of the
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semiconductor. The value n in Eqs. (1.2) and (1.3) has the sense of the density of free
charges and the value

ρ = divP (1.4)

means the density of bound charge. The value Q in Eq. (1.3) appropriately defines
sources or sinks of the free electron current from or into impurity centers of the semi-
conductor lattice, depending on the fact whether the impurity centers are donors or ac-
ceptors [3]. Under the assumption that Eqs. (1.2) and (1.3) are considered in a cylindric
domain G = R+

1 × (0,T ),T > 0, the equation rotE = 0 is equivalent to the existence
of an electric field potential u , satisfying the equation

E = −ux. (1.5)

We have the well-known Debye shielding effect, which implies that ρ has form

ρ = ρ0 exp(
eu
kTe

),

where Te is the temperature of bound electrons. Thus, in our model with finite high
temperature of bound electrons a good model distribution of charges ρ is

ρ = r(1+ ε1u),r > 0,ε1 =
eu
kTe

. (1.6)

This distribution of bound charges in a self-consistent semiconductor field leads to
quasi-elastic link of main centers of the lattice of the semiconductor and bound elec-
trons. Finally, the function Q(u) in (1.3) depends on the density of sources or sinks of
free electrons and has the form similar to the distributions of free and bound electrons of
the lattice main centers of the semiconductor. We use the following model distribution
(see, specifically, [7]):

Q(u) = λ |u|q1 u,q1 � 0, (1.7)

where λ < 0 for donor impurity centers and λ > 0 for acceptor impurity centers,
respectively. Obviously, λ = 0 holds in the absence of impurity centers. For the current
density we assume that

J = eμn0(u)E, (1.8)

where in the case of strongly overheated free electrons the quasy-stationary distribution
of free electrons n0(u) can be described by

n0(u) = (1+ r2 |u|q2) ,q2 � 0,r2 > 0. (1.9)

Substituting (1.4)-(1.8) into (1.2)-(1.3) we get the following equation for electric po-
tential field u

∂
∂t

(
1

4πe
uxx − re−1ε1u)+ (−eμ)uxx +

(−eμ)r2

q2 +1
∂ 2

x (|u|q2 u)+ λ |u|q1 u = 0.

In the case where the electric potential is given on the boundary of the domain, we arrive
at the following boundary condition: u |x=0 = h(t) , where h(t) is a given function.



Differ. Equ. Appl. 9, No. 1 (2017), 37–55. 41

The phenomenonof disruption of semiconductors consists of the avalanche growth
of the concentration of free charges which leads to the failure of semiconductor devices.
One of the main problems of semiconductor physics consists of the search for the cause
of disruption and creation semiconductor devices with parameters that would provide
the needed stability in their functioning. On the other hand, a controlled growth of
the concentration of free charges is the necessary condition for the creation of electro-
magnetic power generators. Therefore, it is necessary to produce such devices on the
basis of semiconductors that, on one hand, would guarantee unlimited growth of the
concentration of free charges and, on the other hand, would prevent disruption. From
the mathematical point of view, the disruption of a semiconductor is described by the
blow-up of a solution, i.e., the simultaneous local-in-time solvability and global-in-time
unsolvability in a certain class. The obvious initial step in the study of initial-boundary
value problem (1.1) is the proof of the global-in-time solvability in one or another func-
tional class.

1.2. Previous results

For results concerning the Cauchy problem for nonlinear pseudoparabolic type
equations see [4], [5],[6]. The large time asymptotics of solutions to the Cauchy
problem was obtained in papers [11], [18]. Some key developments include book
[20], where it was given a description of the present state of the studies of the exis-
tence/nonexistence of solutions to Cauchy problems and initial-boundary-value prob-
lems for linear and nonlinear Sobolev-type equations. For the investigation of the blow-
up of solutions to various classes of nonlinear parabolic equations we also refer the
reader to [14], [20]. If we take the convective type nonlinearity |u|σ ux in Eq. (1.1)
then we arrive at the damped Benjamin–Bona–Mahony equation (BBM). Many works
are devoted to the study of the BBM equation (see, for example, [1], [13] and [22]).

