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CHARACTERIZATION OF A CLASS OF SECOND ORDER

NEUTRAL IMPULSIVE SYSTEMS VIA PULSATILE CONSTANT

A. K. TRIPATHY AND S. S. SANTRA

(Communicated by Marcia Federson)

Abstract. In this work, we study the oscillation and nonoscillation properties of a class of second
order neutral impulsive differential equations with constant coefficients and constant delays by
using pulsatile constant. Also, an attempt is made to extend the constant coefficient results to
variable coefficient equations.

1. Introduction

Consider

(y(t)− ry(t− τ))′′ +qy(t−σ) = 0, t �= τk, k ∈ N (1.1)

(E)

Δ(y(τk)− ry(τk − τ))′ + py(τk −σ) = 0, k ∈ N, (1.2)

where τ > 0, σ � 0 are real constants, r ∈ R \ {0} , p , q ∈ R and τk , k ∈ N with
τ1 < τ2 < .. . < τk < .. . and lim

k→∞
τk = +∞ are fixed moments of impulse effect with the

property max{τk+1 − τk} < +∞ , k ∈ N . For (E) , Δ is the difference operator defined
by

Δ(y(τk)−ry(τk − τ))′ = y′(τk +0)− ry′(τk − τ +0)− y′(τk −0)+ ry′(τk − τ −0);
y′(τk −0) = y′(τk) and y′(τk − τ −0) = y′(τk − τ), k ∈ N.

The objective of this work is to study (E) and establish conditions for oscillation
and nonoscillation of solutions of (E) subject to its associated characteristic equation.
We may expect the possible solutions of (E) as

y(t) = e−λ tAi(t0,t), t0 � ρ = max{τ,σ}, (1.3)

where i(t0, t) = k = number of impulses τk , k ∈ N and A �= 0 is a real number which
is called as the pulsatile constant. A close observation reveals that y(t) = C1e−λ t is a
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possible solution of (1.1) when (E) is without impulses and y(n) = C2An is a possible
solution of (1.2) when i(t0,t) = n and the impulses are the discrete values only (∵ in
case (1.2), λ = 0) . Therefore, (1.3) seems to be the possible choice of solution of (E) .

Cheng and Chu [5] have studied the oscillatory and asymptotic behaviour of solu-
tions of the impulsive system (E) with the restrictions r > 0 and τ,σ < 0. It is noticed
in their study that the authors have restricted the solutions also. But, our study deals
with the characteristic equation of (E) and their roots. In [1], Bainov and Dimitrova
have considered

(r(t)y′(t))′ + f (t,y(t),y(t−σ)) = 0, t �= τk, k ∈ N,

Δ(rky
′(τk))+g(y(τk),y(τk −σ)) = 0, k ∈ N (1.4)

and studied the oscillatory character of the solutions of the system. They have estab-
lished the sublinear and superlinear oscillation criteria for the impulsive system (1.4). It
is observed that the study of (1.4) is easier than the study of (E) subject to its character-
istic equations. Unlike the methods in [1], we encounter here the linearized oscillation
for the highly nonlinear impulsive system

(y(t)− r(t)g(y(t− τ)))′′ +q(t) f (y(t−σ)) = 0, t �= τk, k ∈ N,

Δ(y(τk)− rkg(y(τk − τ)))′ + p(τk) f (y(τk −σ)) = 0, k ∈ N.

For more details about the theory of impulsive differential equations we refer the mono-
graphs [8] and [9] and some works (for e. g. [2]–[4], [6], [7], [10]–[15]) to the readers.

DEFINITION 1.1. A function y : [−ρ ,+∞) → R is said to be a solution of (E)
with initial function ø ∈C([−ρ ,0],R) , if y(t) = ø(t) for t ∈ [−ρ ,0] , y ∈ PC(R+,R) ,
z(t) = y(t)+ p(t)y(t− τ) is twice continuously differentiable for t ∈ R+ and y(t) sat-
isfies (E) for all sufficiently large t � 0, where ρ = max{τ,σ} and PC(R+,R) is
the set of all functions U : R+ → R which are continuous for t ∈ R+ , t �= τk , k ∈ N ,
continuous from the left-side for t ∈ R+ , and have discontinuity of the first kind at the
points τk ∈ R+ , k ∈ N .

