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SIMILARITY SOLUTIONS OF MIXED CONVECTION

BOUNDARY–LAYER FLOWS IN A POROUS MEDIUM

MOHAMMED AÏBOUDI, IKRAM BENSARI-KHELIL AND BERNARD BRIGHI

(Communicated by Hiroyuki Usami)

Abstract. The similarity differential equation f ′′′+ f f ′′+β f ′( f ′ −1) = 0 with β > 0 is consid-
ered. This differential equation appears in the study of mixed convection boundary-layer flows
over a vertical surface embedded in a porous medium. In order to prove the existence of solu-
tions satisfying the boundary conditions f (0) = a � 0 , f ′(0) = b � 0 and f ′(+∞) = 0 or 1 , we
use shooting and consider the initial value problem consisting of the differential equation and the
initial conditions f (0) = a , f ′(0) = b and f ′′(0) = c . For 0 < β � 1 , we prove that there exists
a unique solution such that f ′(+∞) = 0 , and infinitely many solutions such that f ′(+∞) = 1 .
For β > 1 , we give only partial results and show some differences with the previous case.

1. Introduction

Let β ∈R . We consider the third order autonomous nonlinear differential equation

f ′′′ + f f ′′ + β f ′( f ′ −1) = 0. (1.1)

In fluid mechanics, in the study of mixed convection boundary-layer flows over a ver-
tical surface embedded in a porous medium, such an equation can be derived from the
governing partial differential equations in some situations where simplifying assump-
tions have been made. Any solution of (1.1) provides a similarity solution of the initial
problem.

A similarity solution is a particular type of solution that reflects the invariance
properties of the equation. These solutions are obtained, specifically, by using these
properties. Most of the time, the similarity solutions have a particular physical signifi-
cance.

In the case of mixed convection boundary-layer flows in a porous medium, under
some assumptions, the partial differential equation to solve is of the form

∂ 3ψ
∂y3 +

∂ψ
∂x

∂ 2ψ
∂y2 − ∂ψ

∂y

(
∂ 2ψ
∂x∂y

− μxμ−1
)

= 0, (1.2)
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where μ ∈ R is some constant; see [3]. It is easy to check that, for any � �= 0, the
transformation

(x,y,ψ) �−→ (x/�α ,y/�,ψ/�γ) with α = 2
1−μ and γ = μ+1

μ−1

is a symmetry transformation of equation (1.2). Then it is quite straighforward to verify
that any function ψ of the form

ψ(x,y) = κ x
μ+1

2 f (t) where t = κ−1x
μ−1

2 y,

with an appropriate constant κ , is a solution of (1.2) if and only if f is a solution of
the ordinary differential equation (1.1) for some value of β depending on μ . Such a
ψ is a so-called similarity solution of (1.2), and the variable t is called the similarity
variable.

Equation (1.1) is a particular case of the more general equation

f ′′′ + f f ′′ +g( f ′) = 0. (1.3)

The most famous equation of this type is certainly the Blasius equation (see [6]), which
corresponds to g = 0, and which has been extensively studied over the last hundred
years; see for example [10] and the references therein.

For g(x) = β (x2 − 1) , this is the Falkner-Skan equation, introduced in 1931 for
studying the boundary layer flow past a semi-infinite wedge, see the original paper [17]
and [20] for a overview of mathematical results.

For g(x) = βx2 , this corresponds to free convection problems, see for example
[16] for the derivation of the model, and [2], [4], [7], [8], [11], [14], [15], [18], [23],
[25] for different approaches of the mathematical analysis.

The case where g(x) = β (x2 +1) is for the study of the boundary layer separation
at a free stream-line, see [1] and [22].

Most of the time, these similarity equations are studied on the half line [0,+∞)
and are associated to boundary conditions as f (0) = a , f ′(0) = b (or f ′′(0) = c) and a
condition at infinity. This condition at infinity can be, either f ′(t) → λ as t → +∞ , or
f ′(t) ∼ Atν as t → +∞ , where A and ν are some positive constants, or also | f | is of
polynomial growth at infinity. For more details, we refer to the introduction of [9] and
to the references therein.

The boundary value problems associated to the general equation (1.3), with the
condition that f ′ tends to λ at infinity have been studied in [13] and in [9]. Let us
notice that, if g(λ ) �= 0, then these boundary value problems do not have any solutions,
and thus we must assume that g(λ ) = 0 to have solutions. For example, in the case of
mixed convection, i.e. g(x) = βx(x−1) , the only relevant conditions are f ′(t) → 0 or
f ′(t) → 1 as t → +∞ . Results about existence, uniqueness and asymptotic behavior of
concave or convex solutions to these boundary value problems are obtained, according
to the sign of g between b and λ . Without further assumptions on g , it is hopeless to
have more precise results. Nevertheless, the results of [9] generalize the ones of [12]
and some of [19] about mixed convection problems.
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Let a,b ∈ R and λ ∈ {0,1} . We associate to equation (1.1) the boundary value
problem ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f ′′′ + f f ′′ + β f ′( f ′ −1) = 0 on [0,+∞)

f (0) = a

f ′(0) = b

f ′(t) → λ as t → +∞

(Pβ ;a,b,λ )

Usually, the method to investigate such a boundary value problem is the shooting
method, which consists of finding the values of a parameter c for which the solution of
(1.1) satisfying the initial conditions f (0) = a , f ′(0) = b and f ′′(0) = c , exists up to
infinity and is such that f ′(t) → λ as t → +∞ . This approach is used in [12] and [19].
In [12], the problem (Pβ ;a,b,1) is considered for β < 0 and its is shown that this prob-
lem has a unique convex solution if 0 < b < 1, and has a unique concave solution if
b > 1. In [19], for β ∈ (0,1) , a = 0 and b∈ (0, 3

2 ) , it is proven that the boundary value
problem (Pβ ;a,b,1) has infinitely many solutions.