In the case of the initial-boundary value problems (IBV- problems) there appear
new difficulties comparing with the Cauchy problems. The difficulty is explained by
the fact that it is necessary to take into account the boundary effects which perturb the
behavior of the solutions. Comparing with the corresponding Cauchy problem, the so-
lutions of the IBV- problem can have rapid oscillations, can converge to a self-similar
profile, can grow or decay faster. In this paper we prove the global in time existence of
solutions of IBV problem in the case of inhomogeneous Dirichlet boundary data. Our
main goal is to evaluate the influence of the boundary data on the asymptotic behavior
of solutions. In paper [12] it was proved that the solutions of the homogeneous Dirich-
let problem (1.1) with N2 (u) = 0 obtains an additional time decay comparing with the
case of the Cauchy problem, due to homogeneous boundary data h(t) = 0. The situ-
ation is a quite different in the case of inhomogeneous boundary data (i.e. h(t) 	= 0).
Theorem 1 shows that (1.1) admits global solutions whose long-time behavior essen-
tially depends on the scattering properties of the boundary data. We have the following
three cases of influence of the boundary data h(t) ∼ t−β as t →∞. If β > 1 then effects
of the boundary data become negligible when time tends to infinity. If β � 1 then the
influence of the boundary data becomes essential. Some resonance behavior appears: so
the solutions have a more slow decay rate comparing with the boundary data and unper-
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turbed asymptotic state. Also there is the critical exponent max(q−1
1 ,q−1

2 ) = min(β ,1)
when (1.1) can admit global solutions whose long-time behavior is not linear, or the
blow-up phenomena can occur. Our approach is based on the estimates of the integral
equation in the weighted Lebesgue space. To construct the Green operator we adopt
the method of book [10], based on the integral representation for sectionally analytic
functions and theory of singular integro-differential equations with the Hilbert kernel
and discontinuous coefficients. We will prove that the amount of the boundary data
which we need to put in the problem for its well-posedness is equal to one. The integral
formula is obtained by using the Laplace transform with respect to the space variable.
The Laplace transform requires the boundary data u(0,t) and ux(0,t) and so ux(0,t)
should be determined by the given data. To achieve this we need to solve the nonlinear
singular integro-differential equation with Hilbert kernel. We believe that the results
of this paper could be applicable to the study of a wide class of dissipative nonlinear
equations on a half-line by the use of techniques of nonlinear analysis, estimations of
Green function, fixed point theorems (see [10], [16], [11]). Our approach is new and
not standard, its advantage is that it can also be applied to non-integrable equations and
arbitrary boundary conditions.

1.3. Notation

To state the results of the present paper we give some notations. The usual direct
and inverse Laplace transformation we denote by L and L −1 . We denote 〈t〉 = 1+
t ,{t}= t

〈t〉 . We denote by θ (x) the step function, namely θ (x)= 1, for x � 0,θ (x)= 0,

for x < 0. The usual direct and inverse Laplace transformation we denote by L and
L −1 . The Fourier transform F and the inverse Fourier transform F−1 are defined as

Fφ =
1√
2π

∫
R

e−ixξ φ (x)dx,F−1φ =
1√
2π

∫
R

eixξ φ (ξ )dξ .

Also we introduce the Fourier sine transform Fs and the Fourier cosine transform Fc

as follows

Fsφ =
√

2√
π

∫
R+

φ(x)sin pxdx, Fcφ =
√

2√
π

∫
R+

φ(x)cos pxdx.

The usual Lebesgue space Lp = {φ ∈ S′;‖φ‖Lp < ∞} , where the norm

‖φ‖Lp =
(∫

R+
|φ (x)|p dx

)1/p

if 1 � p < ∞

and
‖φ‖L∞ = ess. sup

x∈R+
|φ (x)| if p = ∞ .

Weighted Lebesgue space is Lp,k = {φ ∈ S′;‖φ‖Lp,k < ∞} , where the norm ‖φ‖Lp,k =∥∥∥〈·〉k φ (·)
∥∥∥

Lp
, k � 0.
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Weighted Sobolev space is

Hm,k =
{

φ ∈ S′ : ‖φ‖Hm,k ≡ ‖(1+ ∂ )m φ‖L2,k < ∞
}

,

where m,k ∈ R+. The usual Sobolev space is Hm = Hm,0, so the index 0 we omit if it
does not cause a confusion. Also ‖ϕ‖ L∞ = ‖ϕ‖∞ , ‖ϕ‖ L2 = ‖ϕ‖ . Different positive
constants we denote by the same letter C .

We organize the rest of our paper as follows. In Section 2 we obtain some prelim-
inary estimates for the Green operator and prove the well-posedness of the linearized
problem (1.1). Section 3 is devoted to the proof of Theorem 1.1.

2. Preliminary lemmas

We consider the linear initial boundary-value problem on a half-line{(
1− ∂ 2

x

)
ut = uxx + f (x,t), x ∈ R+, t > 0,

u(x,0) = u0 (x) , x ∈ R+, u(0, t) = h(t).
(2.1)

Denote by G (t) and H (t)

G (t)φ = Fs
e−K(z)t

1+ z2 Fsφ , (2.2)

H h = e−xh(t)+Fs
z

(1+ z2)2

∫ +∞

0
e−K(z)(t−τ)h(τ)dτ,

K(z) =
z2

z2 +1
.