DEFINITION 1.2. A nontrivial solution y(t) of (E) is said to be nonoscillatory, if
there exists a point t0 � 0 such that y(t) has a constant sign for t � t0 . Otherwise, the
solution y(t) is said to be oscillatory.

DEFINITION 1.3. A solution y(t) of (E) is said to be regular, if it is defined on
some interval [Ty,+∞) ⊂ [t0,+∞) and

sup{|y(t)| : t � Ty} > 0

for every Ty � T . A regular solution y(t) of (E) is said to be eventually positive
(eventually negative), if there exists t1 > 0 such that y(t) > 0 (y(t) < 0) , for t � t1 .
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2. Main results

In this section, we study the oscillatory and nonoscillatory behaviour of solutions
of (E) through its associated characteristic equation provided (1.3) holds.

THEOREM 2.1. Let τ > σ > 0 and p �= 0 �= q. Then (E) admits an oscillatory
solution in the exponential impulsive form (1.3) if and only if the algebraic equation

λ 2
(

1− p
q

λ
)n1

− rλ 2eλ τ
(

1− p
q

λ
)n1−n2

+qeλ σ = 0 (2.1)

has at least one real root λ with λ > q
p for pq > 0 and λ < q

p for pq < 0, where
i(t −σ , t) = n1 > 0 is a constant and i(t − τ,t) = n2 = number of impulses between
t− τ and t .

Proof. Let y(t) be a regular nontrivial solution of the system (E) such that y(t) =
e−λ tAi(t0,t) , t > t0 > ρ . Then (1.1) becomes

λ 2e−λ tAi(t0,t) − rλ 2e−λ (t−τ)Ai(t0,t−τ) +qe−λ (t−σ)Ai(t0,t−σ) = 0,

that is,

qeλ σ + λ 2Ai(t0,t)−i(t0,t−σ) − rλ 2eλ τAi(t0,t−τ)−i(t0,t−σ) = 0. (2.2)

Indeed, i(t0, t)− i(t0,t −σ) = i(t−σ ,t) = n1 and

i(t0, t− τ)− i(t0, t −σ) = −i(t− τ,t−σ) = −[i(t− τ, t)− i(t−σ , t)] = n1−n2

implies that

λ 2An1 − rλ 2eλ τAn1−n2 +qeλ σ = 0 (2.3)

due to (2.2). Once again we use (1.3) in (1.2) to obtain a relation of the form

y′(τk +0)− ry′(τk − τ +0)− y′(τk −0)+ ry′(τk − τ −0)+ py(τk−σ) = 0,

that is,

−λe−λ τkAi(t0,τk+0) + rλe−λ (τk−τ)Ai(t0,τk−τ+0) + λe−λ τkAi(t0,τk−0)

− rλe−λ (τk−τ)Ai(t0,τk−τ−0) + pe−λ (τk−σ)Ai(t0,τk−σ) = 0.

We may note that i(t0,τk +0)− i(t0,τk −0) = 1. Hence, the last inequality becomes

−λA1+i(t0,τk−0) + rλeλ τA1+i(t0,τk−τ−0) + λAi(t0,τk−0)

−rλeλ τAi(t0,τk−τ−0) + peλ σAi(t0,τk−σ) = 0,

that is,

−λ (A−1)Ai(t0,τk) + rλ (A−1)eλ τAi(t0,τk−τ) + peλ σAi(t0,τk−σ) = 0.
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Therefore,

−λ (A−1)Ai(t0,τk)−i(t0,τk−σ) + rλ (A−1)eλ τAi(t0,τk−τ)−i(t0,τk−σ) + peλ σ = 0. (2.4)

Using the fact

i(t0,τk)− i(t0,τk −σ) = i(τk −σ ,τk) = n1

and

i(t0,τk − τ)− i(t0,τk −σ) = −i(τk − τ,τk −σ) = −[i(τk − τ,t)− i(τk −σ ,t)] = n1−n2,

we obtain from (2.4) that

−λ (A−1)An1 + rλ (A−1)eλ τAn1−n2 + peλ σ = 0. (2.5)

