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Abstract. In this paper we establish a minimization principle in an ordered Banach space (in
particular in a Riesz-Banach space). As an application we discuss the existence of a positive
solution for a boundary value problem on the half-line even when the nonlinear term is sign-
changing.

1. Introduction

In [4] the author established a mountain pass theorem in an ordered Banach space
(in particular in a Riesz-Banach space). In this paper we present a version of a mini-
mization principle in an ordered Banach space (in particular in a Riesz-Banach space)
using a simple argument based on Ekeland’s variational principle. As an application
we establish the existence of a positive solution for a boundary value problem on the
half-line even when the nonlinear term is sign-changing.

DEFINITION 1.1. Let (E,‖.‖) be a real Banach space. Now E is called an or-
dered Banach space if the following conditions hold:

(1) (E,�) is an ordered set.

(2) Given u,v,w ∈ E, if u � v, then u + w � v + w. If u � v, then λu � λv for any
λ ∈ [0,+∞).

(3) E+ := {u ∈ E : 0 � u} is a closed subset of E.

DEFINITION 1.2. [6]
1) We say that a Banach space E is ordered by a cone K , that is u � v if and only

if v−u∈ K.
2) An orderedBanach space E is called a Riesz-Banach space if u∨v := sup{u,v} ,

u∧ v := inf{u,v} exist for any u,v ∈ E.

For a Riesz-Banach space E, we define |u| := u∨ (−u) , u+ := u∨ 0, u− :=
(−u)∨0.
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REMARK 1.1. [4]

(1) The Lebesgue space Lp(Ω) and the Sobolev spaces W 1,p(Ω) and W 1,p
0 (Ω) are

ordered Banach spaces, where we define the order u � v if u(x) � v(x) a.e. x ∈ Ω.

Note Lp(Ω) and the first order Sobolev spaces W 1,p(Ω), W 1,p
0 (Ω) are Riesz-Banach

spaces.

(2) If u ∈Wm,p(Ω), then |u| ∈Wm,p(Ω). Moreover we have

∇|u(x)| =
⎧⎨
⎩

∇u(x), if u(x) > 0
0, if u(x) = 0
−∇u(x), if u(x) < 0,

|∇|u||p = ‖u‖p for u ∈W 1,p(Ω),

where |u|p denotes the Lp(Ω)− norm.

DEFINITION 1.3. Let X be a real Banach space, J ∈C1(X ,R) . The functional J
is said to satisfy the Palais-Smale condition ((PS) for short) if any sequence (un)n∈N ⊂
X such that

(J(un))n∈N is bounded and J′(un) → 0, as n → ∞ (1.1)

possesses a convergent subsequence.

LEMMA 1.1. (Ekeland’s variational principle) [5] Let (E,d) be a complete met-
ric space, and let J : E −→ R∪{+∞} be a lower semicontinuous functional, bounded
from below, and not identically equal to +∞ (J 
≡ +∞). Let ε > 0 and u0 ∈ E such
that

J(u0) � inf
u∈E

J(u)+ ε.

Then, there exists uε ∈ E such that

(1) J(uε) � J(u0),

(2) d(uε ,u0) � 1,

(3) J(uε) < J(v)+ εd(v,uε) for all v ∈ E such that v 
= uε .

COROLLARY 1.1. [5] Let E be a Banach space and J : E −→ R , a C1− func-
tional that is bounded from below and satisfies the (PS) condition. Then there exists a
critical point u ∈ E of J.

2. Main result

Our goal in this section is to prove a version of Corollary 1.1 in Riesz-Banach
spaces.

THEOREM 2.1. Let E be a Riesz- Banach space ordered by a cone K and let
the functional J ∈ C1(E,R) be bounded from below, and satisfy the (PS) condition.
Suppose that

J(|u|) � J(u), ∀u ∈ E.

Then J admits a critical point u in K.