THEOREM 2. Let

u0 ∈ L1 (
R+)

,h(t) ∈ L1 (
R+)

, f (x,t) ∈ C0(R+,L1)

Then solution of (2.1) has the following form

u(x, t) = θ (x)
(

G (t)
(
1− ∂ 2

x

)
u0 +H (t)h+

∫ t

0
G (t− τ) f (τ)dτ

)
. (2.3)

Proof. To derive an integral representation for the solutions of problem (2.1) we
suppose that there exists a solution u(x,t) of problem (2.1). Applying the Laplace
transformation with respect to time and space variables to problem (2.1) we find for Re
p > 0, Reξ > 0

̂̂u(p,ξ )=
1

(K(p)+ ξ )(1− p2)

(
û0(p)− û0xx(p)+H(p,ξ )+X(ξ )+ ̂̂f(p,ξ )

)
, (2.4)

where

K(p) =
p2

p2−1
, H (p,ξ ) = −(ξ +1)pĥ(ξ ), X (ξ ) = −(ξ +1)ûx(0,ξ ). (2.5)
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Here the functions ̂̂u(p,ξ ), ĥ(ξ ) and ̂̂f (p,ξ ) are the Laplace transforms for u(x,t) ,
h(t) and f (x, t) with respect to time and space , respectively. We will find the function
X (ξ ) using the analytic properties of the function ̂̂u in the right-half complex planes
Re p > 0 and Re ξ > 0. There exist one function φ(ξ ) such that K(φ(ξ )) = −ξ
and Reφ(ξ ) > 0 for Reξ > 0. Since ̂̂u(p,ξ ) analytic for Rep > 0 we need to put the
following condition

X(ξ ) = −û0(φ)+ û0xx(φ)−H (φ ,ξ )− ̂̂f (φ ,ξ ). (2.6)

Thus there exist ux(0,t) such that (2.6) is valid. Note the fundamental importance of the
proven fact, that the solution ̂̂u constitutes an analytic function in Re z > 0 . Therefore
taking the inverse Laplace transform of (2.4) with respect to time and space variables
we obtain

(2.7)

u(x, t) = − 1
4π2

∫ i∞

−i∞
dξ eξ t

×
∫ i∞

−i∞

epx

(K(p)+ ξ )(1− p2)

(
û0(p)− û0xx(p)+H(p,ξ )+X(ξ )+ ̂̂f(p,ξ )

)
,

where X(ξ ) is satisfied (2.6). Note that under condition (2.6) for x > 0

1
2π i

∫ i∞

−i∞

e−px

(K(p)+ ξ )(1− p2)

(
û0(p)− û0xx(p)+H(p,ξ )+X(ξ )+ ̂̂f(p,ξ )

)
= 0.

Therefore we rewrite (2.7) in the form for x > 0

u(x, t) =
1

2π i

∫ i∞

−i∞
dξ eξ t 1

2π i

∫ i∞

−i∞
dp

epx− e−px

(K(p)+ ξ )(1− p2)

×
(

û0(p)− û0xx(p)+H(p,ξ )+ ̂̂f (p,ξ )
)

+
1

2π i

∫ i∞

−i∞
dξ eξ t 1

2π i

∫ i∞

−i∞
dp

epx− e−px

(K(p)+ ξ )(1− p2)
X(ξ ), (2.8)

where X(ξ ) = (ξ +1)ûx(0,ξ ) . Since

epx − e−px

(K(p)+ ξ )(1− p2)
is an even function,

we have
1

2π i

∫ i∞

−i∞
dp

epx− e−px

(K(p)+ ξ )(1− p2)
X(ξ ) = 0.

As a consequence via (2.8),

u(x, t) =
1

2π i

∫ i∞

−i∞
dξ eξ t 1

2π i

∫ i∞

−i∞
dp

epx − e−px

(K(p)+ ξ )(1− p2)
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×
(

û0(p)− û0xx(p)+H(p,ξ )+ ̂̂f(p,ξ )
)

. (2.9)

Via Jordan Lemma taking residue in the point ξ = −K(p) we get

1
2π i

∫ i∞

−i∞
dξ eξ t 1

2π i

∫ i∞

−i∞
dp

epx− e−px

(K(p)+ ξ )(1− p2)
×(û0(p)− û0xx(p)) (2.10)

=
1

2π i

∫ i∞

−i∞
dpe−K(p)t e

px − e−px

1− p2 (û0(p)− û0xx(p)) .

