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STUDY ON ITERATIVE LEARNING CONTROL FOR

RIEMANN–LIOUVILLE TYPE FRACTIONAL–ORDER SYSTEMS
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Abstract. In this paper, we explore P-type and D-type learning laws for two classes of Riemann-
Liouville fractional-order controlled systems to track the varying reference accurately by adopt-
ing a few iterations in a finite time interval. Firstly, we establish open and closed-loop P-type
convergence results in the sense of (1−α ,λ) -weighted norm ‖ ·‖1−α,λ for Riemann-Liouville
fractional-order system of order 0 < α < 1 with initial state learning. Secondly, we establish
open and closed-loop D-type convergence results in the sense of λ -weighted norm ‖ · ‖λ for
Riemann-Liouville fractional-order system of order 1 < α < 2 with initial state learning. Fi-
nally, two numerical examples are given to illustrate our theoretical results.
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1. Introduction

Since Uchiyama [1] and Arimoto [2, 3] put forward the iterative learning control
(ILC for short), ILC has been extended to tracking tasks with iteratively varying refer-
ence trajectories [4, 5, 6, 7]. There are some contribution on P-type and D-type iterative
learning control for integer order ordinary differential equations [8, 9, 10, 11]. The con-
tribution [12] pointed out that how to deal with iteration-varying factors became a focus
of ILC research.

Nowadays, fractional calculus plays an important role in various fields such as
electricity, signal and image processing. And many fractional order controllers have
so far been implemented to enhance the robustness and the performance of the control
systems [13]. Furthermore, ILC of fractional-order systems has been attracted by many
researchers since fractional-order systems can better describe the behavior of the object
in control problems [14, 15, 16, 17].

Recently, existence theory of solutions to fractional differential equations involv-
ing Riemann-Liouville derivatives has been investigated in [18, 19, 20, 21]. Some re-
searches about Caputo fractional controlled systems have obtained some interesting
results [22, 23, 24, 25].

Hence, in this work, we mainly consider Riemann-Liouville fractional-order non-
linear system of 0 < α < 1:⎧⎨

⎩
(Dα

0+xk)(t) = μxk(t)+ f (t,xk(t),uk(t)), t ∈ J = [0,T ], μ < 0,

lim
t→0+

(Dα−1
0+ xk)(t) = xk(0), (1.1)
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with a given nonlinear output yk .
Meanwhile, we consider Riemann-Liouville fractional-order nonlinear system of

1 < α < 2: ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(Dα
0+xk)(t) = μxk(t)+ f (t,xk(t),uk(t)), t ∈ J, μ < 0,

lim
t→0+

(Dα−1
0+ xk)(t) = xk(0),

lim
t→0+

(Dα−2
0+ xk)(t) = x̂k(0),

(1.2)

with a given linear output yk .
We explore iterative learning control for Riemann-Liouville fractional controlled

systems, and establish the convergence analysis of two kinds of ILC for fractional dif-
ferential systems via initial state learning and with initial state learing. We try to design
some ILC law to generate the control input uk(·) such that the fractional system output
yk(·) tracks the reference trajectories yd(·) as accurately as possible as k → ∞ uni-
formly on a finite time interval in the sense of (1−α,λ )-weighted norm for P-type
ILC and order α ∈ (0,1) and λ -weighted norm for D-type ILC and order α ∈ (1,2) .
The ILC scheme would not fix the initial value on the expected condition at the begin-
ning of each iteration. So, we lead into initial state learning.

For system (1.1) (0 < α < 1), we consider the open-loop P-type ILC updating law
with initial state learning: {

xk+1(0) = xk(0)+Lek(0),
uk+1(t) = uk(t)+ γ1ek(t),

(1.3)

where yd(t) be the iteratively varying reference trajectories and ek(t) = yd(t)− yk(t)
denotes the tracking error, L and γ1 are unknown parameters to be determined. And
closed-loop P-type ILC updating law with initial state learning:{

xk+1(0) = xk(0)+Lek(0),
uk+1(t) = uk(t)+ γ2ek+1(t),

(1.4)

where L and γ2 are unknown parameters to be determined.
For system (1.2) (1 < α < 2), we consider the open-loop D-type ILC updating

law with initial state learning:{
xk+1(0) = xk(0)+Lėk(0),
uk+1(t) = uk(t)+ γ1ėk(t).