In [21], [26] and [27], some results about the problem (Pβ ;a,b,1) are proven by
introducing a singular integral equation obtained from (1.1) by a Crocco-type transfor-
mation.

In the following, we will study the problems (Pβ ;a,b,0) and (Pβ ;a,b,1) for β > 0,
a � 0 and b � 0. In the case where 0 < β � 1, we are able to get complete results (and
so we improve the results of [19]), while we only have partial results for β > 1. On
several occasions, we will use the results of [9], that sometimes we re-demonstrate, in
our particular case, for the convenience of the reader.

The paper is organized as follows. In Section 2, general results about the solution
of equation (1.1) are given. Section 3 is devoted to the case where b � 1 and to the
proofs of results that do not depend on whether β ∈ (0,1] or β > 1. Section 4 discusses
in detail the case β ∈ (0,1] and b � 1. Section 5 considers the case β ∈ (0,1] and
0 � b < 1, presents the results and how to prove them. In Section 6, some results in the
case β > 1 are proven.

2. Preliminary results

To any f solution of (1.1) on some interval I , we associate the function Hf : I →R

defined by

Hf = f ′′ + f ( f ′ −1). (2.1)

Then, we have H ′
f = (1−β ) f ′( f ′ −1).

The following lemmas, concerning the solutions of the equation (1.1), will be
useful in the next sections. The proofs of some of them can be found in [9].

LEMMA 1. Let f be a solution of (1.1) on some maximal interval I . If there
exists t0 ∈ I such that f ′(t0) ∈ {0,1} and f ′′(t0) = 0 , then I = R and f ′′(t) = 0 for all
t ∈ R.
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Proof. This follows immediatly from the uniqueness of solutions of initial value
problem. See [9], Proposition 3.1, item 3. �

LEMMA 2. Let β > 0 and f be a solution of equation (1.1) on some interval I ,
such that f ′ is not constant.

1. If there exists s < r ∈ I such that f ′′(s) � 0 and f ′( f ′ − 1) > 0 on (s,r) then we
have f ′′(t) < 0 for all t ∈ (s,r] .

2. If there exists s < r ∈ I such that f ′′(s) � 0 and f ′( f ′ − 1) < 0 on (s,r) then we
have f ′′(t) > 0 for all t ∈ (s,r] .

3. If there exists s < r ∈ I such that f ′′ < 0 on (s,r) and f ′′(r) = 0 , then we have
f ′(r)( f ′(r)−1) < 0 .

4. If there exists s < r ∈ I such that f ′′ > 0 on (s,r) and f ′′(r) = 0 , then we have
f ′(r)( f ′(r)−1) > 0 .

Proof. Let F denote any primitive function of f . From (1.1) we deduce the rela-
tion

( f ′′ expF)′ = −β f ′( f ′ −1)expF.

All the assertions 1-4 follow easily from this relation and from Lemma 1. Let us verify
the first and the third of these assertions. For the first one, since ψ = f ′′ expF is
decreasing on [s,r] , we have f ′′(t) < f ′′(s)exp(F(s)−F(t)) � 0 for all t ∈ (s,r] . For
the third one, since ψ < 0 on (s,r) and ψ(r) = 0, one has ψ ′(r) � 0. This and
Lemma 1 imply that f ′(r)( f ′(r)−1) < 0. �

LEMMA 3. Let f be a solution of (1.1) on some maximal interval (T−,T+) . If
T+ is finite, then f ′ and f ′′ are unbounded in any neighborhood of T+ .

Proof. See [9], Proposition 3.1, item 6. �

LEMMA 4. Let β �= 0 . If f is a solution of (1.1) on some interval (τ,+∞) such
that f ′(t) → λ as t → +∞ , then λ ∈ {0,1} . Moreover, if f is of constant sign at
infinity, then f ′′(t) → 0 as t → +∞ .

Proof. See [9], Proposition 3.1, items 4 and 5. Let us notice that if λ = 1, then f
is necessarily positive at infinity. �

LEMMA 5. Let β �= 0 . If f is a solution of (1.1) on some interval (τ,+∞) such
that f ′(t)→ 0 as t →+∞ , then f (t) does not tend to plus or minus infinity as t →+∞ .

Proof. Assume for contradiction that f (t) → +∞ as t → +∞ . Let H = Hf be
defined by (2.1). Since f ′(t) → 0 as t → +∞ , we deduce from the second assertion
of Lemma 4 that H(t) ∼ − f (t) as t → +∞ . This leads to a contradiction if β = 1. If
β �= 1, then we have H ′(t) ∼ (β −1) f ′(t) as t → +∞ , and hence H(t) ∼ (β −1) f (t)
as t → +∞ . This is a contradiction, since β �= 0. The proof is the same if we assume
that f (t) →−∞ as t → +∞ . �
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LEMMA 6. Let β > 0 and f be a solution of equation (1.1) on some right maxi-
mal interval I = [τ,T+) . If f � 0 and f ′ � 0 on I , then T+ = +∞ and f ′ is bounded
on I .

Proof. Let L = Lf be the function defined on I by

L(t) = 3 f ′′(t)2 + β (2 f ′(t)−3) f ′(t)2. (2.2)

Easily, using (1.1), we obtain that L′(t) = −6 f (t) f ′′(t)2 for all t ∈ I , and since f � 0
on I , this implies that L is nonincreasing. Hence

∀t ∈ I, β (2 f ′(t)−3) f ′(t)2 � L(t) � L(τ).

It follows that f ′ is bounded on I and, thanks to Lemma 3, that T+ = +∞ . �

LEMMA 7. Let β > 0 and f be a solution of equation (1.1) on some right maxi-
mal interval I = [τ,T+) . If f (τ) � 0 , f ′(τ) � 1 and f ′′(τ) > 0 , then there exists
t0 ∈ (τ,T+) such that f ′′ > 0 on [τ,t0) and f ′′(t0) = 0 .