By the definition (2.5) H (p,ξ ) = −(ξ +1)pĥ(ξ ) . Therefore we rewrite

I =
1

2π i

∫ i∞

−i∞
dξ eξ t 1

2π i

∫ i∞

−i∞
dp

epx− e−px

(K(p)+ ξ )(1− p2)
H(p,ξ )

in the following form

I =
1

2π i

∫ i∞

−i∞
dξ eξ t 1

2π i

∫ i∞

−i∞
dp

epx − e−px

(K(p)+ ξ )(1− p2)
(ξ +1)ph(ξ )

=
∫ t

0
h(τ)H1(t − τ)dτ, (2.11)

where for s > 0

H1(s) =
1

2π i

∫ i∞

−i∞
dξ eξ s(ξ ±K(p)+1)

1
2π i

∫ i∞

−i∞
dp

(epx− e−px) p
(K(p)+ ξ )(1− p2)

=
1

2π i

∫ i∞

−i∞
dξ eξ s 1

2π i

∫ i∞

−i∞
dp

(epx− e−px) p
1− p2

+
1

2π i

∫ i∞

−i∞
dξ eξ s(−K(p)+1)

1
2π i

∫ i∞

−i∞
dp

(epx− e−px) p
(K(p)+ ξ )(1− p2)

= e−xδ (s)+
1

2π i

∫ i∞

−i∞
dpe−K(p)s (e

px− e−px) p
1− p2 .

Also we have

1
2π i

∫ i∞

−i∞
dξ eξ t 1

2π i

∫ i∞

−i∞
dp

epx − e−px

(K(p)+ ξ )(1− p2)
̂̂f (p,ξ )

=
∫ t

0
dτ

1
2π i

∫ i∞

−i∞
dpe−K(p)(t−τ) epx − e−px

(K(p)+ ξ )(1− p2)
f̂ (p,τ). (2.12)

Thus substituting (2.10)-(2.12) into (2.9) we obtain (2.3). Theorem 2 is proved.
We introduce operator G0 (t)

G0 (t)φ =
∫ +∞

0
G̃(x,y,t)φ (y)dy,
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where the kernel

G̃(x,y,t) =
1

2π
√

t

∫ ∞

−∞
e−z2(eiz(x−y)t−

1
2 − eiz(x+y)t−

1
2 )dz.

From [10] we get the following

LEMMA 1. Let φ ∈ Lr

‖G0 (t)φ‖Lq � C 〈t〉
1
2

(
1
q− 1

r

)
‖φ‖Lr ,

is true for all t > 0, 1 � q � ∞ ,1 � r � ∞ . Furthermore we assume that φ ∈ L1,1+a,
then the estimates ∥∥∥(·)b G0 (t)φ

∥∥∥
Lq

� Ct−
1
2 + 1

2q + b−a
2 ‖φ‖L1,a ,∥∥∥∥(·)b

(
G0 (t)φ − 1

t
ϑG0

(
xt−

1
2

))∥∥∥∥
Lq

� Ct−1+ 1
2q + b−a

2 ‖φ‖L1,1+a

is valid for all t > 0, where q = 1,∞, b ∈ [0,1+a] and

ϑ =
∫ +∞

0
xφ (x)dx,G0 (s) =

i
4
se−

s2
4 .

LEMMA 2.∥∥∥Fse
−K(z)tFsφ

∥∥∥
Lr

� C 〈t〉−
1
2

(
1
r1
− 1

r

)
‖φ‖Lr1 + e−t ‖φ‖Lr , (2.13)∥∥∥(·)b Fse

−K(z)tFsφ
∥∥∥

Lq
� Ct−

1
2 + 1

2q + b−a
2 ‖φ‖L1,a + e−t ‖φ‖Lq,b , (2.14)∥∥∥∥Fse

−K(z)tFsφ − 1
t

ϑG0 (t)
∥∥∥∥

L∞
� Ct−1− a

2 ‖φ‖L1,1+a + e−t ‖φ‖L∞ (2.15)

are valid for all t > 0, where 1 � r � r1 � ∞ ,0 � b � a,

ϑ =
∫ ∞

0
xφ(x)dx.