(1.5)

And the closed-loop D-type ILC updating law with initial state learning:{
xk+1(0) = xk(0)+Lėk(0),
uk+1(t) = uk(t)+ γ2ėk+1(t).

(1.6)

The results of the P-type ILC and D-type ILC for full nonlinear fractional differen-
tial systems are derived respectively. Examples are given in final section to demonstrate
the application of our main results.
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2. Preliminaries

Denote C (J,Rn) be the Banach space of vector-value continuous functions from
J → R

n endowed with the ∞-norm ‖x‖∞ = max
t∈J

‖x(t)‖ or λ -norm ‖x‖λ = max
t∈J

e−λ t

‖x(t)‖ . We introduce the set C1−α(J,R) = {x∈C ((0,T ],R) : ·1−αx(·)∈C (J,R)} (see
[18, Page 4]) and define (1−α,λ )-weighted norm ‖x‖1−α ,λ = max

t∈J
t1−αe−λ t‖x(t)‖ ,

0 < α < 1. From [21], (C1−α(J,R),‖ · ‖1−α ,λ ) is also being a Banach space.

DEFINITION 1. (see [18, Formula (2.1.1)]) The Riemann-Liouville fractional in-
tegrals Iα

a+ f is defined by

(Iα
a+ f )(x) :=

1
Γ(α)

∫ x

a

f (t)
(x− t)1−α dt, (x > a; α > 0),

and the Riemann-Liouville fractional derivatives Dα
a+ f is defined by

(Dα
a+ f )(x) :=

(
d
dx

)n

(In−α
a+ f )(x)

=
1

Γ(n−α)

(
d
dx

)n ∫ x

a

f (t)
(x− t)α−n+1 dt, (x > a; α > 0; n = [α]+1),

where Γ(·) is Gamma function and f (·) is an integrable function.

DEFINITION 2. (see [26, Formula (4.1.1)]) The two-parameter function of the
Mittag-Leffler type function is defined by

Eα ,β (z) =
∞

∑
k=0

zk

Γ(αk+ β )
, (α > 0, β ∈ R, z ∈ R).

LEMMA 1. (see [27, Lemma 2] and [28, Lemma 2.7]) Let α ∈ (0,2] and β > 0
be arbitrary. The functions Eα(·) , Eα ,α(·) and Eα ,β (·) are nonnegative, and for all
z < 0 ,

Eα(z) := Eα ,1(z) � 1, Eα ,α(z) � 1
Γ(α)

, Eα ,β (z) � 1
Γ(β )

.

LEMMA 2. (see [26, Formula (4.3.1)]) The fractional-order differentiation or in-
tegral of the Mittag-Leffler function is(

d
dz

)m

[zβ−1Eα ,β (zα )] = zβ−m−1Eα ,β−m(zα), (α > 0, m � 1).

The following two generalized Gronwall inequalities will be used in the sequel.

LEMMA 3. (see [29, Theorem 1]) Suppose β > 0 , m(t) is a nonnegative function
locally integrable on J and n(t) is a nonnegative, nondecreasing continuous function
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defined on J , n(t) � M (M is constant), and suppose y(t) is nonnegative and locally
integrable on J with

y(t) � m(t)+n(t)
∫ t

0
(t− s)β−1y(s)ds, t ∈ J.

Then

y(t) � m(t)+
∫ t

0

[ ∞

∑
j=1

(n(t)Γ(β )) j

Γ( jβ )
(t− s) jβ−1m(s)

]
ds, t ∈ J.