If we choose A = 1− p
q λ , then it is easy to verify that (2.5) reduces to (2.3). Conse-

quently, (2.3) is same as (2.1). Moreover, (2.1) is the required characteristic equation
for (E) . Ultimately, if y(t) is an oscillatory solution of (E) with the pulsatile constant
A = 1− p

q λ < 0, where λ > q
p for pq > 0 and λ < q

p for pq < 0, then λ satisfies the
characteristic equation (2.1). Conversely, consider the characteristic equation (2.1) and
assume that λ = λ ∗ is the real root of (2.1) with λ ∗ > q

p for pq > 0 and λ ∗ < q
p for

pq < 0. Then (E) admits an oscillatory solution y(t) = e−λ ∗tAi(t0,t) with the pulsatile
constant A = 1− p

q λ ∗ < 0. This completes the proof of the theorem. �

THEOREM 2.2. Let all the assumptions of Theorem 2.1 hold. Then (E) admits
an eventually positive solution in the form of (1.3) if and only if (2.1) has at least one
real root λ with λ < q

p for pq > 0 and λ > q
p for pq < 0.

Proof. The proof of the theorem follows from the proof of Theorem 2.1 and hence
the details are omitted. �

COROLLARY 2.3. Let p,q,r ∈ R\ {0}, and σ , τ ∈ R+ such that σ = τ �= 0 or
σ = 0 �= τ hold. Then the conclusion of the Theorems 2.1 and 2.2 are hold true.

COROLLARY 2.4. In Theorem 2.1, let p = q �= 0. Then (E) admits an oscillatory
solution in the exponential impulsive form (1.3) if and only if λ > 1 and eventually
positive solution if and only if λ < 1.

REMARK 2.5. Following to Corollary 2.4, we may note that λ = 1 if and only if
A = 0, that is, (E) has the trivial solution.

THEOREM 2.6. Let τ > σ > 0 and p = q = 0. Then
i) for r ∈ (−∞,0) and n2 odd or r∈ (0,∞) and n2 even, (E) admits an oscillatory

solution if and only if λ ∗ ∈ (1,∞) is a root of the characteristic equation of (E);
ii) for r ∈ (0,∞) , (E) admits an eventually positive solution if and only if λ ∗ ∈

(−∞,1) is a root of the characteristic equation of (E) .
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Proof. Proceeding as in the proof of Theorem 2.1 we have the impulsive system

λ 2Ai(t0,t) − rλ 2eλ τAi(t0,t−τ) = 0,

−λ (A−1)Ai(t0,τk) + rλ (A−1)eλ τAi(t0,τk−τ) = 0

which in turn implies that

λ 2Ak − rλ 2eλ τAk−n2 = 0,

−λ (A−1)Ak + rλ (A−1)eλ τAk−n2 = 0.

Consequently, the above system becomes

λ 2An2 − rλ 2eλ τ = 0,

−λ (A−1)An2 + rλ (A−1)eλ τ = 0,

which is equivalent to say that

A = 1−λ , λ 2An2 − rλ 2eλ τ = 0

and hence

λ 2(1−λ )n2 − rλ 2eλ τ = 0 (2.6)

is the resulting characteristic equation for (E). Clearly, λ �= 1 for r �= 0 in (2.6). Hence
to solve (2.6), it happens that either λ ∈ (−∞,1) or λ ∈ (1,∞). If the former holds,
then 1− λ > 0, that is, A > 0 and (2.6) holds true when r ∈ (0,∞). Therefore, (E)
admits an eventually positive solution in the form (1.3) if and only if λ ∗ ∈ (−∞,1) is
a root of (2.6). Assume that the latter holds. Then 1−λ < 0, that is, A < 0 and (2.6)
holds true when r ∈ (−∞,0) with odd n2 or r ∈ (0,∞) with even n2 . Therefore, (E)
admits an oscillatory solution in the form (1.3) if and only if λ ∗ ∈ (1,∞) is a root of
(2.6). This completes the proof of the theorem. �

REMARK 2.7. Indeed, (2.6) doesn’t hold if r ∈ (−∞,0) and λ ∈ (−∞,1).

THEOREM 2.8. Let p,r ∈ R \ {0} , τ = σ �= 0 , q = 0 and i(t − τ,t) = 1. Then
for r ∈ (0,∞) , (E) admits an eventually positive solution, and for r ∈ (−∞,0) , (E)
admits an oscillatory solution.