Proof. Assume for contradiction that f ′′ > 0 on I . Then, f ′(t) � 1 and f (t) � 0
for all t ∈ I . We then have

f ′′′ = − f f ′′ −β f ′( f ′ −1) � 0. (2.3)

It follows that 0 < f ′′(t) � c for all t ∈ I and hence, by Lemma 3, we have T+ = +∞ .
Next, let s > τ and ε = β f ′(s)( f ′(s)−1) . One has ε > 0 and, coming back to (2.3),
we obtain f ′′′ � −ε on [s,+∞) . After integration, we get

∀t � s, f ′′(t)− f ′′(s) � −ε(t− s)

and a contradiction with the fact that f ′′ > 0. Consequently, there exists t0 ∈ (τ,T+)
such that f ′′ > 0 on [τ,t0) and f ′′(t0) = 0. �

The last two lemmas give key results in the case where β ∈ (0,1] . The proofs can
be found in [9] (see Lemma 5.16 and Lemma A.11). However, for convenience, we
give here proofs corresponding to the particular case that we consider.

LEMMA 8. Let β ∈ (0,1] and f be a solution of equation (1.1) on some maximal
interval I = (T−,T+) . If there exists t0 ∈ I such that

0 < f ′(t0) < 1 and 0 � f ′′(t0) � f (t0)(1− f ′(t0)),

then T+ = +∞ and f ′(t) → 1 as t → +∞ . Moreover, f ′′ > 0 on [t0,+∞) .

Proof. Let τ = supA(t0) where

A(t0) =
{
t ∈ [t0,T+) ; f ′(t0) < f ′ < 1 and f ′′ > 0 on (t0, t)

}
.
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The set A(t0) is not empty. This is clear if f ′′(t0) > 0, and if f ′′(t0) = 0 it follows
from the fact that f ′′′(t0) = −β f ′(t0)( f ′(t0)−1) > 0. We claim that τ = T+ . Assume
for contradiction that τ < T+ . From Lemma 2, item 2, we get that f ′′(τ) > 0, which
implies, by definition of τ , that f ′(τ) = 1. Therefore, since the function Hf defined
by (2.1) is nonincreasing on [t0,τ] , we obtain

f ′′(τ) = Hf (τ) � Hf (t0) = f ′′(t0)+ f (t0)( f ′(t0)−1) � 0,

a contradiction. Thus, we have τ = T+ . From Lemma 3, it follows that T+ = +∞ . Since
f ′′ > 0 on [t0,+∞) , by virtue of Lemma 4, we get that f ′(t) → 1 as t → +∞ . �

REMARK 1. If f (t0) > 0 and f ′′(t0) = 0, then f (t)−t →−∞ as t →+∞ (see [9],
Theorem 6.4, item 2.a).

LEMMA 9. Let β ∈ (0,1] and f be a solution of (1.1) on some maximal interval
I = (T−,T+) . If there exists t0 ∈ I such that

f ′(t0) > 1 and f (t0)(1− f ′(t0)) � f ′′(t0) � 0,

then T+ = +∞ and f ′(t) → 1 as t → +∞ . Moreover, f ′′ < 0 on [t0,+∞) .

Proof. If we set τ = supB(t0) where

B(t0) =
{
t ∈ [t0,T+) ; 1 < f ′ < f ′(t0) and f ′′ < 0 on (t0, t)

}
,

the conclusion will follow by proceeding in the same way as in the previous proof. �

REMARK 2. If f (t0) > 0 and f ′′(t0) = 0, then f (t)−t →+∞ as t →+∞ (see [9],
Theorem 5.19, item 2.a).

3. Description of our approach when b � 1

Let β > 0, a � 0 and b � 1. As said in the introduction, the method we will
use to obtain solutions of the boundary value problems (Pβ ;a,b,0) and (Pβ ;a,b,1) is the
shooting technique. Specifically, for c∈ R , let us denote by fc the solution of equation
(1.1) satisfying the initial conditions

fc(0) = a, f ′c(0) = b and f ′′c (0) = c (3.1)

and let [0,Tc) be the right maximal interval of existence of fc . Hence, finding a solution
of one of the problems (Pβ ;a,b,0) or (Pβ ;a,b,1) amounts to finding a value of c such
that Tc = +∞ and f ′c(t) → 0 or 1 as t → +∞ .

To this end, let us partition R into the four sets C0, . . . ,C3 (or less if some of them
are empty) defined as follows. Let C0 = (0,+∞) and, according to the notations used
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in [9], let us set

C1 =
{
c � 0 ; 1 � f ′c � b and f ′′c � 0 on [0,Tc)

}

C2 =
{
c � 0 ; ∃tc ∈ [0,Tc), ∃εc > 0 s. t. f ′c > 1 on (0, tc),

f ′c < 1 on (tc,tc + εc) and f ′′c < 0 on (0,tc + εc)
}

C3 =
{
c � 0 ; ∃rc ∈ [0,Tc), ∃ηc > 0 s. t. f ′′c < 0 on (0,rc),

f ′′c > 0 on (rc,rc + ηc) and f ′c > 1 on (0,rc + ηc)
}
.

This is obvious that C0, . . . ,C3 are disjoint sets and that their union is the whole line of
real numbers.

Thanks to Lemmas 3 and 4, if c ∈ C1 then Tc = +∞ and f ′c(t) → 1 as t → +∞ .
In fact, C1 is the set of values of c for which fc is a concave solution of (Pβ ;a,b,1) .

Since β > 0, the study done in [9] (especially in Section 5.2) says, on the one
hand, that C3 = /0 (which can easily be deduced from Lemma 2, item 1) and, on the
other hand, that either C1 = /0 and C2 = (−∞,0] , or there exists c∗ � 0 such that
C1 = [c∗,0] and C2 = (−∞,c∗) . In addition, if β ∈ (0,1] then we are in the second
case and c∗ � −a(b−1) . If β > 1 and a = 0 then C1 = /0 , but, for a > 0, we do not
know if C1 is empty or not.