REMARK 1. Under the hypothesis of Lemma 3, let m(t) be a nondecreasing func-
tion on J . Then we have

y(t) � m(t)Eβ (n(t)Γ(β )tβ ).

LEMMA 4. (see [30, Lemma 3.1] or [31]) Let u(t) be a continuous function on
t ∈ J and let v(t− τ) be continuous and nonnegative on the triangle 0 � τ � t . More-
over, let w(t) be a positive continuous and non-decreasing function on t ∈ J . If

u(t) � w(t)+
∫ t

0
v(t− τ)u(τ)dτ, t ∈ J,

then

u(t) � w(t)e
∫ t
0 v(t−τ)dτ , t ∈ J.

3. Convergence analysis of P-type for 0 < α < 1

We consider Riemann-Liouville fractional-order nonlinear system of 0 < α < 1:⎧⎪⎪⎨
⎪⎪⎩

(Dα
0+xk)(t) = μxk(t)+ f (t,xk(t),uk(t)), t ∈ J, μ < 0,

lim
t→0+

(Dα−1
0+ xk)(t) = xk(0),

yk(t) = g(t,xk(t),uk(t)),

(3.1)

where k denotes the k th learning iteration. The nonlinear terms f , g : J×R×R→ R .
The variables xk(t) , uk(t) , yk(t) ∈ R are denoted by state, input and output, respec-
tively. In addition, lim

t→0+
(Dα−1

0+ xk)(t) = xk(0) denotes initial condition and Dα−1
0+ de-

notes Riemann-Liouville fractional derivative (see [18, Formula (4.1.2)]). Obviously,
the solution of (3.1) equivalent to the solution of following integral equation (see [18,
Formula (4.1.10)]):

xk(t) = tα−1Eα ,α(μtα)xk(0)

+
∫ t

0
(t− s)α−1Eα ,α(μ(t− s)α) f (s,xk(s),uk(s))ds, t ∈ J. (3.2)

We impose the following assumptions.
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(A1) f : J×R×R→ R is jointly continuous. In addition, there exist nondecreas-
ing and nonnegative continuous functions Lf (·) and I f (·) such that

‖ f (t,xk,uk)− f (t, x̂k, ûk)‖ � Lf (t)‖xk − x̂k‖+ I f (t)‖uk − ûk‖, t ∈ J. (3.3)

(A2) g : J×R×R→ R and for η j > 0, j = 1,2,3,4, suppose⎧⎪⎪⎨
⎪⎪⎩

0 < η1 � gu =
∂g(t,xk,uk)

∂uk
� η2,

0 < η3 � gx =
∂g(t,xk,uk)

∂xk
� η4.

(A3) Let ML = max

{
sup
t∈J

L f (t)
t1−α , sup

t∈J

If (t)
t1−α

}
and ML is a finite positive constant.

3.1. Open-loop case

LEMMA 5. (see [14, Lemma 3.2]) For fractional-order nonlinear system (3.1)
and given reference yd(t) , denote that Δuk(t) = uk+1(t)− uk(t) , Δxk(t) = xk+1(t)−
xk(t) , if

max{|1− γ1η1 −Lη3|, |1− γ1η1 −Lη4|, |1− γ1η2−Lη3|, |1− γ1η2−Lη4|} � σ0 < 1,

where σ0 is constant, then for all t ∈ J , and arbitrary initial input u0 , the open-loop
P-type ILC updating law (1.3) guarantees that lim

k→∞
‖ek(0)‖λ = 0 .

THEOREM 1. Assumptions (A1)–(A3) hold. For fractional-order nonlinear sys-
tem (3.1) and given reference yd(t) , if the assumptions in Lemma 5 are met, further-
more, suppose that

max{|1− γ1η1|, |1− γ1η2|} � σ1 < 1, (3.4)

where σ1 is constant, then for arbitrary initial input u0 , the open-loop P-type ILC
updating law (1.3) guarantees that yk tends to yd ∈ C (J,R) in the sense of the (1−
α,λ )-weighted norm for a sufficiently large λ > 0 .