Proof. Let y(t) be a regular nontrivial solution of (E) in the form of (1.3). Then
proceeding as in Theorem 2.1, we have the system of equations

λ 2A− rλ 2eλ τ = 0,

−λ (A−1)A+[p+ rλ(A−1)]eλτ = 0.

In the above system of equations, if A = reλ τ , then p = 0 which is absurd. Hence
λ = 0, and either A− r > 0 or A− r < 0. Thus for r ∈ (0,∞), we have A > 0, that is,
(E) admits a nonoscillatory solution and when r ∈ (−∞,0) , (E) admits an oscillatory
solution. This completes the proof of the theorem. �
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COROLLARY 2.9. Let p,r ∈ R \ {0} , σ = 0 = q and i(t − τ, t) = 1. Then the
conclusion of Theorem 2.8 holds true.

REMARK 2.10. If we denote

F(λ ) = λ 2
(

1− p
q

λ
)n1

− rλ 2eλ τ
(

1− p
q

λ
)n1−n2

+qeλ σ ,

then it is easy to verify that F(0) = q > 0,

F

(
q
p

)
−→ +∞, for r �= 0, p > 0, q > 0

and

F

(
− q

p

)
=

q2

p2 2n1

[
1− r2−n2e−

q
p τ

]
+qe−

q
p σ > 0,

for r ∈ (0,1) , p > 0 and q > 0. Keeping in view of Theorem 2.1, we have proved the
following result:

THEOREM 2.11. Let p,q > 0 , r ∈ (0,1) and τ > σ > 0. Then every solution of
(E) which is of the form (1.3) oscillates if and only if (2.1) has no real roots λ ∗ ∈[
− q

p , q
p

]
.

EXAMPLE 2.12. Consider the system of equations

(E1)

{
(y(t)− ry(t−2))′′+qy(t−1) = 0, t �= τk, t > 2, k ∈ N

Δ(y(τk)− ry(τk −2))′ + py(τk −1) = 0, k ∈ N,

where r = 0.401713262, q = 2, p = 1 and τk = k+1, k ∈N. If we choose n1 = 1 and
n2 = 2, then from the characteristic equation of (E1) it follows that A = 0.5, λ = 1
and

y(t) = e−t(0.5)i(2,t)

is a solution of the impulsive system (E1) . Hence, by Theorem 2.2, the system (E1)
has an eventually positive solution.

EXAMPLE 2.13. Consider the system of equations

(E2)

{
(y(t)− ry(t− 1

3))′′ +qy(t− 1
6 ) = 0, t �= τk, t > 1

3 , k ∈ N

Δ(y(τk)− ry(τk − 1
3 ))+ py(τk − 1

6 ) = 0, k ∈ N,

where r = 0.01625323552, q = 0.2, p = 0.1 and τk = k , k ∈ N. If we choose n1 = 3
and s = 4, then from the characteristic equation of (E2) , it follows that A = −0.5,
λ = 3 and

y(t) = e−3t(−0.5)i( 1
3 ,t)

is an oscillatory solution of the impulsive system (E2) . Hence by Theorem 2.1, the
system (E2) admits an oscillatory solution.
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3. Linearized oscillation criteria

Consider the nonlinear neutral impulsive delay differential equations of the form:

(y(t)− r(t)g(y(t− τ)))′′ +q(t) f (y(t−σ)) = 0, t �= τk, k ∈ N

Δ(y(τk)− r(τk)g(y(τk − τ)))′ + p(τk) f (y(τk −σ)) = 0, k ∈ N, (3.1)

where τ , σ ∈R+ , g, f ∈C(R,R) and r, p,q∈C(R+,R+) . We introduce the following
assumptions for the system (3.1):

(A1) lim
t→∞

r(t) = r0, r0 ∈ [0,1); lim
t→∞

q(t) = q0 ∈ R+, liminf
t→∞

p(t) = p0 ∈ R+,

(A2) ug(u)> 0, v f (v)> 0 for u,v �= 0 and g(u)� u, f (v)� v for u,v � 0; | f (u)|�
h for |u| � h > 0 and lim

u→0

g(u)
u = 1 = lim

v→0

f (v)
v .