In the next sections we will distinguish between the cases β ∈ (0,1] and β > 1.
In the first case, we can give a complete description of the solutions (see Theorem 1),
whereas in the second one, we have only partial answers.

We will also consider the case where b∈ [0,1) , for which we will have to partition
R in a slightly different way.

Before that, and in order to complete the study, let us divide the set C2 into the
following two subsets

C2,1 = {c ∈ C2 ; f ′c > 0 on [0,Tc)}
C2,2 = {c ∈ C2 ; ∃sc ∈ (0,Tc) s. t. f ′c > 0 on [0,sc) and f ′c(sc) = 0}

and let us give properties of each of them that hold for all β > 0.

LEMMA 10. If c ∈ R is such that f ′c > 0 on [0,Tc) , then Tc = +∞ and f ′c is
bounded. Moreover, if c � 0 , then f ′c � max{b ; 3

2} on [0,+∞) .

Proof. Let c ∈ R be such that f ′c > 0 on [0,Tc) . Then fc � a � 0 on [0,Tc) , and
thanks to Lemma 6, it follows that Tc = +∞ and that f ′c is bounded.

It remains to show that f ′c � max{b ; 3
2} in the case where c � 0. As in (2.2), let

us define the function Lc on [0,+∞) by

Lc(t) = 3 f ′′c (t)2 + β (2 f ′c(t)−3) f ′c(t)
2. (3.2)

We have L′
c(t) = −6 fc(t) f ′′c (t)2 and, since fc � 0, it implies that Lc is nonincreasing.
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If f ′′c � 0 on (0,+∞) , then f ′c � b . Otherwise, there exists t0 such that f ′′c < 0
on (0, t0) and f ′′c (t0) = 0 (which can occur only when c < 0, or c = 0 and b > 1).
By Lemma 2, item 3, it follows that f ′c(t0) < 1, and thus Lc(t0) < 0. Then, Lc < 0 on
(t0,+∞) which implies that f ′c � 3

2 on (t0,+∞) . Since f ′c � b on (0, t0) , the proof is
complete. �

PROPOSITION 1. Let c∗ = sup(C1 ∪C2,1) . Then c∗ is finite.

Proof. Let c ∈ C1 ∪C2,1 . From the definitions of C1 and C2,1 , and thanks to
Lemma 10, we have Tc = +∞ and 0 < f ′c � d on (0,+∞) where d = max{b ; 3

2} .

Since ( f ′′c + fc f ′c)′ = −β f ′c( f ′c −1)+ f ′c
2 � β f ′c + f ′c

2 � d(β +d) , by integrating,
we then have

∀t � 0, f ′′c (t)+ fc(t) f ′c(t) � c+ab+d(β +d)t.

Integrating once again, we get

∀t � 0, 0 < f ′c(t) � f ′c(t)+ 1
2 fc(t)2 � b+ 1

2a2 +(c+ab)t + 1
2d(β +d)t2

which implies that c � −ab−√
(2b+a2)(β +d)d . �

REMARK 3. As we have seen above, if C1 �= /0 , then C1 = [c∗,0] and thus we
have C2,1 ⊂ [c∗,c∗) .

PROPOSITION 2. We have (−∞,c∗) ⊂ C2,2 . Moreover, if c ∈ C2,2 then Tc < +∞
and f ′′c < 0 on (0,Tc) .

Proof. The fact that (−∞,c∗) ⊂ C2,2 follows from Proposition 1. Let c ∈ C2,2 .
Then, there exists sc ∈ (0,Tc) such that f ′c > 0 on [0,sc) and f ′c(sc) = 0. Consider the
function Lc defined by (3.2). Since fc � 0 on the interval [0,sc] , then Lc is nonin-
creasing on [0,sc] .

Suppose first that c < 0. Assume for contradiction that there exists t0 ∈ [0,sc)
such that f ′′c < 0 on [0,t0) and f ′′c (t0) = 0, then 0 < f ′c(t0) < 1 (see Lemma 2, item
3), and hence Lc(t0) < 0. Since Lc is nonincreasing on [0,sc] , this contradicts the fact
that Lc(sc) = 3 f ′′c (sc)2 � 0. Therefore, f ′′c < 0 on [0,sc] .

If c = 0, which can only happen if b > 1, then f ′′′c (0) = −βb(b−1) < 0. Hence
there exists η ∈ (0,sc) such that f ′′c < 0 and f ′c > 1 on (0,η ] . The arguments above
applied to the function t �→ fc(t + η) give that f ′′c < 0 on [η ,sc] and thus on (0,sc] .

To get that f ′′c < 0 on (0,Tc) , it remains to notice that f ′′c cannot vanish on (sc,Tc) ,
by virtue of Lemma 2, item 3.

Finally, the fact that Tc < +∞ follows from Proposition 2.11 of [9], which says
that, for any τ ∈ R , there is no negative (strictly) concave function f of class C 3 such
that f ′′′ + f f ′′ � 0 on [τ,+∞) . �

REMARK 4. If c ∈ C2,2 then fc is strictly concave on [0,Tc) , has a global maxi-
mum at sc and fc(t) → −∞ as t → Tc . In addition, f ′c(t) and f ′′c (t) tend to −∞ as
t → Tc .
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PROPOSITION 3. The set C2,2 is an open subset of (−∞,0] ( for its induced
topology) .

Proof. Let c0 ∈ C2,2 . There exists τ ∈ (0,Tc0) such that f ′c0
(τ) < 0. Let us set

ε = − 1
2 f ′c0

(τ) . By continuity of the function c �→ f ′c(τ) , there exists α > 0 such that,
for all c ∈ (−∞,0] , one has

|c− c0| < α =⇒ f ′c(τ) < f ′c0
(τ)+ ε.