Proof. It follows from ek(t) = yd(t)−yk(t) and the mean value theorem [14, (10)],

ek+1(t) = yd(t)− yk+1(t) = yd(t)− yk(t)+ yk(t)− yk+1(t)
= ek(t)+ yk(t)− yk+1(t)
= ek(t)−gx(ξ )Δxk(t)−gu(ξ )Δuk(t),

where ξ (·) = (·,xk(·)+ θxk(·),uk(·)+ θuk(·)) , θ ∈ (0,1) .
So we have

ek+1(t) = ek(t)−gx(ξ )Δxk(t)−gu(ξ )[uk+1(t)−uk(t)]
= ek(t)−gx(ξ )Δxk(t)−gu(ξ )γ1ek(t)
= [1− γ1gu(ξ )]ek(t)−gx(ξ )Δxk(t).
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Then, we can get

‖ek+1(t)‖ � |1− γ1gu(ξ )|‖ek(t)‖+ |gx(ξ )|‖Δxk(t)‖. (3.5)

Next, we will deal with Δxk(t) , according to (3.2), we have

Δxk(t) = tα−1Eα ,α(μtα)Δxk(0)

+
∫ t

0
(t− s)α−1Eα ,α(μ(t− s)α)[ f (s,xk+1(s),uk+1(s))− f (s,xk(s),uk(s))]ds.

Using Lemma 1 and (3.3), we get

‖Δxk(t)‖ � tα−1

Γ(α)
‖Δxk(0)‖+

1
Γ(α)

∫ t

0
(t − s)α−1Lf (s)‖Δxk(s)‖ds

+
1

Γ(α)

∫ t

0
(t − s)α−1I f (s)‖Δuk(s)‖ds.

Then,

t1−α‖Δxk(t)‖ � 1
Γ(α)

‖Δxk(0)‖+
t1−α

Γ(α)

∫ t

0
(t − s)α−1Lf (s)‖Δxk(s)‖ds

+
t1−α

Γ(α)

∫ t

0
(t− s)α−1I f (s)‖Δuk(s)‖ds.

� 1
Γ(α)

‖Δxk(0)‖+
t1−α

Γ(α)

∫ t

0
(t − s)α−1s1−α Lf (s)

s1−α ‖Δxk(s)‖ds

+
t1−α

Γ(α)

∫ t

0
(t− s)α−1s1−α I f (s)

s1−α ‖Δuk(s)‖ds.

In the light of (A3) , we obtain

t1−α‖Δxk(t)‖ � 1
Γ(α)

‖Δxk(0)‖+
t1−αML

Γ(α)

∫ t

0
(t− s)α−1s1−α‖Δxk(s)‖ds

+
t1−αML

Γ(α)

∫ t

0
(t − s)α−1s1−α‖Δuk(s)‖ds. (3.6)

Obviously,∫ t

0
(t − s)α−1s1−α‖Δuk(s)‖ds =

∫ t

0
(t− s)α−1s1−αe−λ s‖Δuk(s)‖eλ sds

� ‖Δuk‖1−α ,λ

∫ t

0
(t− s)α−1eλ sds. (3.7)

Note that the fact∫ t

0
(t − s)α−1eλ sds =

∫ t

0
ωα−1eλ (t−ω)dω = eλ t

∫ t

0
ωα−1e−λ ωdω

=
eλ t

λ α

∫ λ t

0
υα−1e−υdυ � eλ t

λ α Γ(α),
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next, (3.7) become
∫ t

0
(t− s)α−1s1−α‖Δuk(s)‖ds � ‖Δuk‖1−α ,λ

eλ t

λ α Γ(α). (3.8)

So, (3.6) become

t1−α‖Δxk(t)‖ � m(t)+
t1−αML

Γ(α)

∫ t

0
(t− s)α−1s1−α‖Δxk(s)‖ds, (3.9)

where m(t) = 1
Γ(α)‖Δxk(0)‖+‖Δuk‖1−α ,λ

eλ t t1−α ML
λ α is nondecreasing.