With the system of equations (3.1), we associate the linear system of equations

(x(t)− r0x(t− τ))′′ +q0x(t−σ) = 0, t �= τk, k ∈ N

Δ(x(τk)− r0x(τk − τ))′ + p0x(τk −σ) = 0, k ∈ N. (3.2)

In this section, our aim is to establish conditions for the oscillation of solutions of
the system (3.1) in terms of the oscillation of solutions of the limiting equations (3.2).
We note that the associated characteristic equation for the system (3.2) is given by

λ 2
(

1− p0

q0
λ

)n1

− r0λ 2eλ τ
(

1− p0

q0
λ

)n1−n2

+q0e
λ σ = 0. (3.3)

By Theorem 2.1, (3.2) admits an oscillatory solution in the form (1.3) if and only if
(3.3) has at least one real root λ with λ > q0

p0
.

THEOREM 3.1. Assume that (3.3) has no real roots in
[
− q0

p0
, q0

p0

]
. Furthermore,

assume that (A1) and (A2) hold. If

(A3)
∫ ∞
0 q(t)dt +

∞
∑

k=1
p(τk) = ∞

and

(A4)
∫ ∞
t

[∫ t
T q(s)ds+

∞
∑

k=1
p(τk)

]
dθ = ∞, T > 0,

then the system (3.1) admits oscillatory solutions.

Proof. Suppose that (3.1) doesn’t admit an oscillatory solution and let y(t) be a
regular nonoscillatory solution of the system (3.1). Then there exists t0 � max{σ ,τ}
such that y(t) > 0, y(t − τ) > 0 and y(t−σ) > 0 for t � t0. If we set

z(t) = y(t)− r(t)g(y(t− τ)),

then the system (3.1) becomes

z′′(t) = −q(t) f (y(t−σ)) � 0, t �= τk, k ∈ N,

Δz′(τk) = −p(τk) f (y(τk −σ)) � 0, k ∈ N (3.4)
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for t � t1 > t0. As a result, z′(t) is nonincreasing on [t2,∞) , t2 > t1. Consider z′(t) > 0
for t � t2. Then integrating the system (3.4) from t2 to t(> t2), we get

[z′(s)]tt2 +
∫ t

t2
q(s) f (y(s−σ))ds− ∑

t2�τk<t
Δz′(τk) = 0,

that is, ∫ t

t2
q(s) f (y(s−σ))ds+ ∑

t2�τk<t
p(τk) f (y(τk −σ)) = −[z′(s)]tt2

implies that

h

[∫ t

t2
q(s)ds+ ∑

t2�τk<t
p(τk)

]
� −[z′(s)]tt2

< ∞, as t → ∞

due to (A2) , a contradiction. Hence z′(t) < 0 for t � t2. Consequently, z(t) is non-
increasing on [t2,∞) , t2 > t1. We claim that y(t) is bounded for t � t2. If not, there
exists {ηn} with lim

n→∞
ηn = ∞ such that lim

n→∞
y(ηn) = ∞ and y(ηn) = max

t2�s�ηn
y(s). Con-

sequently,

z(ηn) = y(ηn)− r(ηn)g(y(ηn − τ))
� y(ηn)− r(ηn)y(ηn − τ)
� (1− r(ηn))y(ηn)
→ +∞ as n → ∞

implies that z(t) is nondecreasing, a contradiction. So, our claim holds and z(t) is
bounded ultimately. Integrating (3.1) from t2 to t(> t2), we obtain∫ t

t2
q(s) f (y(s−σ))ds+ ∑

t2�τk<∞
p(τk) f (y(τk −σ)) � −z′(t).

Again integrating the last inequality from t to +∞, we get

∫ ∞

t

[∫ θ

t2
q(s) f (y(s−σ))ds+ ∑

t2�τk<∞
p(τk) f (y(τk −σ))

]
dθ < ∞.