Proof. Note that Fse−K(z)tFsφ can be represented as

Fse
−K(z)tFsφ = G0 (t)φ + e−tφ +R1 (t)φ , (2.16)

where the remainder
R̂1 (z,t) = e−K(z)t − e−z2t − e−t. (2.17)

From Lemma 1 the operator G0 (t) satisfies the estimates of the Lemma. Now we
estimate the remainder R1 (t) . We represent

R̂1 (z,t) = e−K(z)t
(
1− e−z2t+K(z)t

)
− e−t
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for all |z| � 1, and

R̂1 (z,t) = −e−tz2 + e−t
(
e(1−K(z))t −1

)
for all |z| � 1, then we see that

|R1 (s,t)| � C
〈
s〈t〉− 1

2

〉−2 〈t〉− 1
2−1 +C 〈s〉−2 〈t〉2 e−t

� C
〈
s〈t〉− 1

2

〉−2 〈t〉− 1
2−1

for all s ∈ R, t > 0. Applying this estimate by the Young inequality we find

‖R1 (t)φ‖Lr � C 〈t〉−
1
2

(
1
q− 1

r

)
−1 ‖φ‖Lq (2.18)

for all 1 � q � r � ∞ and

‖R1 (t)φ‖L1,w � C 〈t〉−1
(
〈t〉w

2 ‖φ‖L1 +‖φ‖L1,w

)
for all t > 0. As consequence via (2.16) Lemma 2 is proved.

We now collect some preliminary estimates of the Green operator G (t) defined
by (2.2), in the norms ‖φ‖Lr and ‖φ‖L1,1+w , where w ∈ (0,1) , 1 � r � ∞.

LEMMA 3. Suppose that the function φ ∈ L∞ (R+) ∩ L1,1+a (R+) , where a ∈
(0,1) . Then the estimates∥∥∥G (t)φ (n)

x

∥∥∥
Lr

� C 〈t〉−
1
2

(
1
r1
− 1

r

)
(‖φ‖Lr1 +n‖φ‖L∞)+ e−t ‖φ‖Lr , (2.19)∥∥∥(·)b G (t)φ (n)

x

∥∥∥
Lr

� Ct−
1
2 + 1

2r + b−a
2 (‖φ‖L1,a +n‖φ‖L∞)+ e−t ‖φ‖Lr,b , (2.20)∥∥∥G (t)φ (n)

x − ϑ̃(n)t−1G0

(
xt−

1
2

)∥∥∥
L∞

� Ct−1− a
2 (‖φ‖L1,1+a +n‖φ‖L∞) (2.21)

are valid for all t > 0, where 1 � r � r1 � ∞ ,0 � b � a, n = 0,2

ϑ̃(n) =
∫ ∞

0
x(φ(x)− n

2
e−xφ(0))dx.

Proof. Integrating by parts we get

Fsφxx

=

√
2
π

∫ ∞

0
sinzxdφx =

√
2
π

(
sinzxφx |∞0 − z

∫ ∞

0
coszxdφ(x)

)
=

√
2
π

(
−zφ coszx |∞0 − z2

∫ ∞

0
φ(x)sin zxdx

)
.
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and as a consequence for n = 0,2

(2.22)

G (t)φxx = −Fse
−K(z)t z2

1+ z2 Fsφ + φ(0)Fse
−K(z)t z

1+ z2

= −Fse
−K(z)tFsφ +Fse

−K(z)t 1
1+ z2 Fsφ + φ(0)Fse

−K(z)t z
1+ z2 .

Since for x > 0 z
1+z2

= Fse−x from (2.22) we obtain

G (t)φ (n)
x = Fse

−K(z)t 1
1+ z2 Fsφ − n

2
Fse

−K(z)tFs
(
φ − e−xφ(0)

)
.

We have

Fs
1

1+ z2 Fsφ =
∫ x

0
e−(x−y)φ(y)dy = φ1(x)

and therefore

G (t)φ (n)
x = Fse

−K(z)tFsφ1

φ1 =
∫ x

0
e−(x−y)φ(y)dy− n

2

(
φ − e−xφ(0)

)
.

Applying the Young inequality we find for q � 1,w � 0

‖φ1‖Lq,w � C (‖φ‖Lq,w +n‖φ‖L∞)

and as a consequence via Lemma 2 we prove Lemma 3.

LEMMA 4. Let h∈Y = H0,β
∞ (R+) , β > 0. Then the following estimates are true:

max
(
〈t〉−β+γ ,〈t〉−b

2 ,〈t〉−b
2 +1−β

)
‖H (t)h‖

L0,1+b
1

� C‖h‖Y,a � 0,

max
(
〈t〉β ,〈t〉

)
‖H (t)h‖L∞ � C‖h‖Y,β 	= 1,

〈t〉 ln t‖H (t)h‖L∞ � C‖h‖Y,β = 1.