Therefore, f ′c(τ) < 0 and c ∈ C2,2 . �

4. The case β ∈ (0,1] and b � 1

In this section, we assume that β ∈ (0,1] , a � 0 and b � 1.

PROPOSITION 4. If c ∈ C0 , then Tc = +∞ and f ′c(t) → 1 as t → +∞ .

Proof. From Lemma 7, we know that there exists t0 ∈ (0,Tc) such that f ′′c > 0
on [0, t0) and f ′′c (t0) = 0. Since fc(t0) > 0 and f ′c(t0) > b > 1, the conclusion follows
from Lemma 9. �

REMARK 5. The previous proposition says that fc is a convex-concave solution
of (Pβ ;a,b,1) for all c > 0. Moreover, we have that fc(t)−t →+∞ as t →+∞ (see Re-
mark 2).

PROPOSITION 5. There exists c∗ � −a(b−1) such that C1 = [c∗,0] .

Proof. If b = 1 then C1 = {0} . If b > 1, as we already said in the previous sec-
tion, this result is proven in [9] (see Corollary 5.13 and Lemma 5.16). For convenience,
let us recall briefly the main arguments which were used to get it. On the one hand, from
Lemma 9 with t0 = 0 (or Lemma 5.16 of [9]), it follows that [−a(b−1),0]⊂ C1 . On
the other hand, Lemma 5.12 of [9] implies that C2 is an interval of the type (−∞,c∗) .
This completes the proof since C1 = (−∞,0]\C2 . �

REMARK 6. From the previous proposition, we have that 0 /∈C2,2 . Hence, Propo-
sition 3 implies that C2,2 is an open set.

PROPOSITION 6. If c ∈ C2,1 then Tc = +∞ and f ′c has a finite limit at infinity,
equal either to 0 or to 1.

Proof. Let c ∈ C2,1 . By Proposition 5, we have c < 0. Thanks to Lemma 10, we
know that Tc = +∞ . Assume first that f ′′c < 0 on (0,+∞) . Then f ′c is positive and
decreasing, and thus f ′c has a finite limit λ � 0 at infinity. Moreover, f ′c takes the value
1 at some point, hence λ ∈ [0,1) and, by Lemma 4, we finally get that λ = 0.

Assume now that f ′′c vanishes on (0,+∞) . Let t0 be the first point where f ′′c
vanishes. Thanks to Lemma 2, item 3, we have 0 < f ′c(t0) < 1, and the conclusion
follows from Lemma 8. �
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REMARK 7. If c ∈ C2,1 then either fc is a concave solution of (Pβ ;a,b,0) or
fc is a concave-convex solution of (Pβ ;a,b,1) . In the first case, there exists l > a
such that fc(t) → l as t → +∞ (see Lemma 5) and, in the second one, we have that
fc(t)− t →−∞ as t → +∞ (see Remark 1).

PROPOSITION 7. Let c ∈ C2,2 . For all t ∈ [0,Tc) , one has fc(t) �
√

a2 +2b.

Proof. Let c ∈ C2,2 and sc be as in the definition of C2,2 , i.e. such that f ′c > 0 on
[0,sc) and f ′c(sc) = 0. For all t ∈ [0,sc] , we have

(
t f ′′c (t)− f ′c(t)+ t fc(t) f ′c(t)

)′ = t f ′′′c (t)+ t fc(t) f ′′c (t)+ t f ′c(t)
2 + fc(t) f ′c(t)

= (1−β )t f ′c(t)
2 + β t f ′c(t)+ fc(t) f ′c(t) � fc(t) f ′c(t). (4.1)

Integrating between 0 and sc yields

fc(sc)2 � a2 +2
(
sc f ′′c (sc)+b

)
� a2 +2b

and fc(sc) �
√

a2 +2b . The conclusion follows from the fact that, for all t ∈ [0,Tc) ,
we have fc(t) � fc(sc) , as we noticed in Remark 4. �

PROPOSITION 8. Let c be a point of the boundary of C2,2 . Then, c ∈ C2,1 and
f ′c(t) → 0 as t → +∞ . Moreover, fc is bounded and concave.

Proof. Let c be a point of the boundary of C2,2 and (cn)n�0 be a sequence of C2,2

such that cn → c as n→+∞ . For all n � 0, let us set Tn = Tcn and fn = fcn . Since C2,2

is an open set, then c ∈ C1 ∪C2,1 and hence Tc = +∞ . Let t � 0 be fixed. From the
lower semicontinuity of the function d �→ Td , we get that there exists n0 � 0 such that
Tn � t for all n � n0 . Since fn(t) → fc(t) as n → +∞ , we deduce from Proposition 7
that fc is bounded. Therefore, f ′c cannot tend to 1 at infinity and thus, necessarily, we
have c∈C2,1 and f ′c(t)→ 0 as t →+∞ . Moreover, fc is concave (see Remark 7). �

PROPOSITION 9. There exists at most one c such that f ′c(t) → 0 as t → +∞ .

Proof. From Proposition 5, Proposition 6 and Lemma 5, we see that if c is such
that f ′c(t) → 0 as t → +∞ , then c < 0, f ′′c < 0 and fc is bounded. For such a c , as
done in [9], Section 4, we can define a function v : (0,b2] → R such that

∀t � 0, v( f ′c(t)
2) = fc(t). (4.2)

By setting y = f ′c(t)2 , we get

fc(t) = v(y), f ′c(t) =
√

y, f ′′c (t) =
1

2v′(y)
and f ′′′c (t) = −v′′(y)√y

2v′(y)3
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and using (1.1) we obtain

∀y ∈ (0,b2], v′′(y) =
v(y)v′(y)2

√
y

+2β (
√

y−1)v′(y)3. (4.3)

From (3.1), we deduce that v(b2) = a and v′(b2) = 1
2c . Moreover, since fc is bounded,

it is so for v .
Assume that there exists c1 > c2 such that f ′c1

(t)→ 0 and f ′c2
(t)→ 0 as t →+∞ ,

and denote by v1 and v2 the functions associated to fc1 and fc2 by (4.2). If we set
w = v1 − v2 then w(b2) = 0 and w′(b2) < 0. We claim that w′ < 0 on (0,b2] . For
contradiction, assume there exists x ∈ (0,b2) such that w′ < 0 on (0,x) and w′(x) = 0.
Hence we have w′′(x) � 0 and w(x) > 0. But, thanks to (4.3), we have

w′′(x) =
w(x)√

x
v′1(x)

2

and a contradiction.
Now, let us set Vi = 1/v′i for i = 1,2 and W = V1−V2 . On the one hand, we have

W (b2) = 2(c1−c2) > 0 and W (y)→ 0 as y→ 0. In the other hand, from (4.3), we get

∀y ∈ (0,b2], W ′(y) = −w(y)√
y

−2β (
√

y−1)w′(y).