Differ. Equ. Appl. 9, No. 1 (2017), 99–104. 101

Proof. For ε = 1
n , let u0 ∈ E be such that J(u0) � infE J(u)+ 1

n . From Ekeland’s
variational principle, there exists (un) ⊂ E, such that

J(un) < J(v)+
1
n
‖un− v‖ for all v ∈ E such that v 
= un. (2.1)

Let v = un+th , t > 0, h 
= 0. Then by a standard technique, one has limn−→+∞ J′(un) =
0. Now

inf
u∈E

J(u) � J(un) � J(u0) � inf
E

J(u)+
1
n
,

so (un) is a Palais-Smale sequence, and since J satisfies the (PS) condition, then
there exists a subsequence (unk) ⊂ (un) such that unk −→ w and J(w) = inf

u∈E
J(u) ,

J′(w) = 0. Since J(|w|) � J(w) , we have J(|w|) = inf
u∈E

J(u) and because J ∈C1(E,R),

then |w| ∈ K is a critical point of J. �
As an application of the above result, consider the problem{ −(p(t)u′(t))′ = f (t,u(t)), a.e. t ∈ [0,+∞),

u(0) = u(+∞) = 0,
(2.2)

where f : [0,+∞)×R −→ R is a Carathéodory function, and may change sign, p :
[0,+∞) −→ (0,+∞) satisfies 1

p ∈ L1[0,+∞), and∫ +∞

0

(∫ +∞

t

1
p(s)

ds

)
dt < +∞.

Examples of p are the exponential function or

p(t) =

{√
t, if t ∈ [0,1],

1
2 t(1+ t2), if t � 1.

Define the space

H1
0,p(0,+∞) = {u ∈ AC([0,+∞),R) | u(0) = u(+∞) = 0,

√
pu′ ∈ L2[0,+∞)}

and the cone
K = {u ∈ H1

0,p(0,+∞), 0 � u}.

LEMMA 2.1. [3], [1] H1
0,p(0,+∞) is embedded in L2(0,+∞).

Now H1
0,p(0,+∞) is a Hilbert space equipped with the norm

‖u‖2
p =

∫ +∞

0
p(t)u′2(t)dt +

∫ +∞

0
u2(t)dt,

associated with the scalar product

(u,v) =
∫ +∞

0
p(t)u′(t)v′(t)dt +

∫ +∞

0
u(t)v(t)dt.

LEMMA 2.2. [3], [1] On H1
0,p(0,+∞), the quantity ‖u‖2 =

∫ +∞
0 p(t)u′2(t)dt is a

norm which is equivalent to the H1
0,p(0,+∞)−norm.
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LEMMA 2.3. [3], [1] (H1
0,p(0,+∞),‖·‖) is embedded in (Cl [0,+∞),‖u‖∞) , where

Cl[0,+∞) = {u ∈ C([0,+∞),R) : limt→+∞ u(t) exists} and ‖u‖∞ = supt∈[0,+∞) |u(t)|
with d =

√‖1/p‖L1 the constant of the embedding.

COROLLARY 2.1. [3], [1] H1
0,p(0,+∞) is embedded continuously in Cl[0,+∞)

and in L2(0,+∞) .

LEMMA 2.4. [3], [1] The embedding

H1
0,p(0,+∞) ↪→Cl[0,+∞)

is compact.

2.1. Weak solutions

Take v ∈ H1
0,p(0,+∞) , and multiply the equation in (2.2) by v and integrate be-

tween 0 and +∞, to obtain

−
∫ +∞

0
(p(t)u′(t))′v(t)dt =

∫ +∞

0
f (t,u(t))v(t)dt.

Hence ∫ +∞

0
p(t)u′(t)v′(t)dt =

∫ +∞

0
f (t,u(t))v(t)dt.

This leads to the natural concept of a weak solution for (2.2).