Moreover

H (t)h = h(t)Λ(xt−
1
2 )+ (1− e−x)h(t)+ t−β−γO

(
‖h‖

H0,β
∞

)
,β < 1, (2.23)

H (t)h =
1
t
G0(xt−

1
2 )

∫ ∞

0
h(τ)dτ + t−1−γO

(
‖h‖

H0,1+γ
∞

)
,β > 1,

H (t)h =
ln t
t

G0(xt−
1
2 ) lim

t→∞
t−1h(t)+ t−1O

(
‖h‖

H0,1
∞

)
,β = 1,

where Λ(ξ ) ∈ L∞ given by

Λ(ξ ) = ξ
∫ 1

0
e
− 1

4
ξ2

(1−z) (1− z)−
3
2 (1− zβ )z−β dz+

√
2
π

∫ ∞

0
e−z2z−1 sinzξdz.
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Proof. We follow the method of papers [17] and [15]. Since

Fsxe
−x =

z
(1+ z2)2

we split H h in the form

H h =
∫ t

0
dτh(τ)Fse

−K(z)(t−τ)Fsxe
−x

=
∫ t

0
dτh(τ)G (t− τ)φ(x), φ(x)

= xe−x. (2.24)

Applying estimate (2.20) of Lemma 2 we have for b � 0,β 	= 1

‖H h‖
L0,1+b

1
� C‖h‖

H0,β
∞

∫ t

0
(t − τ)−1

∥∥∥G0(x(t− τ)−
1
2 )

∥∥∥
L1,1+b

〈τ〉−β dτ

+
∫ t

0
(t− τ)−

1
2 〈τ〉−β dτ

� C‖h‖
H0,β

∞

∫ t

0
(t − τ)

b
2 〈τ〉−β dτ � C‖h‖

H0,β
∞

〈t〉 b
2 max(〈t〉1−β ,1).

(2.25)

Note that in the case of β = 1

‖H h‖
L0,1+b

1
� C‖h‖

H0,β
∞

〈t〉 b
2 +γ . (2.26)

Now we prove the asymptotic of operator H (t) .
1. Firstly we consider the case of β < 1.Via formula (2.16) from Lemma 2

H (t)h = R0h+H0 (t)h+R1h, (2.27)

where

R0 = h(t)
∫ t

0
dτFse

−K(z)(t−τ) z

(1+ z2)2 ,

H0 (t)h = ϑ
∫ t

0
(t − τ)−1e

− x2
(t−τ)

x

(t− τ)
1
2

(h(τ)−h(t))dτ,

ϑ =
∫ ∞

0
x2e−xdx = 2,

where the remainder

R1 (t)h =
∫ t

0
dτ (h(τ)−h(t))

∫ +∞

0
(R1 (x− y,t)−R1 (x+ y,t))ye−ydy,
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with a kernel defined by (2.17) . Integrating by parts and using Fs
1

z(1+z2) = 1− e−x ,

x > 0,

R0 = h(t)Fs

(
e−K(z)t −1

) 1
z(1+ z2)

= h(t)
(

Fse
−K(z)t 1

z
+Fse

−K(z)tFse
−x +(e−x−1)

)
.

Applying (2.16) we prove ∥∥∥Fse
−K(z)tFse

−x
∥∥∥

L∞
� C 〈t〉−1 (2.28)

and

Fse
−K(z)t 1

z
= Fse

−z2 1
z
(ξ )+O(t−γ). (2.29)

Changing τ = tz we get

H0 (t)h =
∫ t

0
(t − τ)−1e

− x2
(t−τ)

x

(t− τ)
1
2

(h(τ)−h(t))dτ

=
x√
t

∫ 1

0
e
− 1

4
x2

t(1−z) (1− z)−
3
2 (h(tz)−h(t))dz

= ξ
∫ 1

0
e
− 1

4
ξ2

(1−z) (1− z)−
3
2 (h(tz)−h(t))dz, ξ = xt−

1
2 .

Since h(t) = At−β + t−β−γO(‖h‖
H0,β+γ

∞
),γ > 0 we get

H0 (t)h = ξh(t)
∫ 1

0
e
− 1

4
ξ2

(1−z) (1− z)−
3
2 (1− zβ )z−β dz+ t−β−γO(‖h‖

H0,β+γ
∞

), (2.30)

ξ = xt−
1
2 . From (2.17) by the same way we prove

‖R1h‖ � C‖h‖
H0,β

∞

∫ t

0
dτ(t − τ)−1− 1

2

(
τ−β − t−β

)
= ‖h‖

H0,β
∞

O(t−β− 1
2 ). (2.31)

From (2.27) via (2.28)-(2.31) we prove (2.23) for β < 1. Also we prove

‖H (t)h‖
H0,β

∞
� ‖h‖

H0,β
∞

. (2.32)

Now we consider the case of β > 1. We represent

H (t)h = t−1G0(xt−
1
2 )

∫ t
2

0
h(τ)dτ +

∫ t
2

0
R(t− τ)h(τ)dτ (2.33)

+
∫ t

t
2

H(x,t− τ)h(τ)dτ,
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where

H(x,t) = Fse
−K(z)tFsxe

−x,

R(t− τ) = H(x,t− τ)− t−1G0(xt−
1
2 ).

