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DYNAMICS OF A LINK–TYPE INDEPENDENT

ADAPTIVE EPIDEMIC MODEL

ANDRÁS SZABÓ-SOLTICZKY

Abstract. A link-type-independent adaptive network model of SIS epidemic propagation is con-
sidered. In the model links can be activated or deleted randomly regardless to the type of nodes.
A four-variable pairwise ODE approximation is used to describe how the number of quantities
such as number of infected nodes evolves in time. In order to investigate bifurcations in the
model an invariant manifold is defined. Using the theory of asymptotically autonomous systems,
results obtained for the reduced system on the manifold are extended to the full pairwise model
and a non-oscillating behaviour is proven.
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