We assert that liminf
t→∞

y(t) = 0. If not, let liminf
t→∞

y(t) > 0. Then there exists a constant

β > 0 such that y(t) � β > 0 for t � t3 . Therefore,

∫ ∞

t

[∫ θ

t2
q(s) f (y(s−σ))ds+ ∑

t2�τk<∞
p(τk) f (y(τk −σ))

]
dθ

� f (β )
∫ ∞

t

[∫ θ

t2
q(s)ds+ ∑

t2�τk<∞
p(τk)

]
dθ → ∞, as t → ∞
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due to (A4), a contradiction. So, liminf
t→∞

y(t) = 0. By Lemma 1.5.2 [8], it follows

that lim
t→∞

z(t) = 0. Let ε ∈ (0,1− r0) be given. Then there exists t3 > t2 such that

r(t) � r0 + ε < 1, for t � t3 . Now,

0 = lim
t→∞

z(t) = limsup
t→∞

z(t)

� limsup
t→∞

(y(t)− (r0 + ε) y(t − τ))

� limsup
t→∞

y(t)+ liminf
t→∞

(−(r0 + ε) y(t − τ))

= (1− r0− ε) limsup
t→∞

y(t)

implies that limsup
t→∞

y(t) = 0 and hence lim
t→∞

y(t) = 0 for t �= τk , k ∈N. As {y(τk−0)}∞
1

and {y(τk +0)}∞
1 are the sequences of real values, and because of the continuity of y ,

it follows that lim
k→∞

y(τk −0) = 0 = lim
k→∞

y(τk +0) due to liminf
t→∞

y(t) = 0 = limsup
t→∞

y(t) .

Hence, for the system (3.1), lim
t→∞

y(t) = 0 = lim
k→∞

y(τk) . Let’s set

Q(t) = q(t)
f (y(t −σ))
y(t−σ)

, P(t) = p(t)
f (y(t −σ))
y(t−σ)

, R(t) = r(t)
g(y(t− τ))
y(t− τ)

for t > t4 � t3 . Then it is easy to see that lim
t→∞

Q(t) = q0, lim
t→∞

R(t)= r0 and liminf
t→∞

P(t) =

liminf
t→∞

p(t) lim
t→∞

f (y(t−σ))
y(t−σ) = p0 . Ultimately, the system (3.1) becomes

(y(t)−R(t)y(t− τ))′′ +Q(t)y(t−σ) = 0, t �= τk, k ∈ N

Δ(y(τk)−R(τk)y(τk − τ))′ +P(τk)y(τk −σ) = 0, k ∈ N (3.5)

for t > t5 � t4 . Let 0 < ε1 < q0 be given such that Q(t) � q0− ε1 for t � t5 . Choose
Z(t) = y(t)−R(t)y(t− τ). Then integrating (3.5) from t5 to t(> t5) , we get∫ t

t5
Q(s)y(s−σ)ds+ ∑

t5�τk<∞
P(τk)y(τk −σ) � −Z′(t).

Again integrating the last inequality from t to +∞, we obtain

∫ ∞

t

[∫ θ

t5
Q(s)y(s−σ)ds+ ∑

t5�τk<∞
P(τk)y(τk −σ)

]
dθ � − lim

θ→∞
Z(θ )+Z(t) = Z(t)

due to lim
t→∞

Z(t) = 0. Consequently,

y(t) = R(t)y(t− τ)+
∫ ∞

t

[∫ θ

t5
Q(s)y(s−σ)ds+ ∑

t5�τk<∞
P(τk)y(τk −σ)

]
dθ

� (r0− ε)y(t− τ)+
∫ ∞

t

[
(q0− ε1)

∫ θ

t5
y(s−σ)ds+ p0 ∑

t5�τk<∞
y(τk −σ)

]
dθ
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for any large t . Let Y = BC([t∗,∞),R) be the space of all real valued bounded continu-
ous functions defined on R such that Y is a Banach space with respect to the sup norm
defined by

‖x‖ = sup
t�t∗

|x(t)|.