By the same way as in Lemma 2 we prove

‖H(x,t)‖L∞ � Ct−1+γ ,‖R(t)‖L∞ � C(t)−1−γ . (2.34)

Applying (2.34) into (2.33) we obtain for β > 1

H (t)h = t−1G0(xt−
1
2 )

∫ ∞

0
h(τ)dτ + t−1−γO(t−β−γ)‖h‖

H0,1+γ
∞

. (2.35)

Note that by the same way we can prove that

H (t)h = t−1 ln tG0(xt−
1
2 ) lim

t→∞
t−1h(t)+ t−1O(t−β−γ)‖h‖

H0,1+γ
∞

Also we have
‖H (t)h‖

H0,1
∞

� 〈t〉−1+γ ‖h‖
H0,1

∞
. (2.36)

Via (2.26), (2.32), (2.34) and (2.36) the Lemma is proved.

3. Proof of Theorem 1

We rewrite the initial-boundary value problem (1.1) as the following integral equa-
tion

u(t) = G (t)
(
1− ∂ 2

x

)
u0−

∫ t

0
G (t− τ)N (u(τ))dτ + e−xh(t)+H h, (3.1)

where the Green operator G of the corresponding linear problem and for q1 � 0,q2 �
0,αi ∈ C, i = 1,2

N (u) = N1 (u)+ ∂ 2
x N2 (u) , (3.2)

N1 (u) = α1 |u|q1 u, N2 (u) = α2 |u|q2 u.

Denote
‖g‖Z =

(
‖g(t)‖L∞ +‖g(t)‖

H0,1+a
1

)
,‖h‖Y =

∥∥∥〈t〉β h
∥∥∥

L∞

and σ = min(β ,1),β > max
(

1
q1

; 1
q2

)
,a > 0

‖φ‖X = sup
t>0

(
〈t〉σ ‖φ (t)‖L∞ + 〈t〉− b

2 +σ−1‖φ (t)‖L1,1+b

)
,

where b ∈ [0,a]

σ =
{

min(β ,1),β 	= 1,
1− γ,β = 1.
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Note that the L1 - norm is estimated by the norm X

‖φ (t)‖L1 =
∫ 〈t〉σ

0
|φ (x,t)|dx+

∫ +∞

〈t〉σ
|1+ x|−1−α |x|1+α |φ (x, t)|dx (3.3)

� C 〈t〉σ ‖φ (t)‖L∞ +C 〈t〉− b
2 +σ−1‖φ (t)‖L1,1+a � C‖φ‖X .

The local existence in the function space XT can be proved by a standard contraction
mapping principle. We state it without a proof.

THEOREM 3. Let

u0 ∈ Z = L∞ ∩L1,1+a , a ∈ (0,1) , h ∈ Y = L∞,β , β > max(q−1
1 ,q−1

2 ) .

Then for some T > 0 there exists an unique solution u ∈ C([0,T ] ;Z) to problem (1.1)
with the estimate ‖u‖XT

<
√

ε .

Let us prove that the existence time T can be extended to infinity which then
yields the result of Theorem 1. By contradiction, we assume that there exist a minimal
time T > 0 such that the a-priori estimate ‖u‖XT

<
√

ε does not hold, namely, we have
‖u‖XT

�
√

ε . From Lemmas 3 and 4 we get the following estimates

‖G (t)u0‖X � C‖u0‖X ,‖H (t)h‖X � C‖h‖Y. (3.4)

Also from Lemma 3 we get∥∥∥∥∫ t

0
G (t− τ)N (τ)dτ

∥∥∥∥
L1,1+a

(3.5)

� C
∫ t

0
(t− τ)

a
2
(‖N1 (τ)‖L1,1 +‖N2 (τ)‖L1,1 +

∥∥e−xN2 (h(τ))
∥∥

L1,1

)
dτ.