Therefore, we have

W (b2) =
∫ b2

0
W ′(y)dy = −

∫ b2

0

(
w(y)√

y
+2β (

√
y−1)w′(y)

)
dy

= −2
[√

yw(y)
]b2

0
+2

∫ b2

0

(
(1−β )

√
y+ β

)
w′(y)dy

= 2
∫ b2

0

(
(1−β )

√
y+ β

)
w′(y)dy, (4.4)

the last equality following from the fact that w(y) tends to a finite limit as y→ 0. Since
w′ < 0, we finally obtain W (b2) < 0 and a contradiction. �

REMARK 8. The change of variable (4.2) is particularly efficient to obtain some
uniqueness results. In [9], it is used for the general equation f ′′′ + f f ′′ + g( f ′) = 0
(see Section 4, Lemma 5.4 and Lemma 5.17). The case we examined in Proposition 9
is part of Lemma 5.17 of [9] with λ = 0. In this lemma, it is assumed that 0 < g(x) � x2

for x ∈ (0,b] to ensure uniqueness. Here, in Proposition 9, we have g(x) = βx(x−1)
with β ∈ (0,1] and hence βx(x−1)� x2 for x∈ (0,b] , but βx(x−1)� 0 for x∈ (0,1] .
However, the assumption about the positivity of g is not relevant because not used in
the proof of Lemma 5.17 of [9]. In addition, the inequality βx(x−1) � x2 is still true
on (0,b] , if β > 1 and 1 � b � β

β−1 . Finally, let us notice that, in the latter case, the
integral in (4.4) is still negative, and the contradiction occurs there too.
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COROLLARY 1. One has C2,2 = (−∞,c∗) and C2,1 = [c∗,c∗) .

Proof. From Remark 6, Propositions 2, 8 and 9, we see that C2,2 is open, contains
(−∞,c∗) and its boundary is reduced to a single point. Thus, since c∗ = sup(C1∪C2,1) ,
we necessarily have C2,2 = (−∞,c∗) and C2,1 = [c∗,c∗) . �

To finish this section, let us express the results of Proposition 4, Proposition 5 and
Corollary 1 in terms of the boundary problems (Pβ ;a,b,0) and (Pβ ;a,b,1) .

THEOREM 1. Let β ∈ (0,1] , a � 0 and b � 1 . There exists c∗ < 0 such that:

� fc is not defined on the whole interval [0,+∞) if c < c∗ ;

� fc∗ is a concave solution of (Pβ ;a,b,0);

� fc is a solution of (Pβ ;a,b,1) for all c ∈ (c∗,+∞) .

Moreover, there exists c∗ ∈ (c∗,−a(b−1)] such that:

� fc is a convex-concave solution of (Pβ ;a,b,1) for all c ∈ (0,+∞);

� fc is a concave solution of (Pβ ;a,b,1) for all c ∈ [c∗,0];

� fc is a concave-convex solution of (Pβ ;a,b,1) for all c ∈ (c∗,c∗) .

REMARK 9. The previous theorem says that problem (Pβ ;a,b,0) has one and only
one solution, whereas problem (Pβ ;a,b,1) has infinite number of solutions.

REMARK 10. We know that fc∗ has a finite limit at infinity, denoted by l . By
slightly modifying the proof of Proposition 7.2 of [9], one can prove that there exists a
positive constant A such that, for all ε > 0, the following hold

f ′′c∗(t) = −l2Ae−lt
(
1+o

(
e−(l−ε)t

))
, f ′c∗(t) = lAe−lt

(
1+o

(
e−(l−ε)t

))

fc∗(t) = l−Ae−lt
(
1+o

(
e−(l−ε)t

))
as t → +∞.

REMARK 11. Among the concave solutions of (Pβ ;a,b,1) , only fc∗ has a slant
asymptote, i.e. there exists l > a such that fc∗(t)− t → l as t → +∞ . In addition,
Proposition 7.5 of [9] implies that we have

f ′′c∗(t) = −e−
t2
2 −lt+O(ln t), f ′c∗(t) = 1+ e−

t2
2 −lt+O(lnt)

fc∗(t) = t + l− e−
t2
2 −lt+O(ln t) as t → +∞.

If c∗ < 0, then the function t �→ fc(t)− t is unbounded, for any c ∈ (c∗,0] .
It is possible to do better and to precise what is the term O(ln t) . By a method

used for the Falkner-Skan equation in [20], Chapter XIV, Theorem 9.1, one can show
that there exists a constant A > 0 such that

f ′c∗(t)−1∼ Atβ−1e−
t2
2 −lt as t → +∞.
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Other asymptotic results for fc (concave, convex-concave or concave-convex) such that
the function t �→ fc(t)− t is unbounded, should also be obtained by applying the ideas
of [20], Chapter XIV, Theorems 9.1 and 9.2. See also [24].

REMARK 12. The main ingredients used in this section are, one the one hand,
Lemmas 8 and 9 that precise the behavior of fc after a point where f ′′c vanishes and, on
the other hand, the fact that the set C2,2 has at most one point on its boundary, implying
that it is an interval.