DEFINITION 2.1. We say that a function u ∈ H1
0,p(0,+∞) is a weak solution of

(2.2) if ∫ +∞

0
p(t)u′(t)v′(t)dt−

∫ +∞

0
f (t,u(t))v(t)dt = 0,

for all v ∈ H1
0,p(0,+∞).

To study (2.2), consider the functional J : H1
0,p(0,+∞) −→ R defined by

J(u) =
1
2
‖u‖2−

∫ +∞

0
F(t,u(t))dt,

where

F(t,u) =
∫ u

0
f (t,s)ds.

Let the operator A : H1
0,p −→ H1

0,p be defined by

Au(t) =
∫ +∞

0
G(t,s) f (s,u(s))ds

with the Green’s function

G(t,s) =
1

‖ 1
p‖L1

{
ϕ1(t)ϕ2(s), t � s,

ϕ1(s)ϕ2(t), s � t,

and the fundamental system of solutions ϕ1(t) =
∫ t
0

ds
p(s) and ϕ2(t) =

∫ +∞
t

ds
p(s) .
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THEOREM 2.2. Suppose the following condition holds:

( f1 ) f is an odd function in u and there exist a constant μ ∈ [0,1) , and positive func-
tions a1,b1 ∈ L1[0,+∞) such that

| f (t,u)| � a1(t)|u|μ +b1(t), for a.e. t ∈ [0,+∞) and all u ∈ R.

Then (2.2) has at least one weak solution in K .

LEMMA 2.5. [1] Under assumption ( f1) , we have

(1) A is well defined,

(2) A is compact.

Proof of Theorem 2.2. We will apply Theorem 2.1. First we note that J is well
defined. In fact, given u ∈ H1

0,p(0,+∞), then ( f1) guarantees that

|F(t,u(t))| � a1(t)
μ +1

|u(t)|μ+1 +b1(t)|u(t)|.
Hence using Lemma 2.3 we have∣∣∫ +∞

0 F(t,u(t))dt
∣∣ � dμ+1

μ+1 ‖u‖μ+1 ∫ +∞
0 a1(t)dt +d‖u‖∫ +∞

0 b1(t)dt

� dμ+1

μ+1 ‖u‖μ+1|a1|1 +d‖u‖|b1|1,
so

|J(u)| � 1
2‖u‖2 + d μ+1

μ+1 ‖u‖μ+1|a1|1 +d‖u‖|b1|1.
Now we show J is bounded from below. To see this note ( f1) and Lemma 2.3 guarantee
that

J(u) � 1
2‖u‖2 − dμ+1

μ+1 ‖u‖μ+1|a1|1−d‖u‖|b1|1. (2.3)

Since μ < 1, (2.3) implies
lim

‖u‖−→+∞
J(u) = +∞.

Next from ( f1) , J is continuously differentiable and satisfies

(J′(u),v) =
∫ +∞

0
p(t)u′(t)v′(t)dt−

∫ +∞

0
f (t,u(t))v(t)dt

for all u,v ∈ H1
0,p and

J′ = I−A.

Finally J satisfies the (PS) condition. Indeed, suppose that (un) ⊂ H1
0,p(0,+∞) and

there exists M > 0 such that |J(un)|� M and J′(un) = un−Aun −→ 0 on H1
0,p(0,+∞)

when n −→ +∞. From the above (J is bounded from below) we see that (un) is
bounded in H1

0,p(0,+∞). From the compactness of A there is a subsequence (Aunk)
such that Aunk −→ w. Then

‖unk −w‖ � ‖unk −Aunk‖+‖Aunk −w‖,
and since unk −Aunk −→ 0 in H1

0,p(0,+∞), when n −→ +∞, we have that (un) has a

convergent subsequence (unk) with unk −→ w. Now J(|u|) = J(u) , ∀u ∈ H1
0,p(0,+∞)

since f is odd and now apply Theorem 2.1. �
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REMARK 2.1. An example of f is the odd function

f (t,u) = a(t)u
1
3 −b(t)u

1
5 ,

with a,b ∈ L1(0,+∞).
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