Since

‖N1 (τ)‖L1,1 +‖N2 (τ)‖L1,1 +
∥∥e−xN2 (h(τ))

∥∥
L1,1

� C‖u‖q1
L∞ ‖u‖L1,1 +C‖u‖q2

L∞ ‖u‖L1,1 +Ct−q2β ‖h(τ)‖3
Y

� C 〈t〉−q1σ+1 ‖u‖q1+1
X +C 〈t〉−q2σ+1

(
‖u‖q2+1

X +‖h(τ)‖q2+1
Y

)
,

along to (3.5) and (3.2) we prove∥∥∥∥∫ t

0
G (t− τ)N (τ)dτ

∥∥∥∥
L1,1+a

� C
(
‖u‖q+1

X +‖h‖q+1
Y

)
×

(∫ t

0
(t− τ)−

1
2 〈τ〉−2σ+ a

2 +1−σ dτ +
∫ t

0
(t − τ)

a
2 〈τ〉−3σ+1 dτ

)
� C

(
‖u‖q+1

X +‖h‖q+1
Y

)
〈t〉 a

2 +1−σ ,q = min(q1,q2). (3.6)
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Now we estimate L∞− norm of the solution u(x,t). From Lemma 2 we get∥∥∥∥∫ t

0
G (t− τ)N (τ)dτ

∥∥∥∥
L∞

� C
∫ t

2

0
(t− τ)−1 (‖N1 (τ)‖L1,1 +‖N2 (τ)‖L1,1 +

∥∥e−xN2 (h(τ))
∥∥

L1,1

)
dτ

+C
∫ t

t
2

(‖N1 (τ)‖L∞ +‖N2 (τ)‖L∞ +
∥∥e−xN2 (h(τ))

∥∥
L∞

)
dτ. (3.7)

Since for q = min(q1,q2)

‖N1 (τ)‖L∞ +‖N2 (τ)‖L∞ +
∥∥e−xN2 (h(τ))

∥∥
L∞

� C‖u‖q+1
L∞ +Ct−(q+1)β ‖h‖3

Y � C 〈t〉−(q+1)σ
(
‖u‖q+1

X +‖h(τ)‖q+1
Y

)
via (3.7) we obtain for σ > 1

q∥∥∥∥∫ t

0
G (t − τ)N (τ)dτ

∥∥∥∥
L∞

� C
(
‖u‖q+1

X +‖h(τ)‖q+1
Y

)∫ t
2

0
(t− τ)−1 〈τ〉−qσ dτ +

∫ t

t
2

〈τ〉−(q+1)σ dτ

� C
(
‖u‖q+1

X +‖h(τ)‖q+1
Y

)
〈t〉−σ . (3.8)

Via (3.4), (3.7), (3.8) along to (3.1) we get that

‖u‖XT
� Cε <

√
ε,

which implies the desired contradiction. Thus there exists a unique global solution
u ∈ C

(
[0,∞) ;L1,1+a ⋂

L∞)
of (1.1) with the time decay estimate

sup
t�1

〈t〉σ ‖u(t)‖
∞

� C.

We now prove the asymptotics of solutions. Via Lemma 2 we have∫ t

0
G (t− τ)N (τ)dτ = t−1θG0(xt−

1
2 )+R,

where for q = min(q1,q2)

θ =
∫ ∞

0
dτ

∫ ∞

0
x
(
N1 (u)+N2 (u)− e−xN2 (h(τ))

)
dx � C

∫ +∞

0
〈τ〉−qσ dτ � ∞,

R =
∫ t

2

0
(G (t− τ)−G0(t− τ))N (τ)dτ +

∫ t
2

0
(G0(t − τ)−G0(t))N (τ)dτ
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+
∫ t

t
2

G (t− τ)N (τ)dτ

= t−1− a
2

(
‖u‖q+1

X +‖h‖q+1
Y

)
.

Therefore via Lemmas 3 and 4 we get

u = t−1AG0(xt−
1
2 )+ εq+1t−1−γ ,β > 1,

A = θ +
∫ ∞

0
xu0dx+

∫ ∞

0
h(τ)dτ < ∞.

In the case of β ∈
(

1
q ,1

)
we have

u = h(t)Λ(xt−
1
2 )+ t−β−γεq+1,β < 1,

Λ(ξ ) = 1+ ξ
∫ 1

0
e
− 1

4
ξ2

(1−z) (1− z)−
3
2 (1− zβ )z−β dz

+

√
2
π

∫ ∞

0
e−z2z−1 sinzξdz

For β = 1 we obtain

u =
ln t
t

G0(xt−
1
2 ) lim

t→∞
t−1h(t)+ t−1εq+1.

Theorem1 is proved.
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