5. The case β ∈ (0,1] and 0 � b < 1

Let β ∈ (0,1] , a � 0 and 0 < b < 1. In this situation, it is easy to see that R can
be partitioned into the four sets C ′

0,1 , C ′
0,2 , C ′

1 and C ′
2 where

C ′
0,1 = {c < 0 ; f ′c > 0 on [0,Tc)}

C ′
0,2 = {c < 0 ; ∃sc ∈ (0,Tc) s. t. f ′c > 0 on [0,sc) and f ′c(sc) = 0}

C ′
1 =

{
c � 0 ; b � f ′c � 1 and f ′′c � 0 on [0,Tc)

}

C ′
2 =

{
c � 0 ; ∃tc ∈ [0,Tc), ∃εc > 0 s. t. f ′c < 1 on (0,tc),

f ′c > 1 on (tc,tc + εc) and f ′′c > 0 on (0, tc + εc)
}
.

The fact that any c � 0 belongs to C ′
1 ∪C ′

2 is due inter alia to Lemma 2, item 4, which
implies that f ′′c remains positive as long as f ′c � 1.

The arguments used in the previous section, and evoked in Remark 12, can be
applied here. Some results, as Propositions 7 and 8, are still true. On the other hand,
as we will see below, some other results are obtained more easily. For example, the
existence and the uniqueness of a concave solution of (Pβ ;a,b,0) are already known,
and so it is not necessary to argue as in the previous section (see Propositions 8 and 9).

Since βx(x− 1) < 0 for x ∈ (0,b] , it follows from Theorem 5.5 of [9] that there
exists a unique c∗ such that fc∗ is a concave solution of (Pβ ;a,b,0) . Moreover, we
have c∗ < 0. As in the previous section, this implies that C ′

0,2 = (−∞,c∗) . Hence
C ′

0,1 = [c∗,0) , and if c ∈ (c∗,0) , then f ′′c vanishes at a first point where f ′c < 1.
Next, proceeding in the same way as in the proof of Proposition 1, we can prove

that c∗ = supC ′
1 is finite, and hence that C ′

1 = [0,c∗] and C ′
2 = (c∗,+∞) . Moreover,

from Lemma 8, we have c∗ � a(1− b) . On the other hand, it follows from Lemma 7
that, if c ∈ C ′

2 , then f ′′c vanishes at a first point where f ′c > 1.
All this, combined with an appropriate use of Lemmas 8 and 9, allows to state the

following theorem. For more details, we refer to [5].

THEOREM 2. Let β ∈ (0,1] , a � 0 and b ∈ (0,1) . There exist two real numbers
c∗ < 0 and c∗ � a(1−b) such that:

� fc is not defined on the whole interval [0,+∞) if c < c∗ ;
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� fc∗ is a concave solution of (Pβ ;a,b,0);

� fc is a concave-convex solution of (Pβ ;a,b,1) for all c ∈ (c∗,0);

� fc is a convex solution of (Pβ ;a,b,1) for all c ∈ [0,c∗];

� fc is a convex-concave solution of (Pβ ;a,b,1) for all c ∈ (c∗,+∞) .

REMARK 13. [ The case b = 0 ] We can show similar results if b = 0. For details
of the proof, we refer to [5].

� If c < 0, then Tc < +∞ .

� For c = 0, we have f0(t) = a .

� There exists c∗ � a such that fc is a convex solution of the problem (Pβ ;a,b,1)
for all c ∈ (0,c∗] and is a convex-concave solution of (Pβ ;a,b,1) for all c > c∗ .

6. About the case β > 1

In this section, we will assume that β > 1, a � 0 and b > 0. The main difference
with the case β ∈ (0,1] , is that Lemmas 8 and 9 do not necessarily hold anymore. In
fact, it is the case if f (t0) = 0, and in particular this implies that, if a = 0 and b > 1,
then we have C1 = /0 (see [9], Theorem 5.19, item 2.b), and if a = 0 and 0 < b < 1,
then C ′

1 = /0 (see [9], Theorem 6.4, item 2.b).
Another consequence is that, on the contrary to what happens in the case β ∈

(0,1] , where for any c the function f ′′c vanishes at most once in [0,Tc) , this is not
necessarily true if β > 1, and numerical experimentations indicate that it is so.

Furthermore, nothing indicates whether both problems (Pβ ;a,b,0) and (Pβ ;a,b,1)
have solutions or not.

Nevertheless, some results are still true. We start with a result about the problem
(Pβ ;a,b,0) . Next, we prove that, if f ′c remains positive, then f ′c tends to 0 or 1 at infin-
ity. Finally, we point some situations for which the problem (Pβ ;a,b,1) has solutions.

PROPOSITION 10. If b ∈ (0, β
β−1 ] , then there exists c∗ < 0 such that fc∗ is a

solution of the problem (Pβ ;a,b,0) . Moreover, fc∗ is concave and is the unique solution
of (Pβ ;a,b,0) .

Proof. If b∈ (0,1) , as in the previous section, this follows from [9], Theorem 5.5.
If b ∈ [1, β

β−1 ] , on the one hand, we remark that inequality (4.1) still holds, and hence
it is so for the conclusions of Propositions 7 and 8. Thus, the problem (Pβ ;a,b,0) has a
solution. On the other hand, as we point out in Remark 8, the uniqueness of the solution
of (Pβ ;a,b,0) holds true for b ∈ [1, β

β−1 ] . �

PROPOSITION 11. If c ∈ R is such that f ′c > 0 on (0,Tc) , then Tc = +∞ and f ′c
has a finite limit at infinity, equal either to 0 or to 1 .
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Proof. Let c ∈ R be such that f ′c > 0 on (0,Tc) . From Lemma 6, we know that
Tc = +∞ and that f ′c is bounded.