Let

S = {x ∈ Y : 0 � x(t) � 1, t � t∗}.
Clearly, S is a closed and convex subspace of Y . For ρ = max{σ ,τ} and y ∈ S, we
define

Φx(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Φx(t∗ + ρ), t ∈ [t∗,t∗ + ρ ]

α
y(t) [(r0 − ε)x(t− τ)y(t− τ)+

∫ ∞
t [(q0 − ε1)

∫ θ
t5

x(s− τ)y(s−σ)ds

+p0 ∑
t5�τk<∞

x(τk − τ)y(τk −σ)]dθ ], t > t∗ + ρ ,

where α < 1. Clearly, Φx(t) � 0 for t � t∗ and

Φx(t) � α
y(t)

{
(r0−ε)y(t−τ)+

∫ ∞

t

[
(q0−ε1)

∫ θ

t5
y(s−σ)ds+p0 ∑

t5�τk<∞
y(τk−σ)

]
dθ

}
,

� α < 1

implies that Φx ∈ S and Φ : S −→ S. For x1,x2 ∈ S,

|Φx1(t)−Φx2(t)| � α
y(t)

{(r0 − ε)y(t− τ)|x1(t− τ)− x2(t− τ)|

+
∫ ∞

t
[(q0− ε1)

∫ θ

t5
y(s−σ)|x1(s−σ)− x2(s−σ)|ds

+ p0 ∑
t5�τk<∞

y(τk −σ)|x1(τk −σ)− x2(τk −σ)|]dθ},

that is,

|Φx1(t)−Φx2(t)| � α‖x1− x2‖
y(t)

{(r0 − ε)y(t− τ)+
∫ ∞

t
[(q0− ε1)

∫ θ

t5
y(s−σ)ds

+ p0 ∑
t�τk<∞

y(τk −σ)]dθ}

� α‖x1− x2‖
implies that Φ is contraction. By the Banach’s fixed point theorem, Φ has a unique
fixed point in [0,1]. Hence,

x(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Φx(t∗ + ρ), t ∈ [t∗,t∗ + ρ ]

α
y(t) [(r0 − ε)x(t− τ)y(t− τ)+

∫ ∞
t [(q0− ε1)

∫ θ
t5

x(s− τ)y(s−σ)ds

+p0 ∑
t5�τk<∞

x(τk − τ)y(τk −σ)]dθ ], t > t∗ + ρ .
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Setting w(t) = x(t)y(t) for t � t∗ + ρ , we obtain

(w(t)−α(r0 − ε)w(t− τ))′′ + α(q0− ε1)w(t −σ) = 0, t �= τk, k ∈ N

Δ(w(τk)−α(r0− ε)w(τk − τ))′ + p0 α w(τk −σ)) = 0, k ∈ N, (3.6)

that is, w(t) is a positive solution of (3.6) whose characteristic equation is given by

λ 2
[
1− p0α

α(q0−ε1)
λ

]n1

−α(r0−ε)λ 2eλ τ
[
1− p0α

α(q0−ε1)
λ

]n1−n2

+α(q0 − ε1)eλ σ = 0.

From Theorem 2.2, it follows that w(t) is the positive solution of (3.6) if and only if

λ <
α(q0− ε1)

p0α
=

q0− ε1

p0
<

q0

p0

which in turn implies that (3.3) has a real root in
[
− q0

p0
, q0

p0

]
due to Theorem 2.11, a

contradiction. This completes the proof of the theorem. �

EXAMPLE 3.2. Consider the system of equations

(y(t)− r(t)g(y(t−2)))′′+q(t) f (y(t−1)) = 0, t �= τk, t > 2, k ∈ N

Δ(y(τk)− r(τk)g(y(τk −2)))′ + p(τk) f (y(τk −1)) = 0, k ∈ N, (3.7)

where r(t) = 0.2325441579+ 2e−t, q(t) = 1+ e−t , p(t) = 2(2+ cos t) , τk = k + 2,
k ∈ N , and g(u) = (3−2e−|u|)u = f (u). The limiting equation for (3.7) is given by

(x(t)− r0x(t −2))′′+q0x(t−1) = 0, t �= τk, k ∈ N

Δ(x(τk)− r0x(τk −2))′ + p0x(τk −1) = 0, k ∈ N, (3.8)

where r0 = 0.2325441579, q0 = 1 and p0 = 2. If we choose n1 = 1 and n2 = 3, then
from the characteristic equation of (3.8), it follows that A = −1, λ = 1 and

x(t) = e−t(−1)i(2,t)

is an oscillatory solution of (3.7). Hence by Theorem 3.1, (3.7) admits an oscillatory
solution.
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