If there exists a point τ � 0 such that f ′′c does not change of sign on (τ,+∞) , then
f ′c is monotone on this interval. Hence, f ′c has a finite limit at infinity and, by virtue of
Lemma 4, this limit is equal to 0 or 1.

If we are not in the previous situation, then there exists an increasing sequence
(τn)n�0 tending to +∞ such that f ′′c (τn) = 0 and f ′′′c (τn) > 0, for all n � 0 (notice that
Lemma 1 implies that we cannot have f ′′′c (τn) = 0).

Let Lc be the function defined on [0,+∞) by (3.2), i.e.

∀t � 0, Lc(t) = 3 f ′′c (t)2 + β (2 f ′c(t)−3) f ′c(t)
2.

We know that Lc is decreasing and takes negative value at each τn since, by virtue
of Lemma 2, item 3, we have f ′c(τn) < 1. Therefore, we have Lc(t) < 0 for t � τ0 .
Moreover, since 2x3−3x2 �−1 for x � 0, then Lc(t) �−β for all t � 0. Hence Lc(t)
tends to some α < 0 as t → +∞ .

Inspired by an idea developed in [19] we will show that fc(t)→+∞ and f ′′c (t)→ 0
as t → +∞ .

First, let us prove that fc(t) → +∞ as t → +∞ . If it is not the case, then fc has a
finite limit l at infinity (recall that fc is increasing) and there exists a sequence (sn)n�0

in [τ0,+∞) such that sn → +∞ and f ′c(sn) → 0 as n → +∞ .
By passing to the limit as n → +∞ in the inequalities

β f ′c(sn)2(2 f ′c(sn)−3) � Lc(sn) � Lc(τ0) < 0

we get a contradiction. Therefore fc(t) → +∞ as t → +∞ .
Next, let us prove that f ′′c (t) → 0 as t → +∞ . Let xn be a point of the interval

(τn,τn+1) such that | f ′′c (t)| � | f ′′c (xn)| for all t ∈ [τn,τn+1] . We have f ′′′c (xn) = 0 and
thus, from equation (1.1), one has

f ′′c (xn) =
−β f ′c(xn)( f ′c(xn)−1)

fc(xn)
.

Thus, since f ′c is bounded and that fc(xn) → +∞ as n → +∞ , we get that f ′′c (xn) → 0
as n → +∞ , and hence f ′′c (t) → 0 as t → +∞ .

Now we are able to conclude. Since f ′′c (t) → 0 and Lc(t) → α as t → +∞ , we
have that 2 f ′3c (t)−3 f ′2c (t)→α as t →+∞ . Therefore f ′c has a finite limit λ at infinity,
that is a root of the polynomial P(x) = 2x3 − 3x2 −α (see Remark 14 below). Since
P(0) = −α �= 0, by Lemma 4, we get λ = 1. �

REMARK 14. In the previous proof, we used the fact that for any real polynomial
P with real roots a1, . . . ,as and any continuous function ϕ : [0,+∞) → R such that
P(ϕ(t)) → 0 as t → +∞ , then ϕ(t) tends to a root of P as t → +∞ . To prove this,
note first that, for every ε small enough, the intervals Aj,ε =]a j−ε,a j +ε[ are disjoint.
Denote by Aε their union. On the one hand, since P(ϕ(t)) → 0 as t → +∞ , for all
n � 1, there exists tn such that ϕ([tn,+∞[ ) ⊂ P−1([− 1

n , 1
n ]) . On the other hand, since

⋂
n�1

P−1([− 1
n , 1

n

])
= P−1({0}) = {a1, . . . ,as},
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by a compactness argument, there exists nε such that P−1([− 1
nε

, 1
nε

]) ⊂ Aε . Let us set
tε = tnε ; one has ϕ([tε ,+∞[ ) ⊂ Aε . Due to the continuity of ϕ the set ϕ([tε ,+∞[ ) is
an interval, and hence there exists k ∈ {1, . . . ,s} such that ϕ([tε ,+∞[ ) ⊂ Ak,ε . In other
words, for t � tε we have |ϕ(t)−ak| < ε. Finally, ϕ(t) → ak as t → +∞ .

REMARK 15. In the proof of Proposition 11, we only use the positivity of β .
Thus Proposition 11 implies Proposition 6, but the proof of this latter proposition is
simpler and shorter, and says more, i.e. that f ′′c vanishes at most once.

PROPOSITION 12. If β ∈ (1,2] and a > 0 , then for any value of c such that
2ac � b2− (2b−β )a2 , we have Tc = +∞ and f ′c(t) → 1 as t → +∞ .

Proof. Let c ∈ R and denote by Kc the function defined on [0,Tc) by

Kc(t) = 2 fc(t) f ′′c (t)− f ′c(t)
2 +(2 f ′c(t)−β ) fc(t)2.

From (1.1), we easily get K′
c(t) = 2(2−β ) fc(t) f ′c(t)2 .

Assume now that f ′c vanishes, and let sc be the first point such that f ′c(sc) = 0.
Then f ′c and fc are positive on [0,sc) , and hence Kc is nondecreasing on [0,sc] . Since
f ′′(sc) � 0, we have Kc(sc) = 2 fc(sc) f ′′c (sc)−β fc(sc)2 < 0. This gives Kc(0) < 0.

Consequently, if Kc(0)� 0, then f ′c > 0 on [0,Tc) . From Proposition 11, it follows
that Tc = +∞ and f ′c tends to 0 or 1 at infinity. But, if f ′c(t) → 0 as t → +∞ , then we
obtain a contradiction as above, since Kc(t) →−β l2 as t → +∞ , where l is the limit
of fc at infinity (see Lemmas 4 and 5).

The proof is now complete, since Kc(0) = 2ac−b2 +(2b−β )a2 � 0. �

COROLLARY 2. If β ∈ (1,2] , a > 0 and b > 0 , then the problem (Pβ ;a,b,1) has
infinitely many solutions.

Proof. This follows immediately from Proposition 12. �
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