By Remark 1, one obtains

t1−α‖Δxk(t)‖ �
[

1
Γ(α)

‖Δxk(0)‖+‖Δuk‖1−α ,λ
eλ tt1−αML

λ α

]
Eα(MLT ). (3.10)

And then

t1−αe−λ t‖Δxk(t)‖ � e−λ t‖Δxk(0)‖
Γ(α)

Eα(MLT )+
t1−αML

λ α ‖Δuk‖1−α ,λEα(MLT ).

So we obtain

‖Δxk‖1−α ,λ � ‖Δxk(0)‖λ
Γ(α)

Eα(MLT )+
T 1−αML

λ α Eα(MLT )‖Δuk‖1−α ,λ . (3.11)

In case of ‖Δuk‖1−α ,λ = γ1‖Δek‖1−α ,λ , and consider (3.5), we take ‖ · ‖1−α ,λ , then

‖ek+1‖1−α ,λ � |1− γ1gu(ξ )|‖ek‖1−α ,λ + |gx(ξ )|‖Δxk‖1−α ,λ

� |1− γ1gu(ξ )|‖ek‖1−α ,λ

+|gx(ξ )|
[‖Δxk(0)‖λ

Γ(α)
Eα(MLT )+

T 1−αMLγ1

λ α Eα(MLT )‖Δek‖1−α ,λ

]

�
[
|1− γ1gu(ξ )|+ T 1−αMLγ1|gx(ξ )|

λ α Eα(MLT )
]
‖ek‖1−α ,λ

+
|gx(ξ )|Eα(MLT )

Γ(α)
‖Δxk(0)‖λ

�
[
|1− γ1gu(ξ )|+ T 1−αMLγ1|gx(ξ )|

λ α Eα(MLT )
]
‖ek‖1−α ,λ

+
|gx(ξ )|Eα(MLT )

Γ(α)
|L|‖ek(0)‖λ . (3.12)

By (3.4), there exists a sufficiently large λ such that

|1− γ1gu(ξ )|+ T 1−αMLγ1|gx(ξ )|
λ α Eα(MLT ) � σ1 +

T 1−αMLγ1|η4|Eα(MLT )
λ α < 1.

Therefore, from inequality (3.12) and Lemma 5, we have lim
k→∞

‖ek‖1−α ,λ = 0. The

proof is completed. �
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REMARK 2. For system (3.1), if we assume that lim
t→0+

(Dα−1
0+ xk)(0) = x(0) and

Lf (t) = Lf , I f (t) = I f for t ∈ J , then the assumption (A3 ) can be removed. Moreover,
we can derive that open-loop P-type ILC updating law (1.3) guarantees that yk tends to
yd in the sense of λ −norm for a sufficiently large λ > 0. It means that

‖ek+1‖λ �
[
|1− γ1gu(ξ )|+ |η4|I f |γ1|Eα(Lf Tα)

λ α

]
‖ek‖λ ,

for a sufficiently large λ such that

|1− γ1gu(ξ )|+ |η4|I f |γ1|Eα(Lf T α)
λ α � σ1 +

|η4|I f |γ1|Eα(Lf T α)
λ α < 1.

3.2. Closed-loop case

LEMMA 6. (see [14, Lemma 3.7]) For fractional-order nonlinear system (3.1)
and given reference yd(t) ,

max

{∣∣∣∣ 1−Lη3

1+ γ2η1

∣∣∣∣,
∣∣∣∣ 1−Lη3

1+ γ2η2

∣∣∣∣,
∣∣∣∣ 1−Lη4

1+ γ2η1

∣∣∣∣,
∣∣∣∣ 1−Lη4

1+ γ2η2

∣∣∣∣
}

� σ2 < 1,

where σ2 is constant, then for all t ∈ J , and arbitrary initial input u0 , the closed-loop
P-type ILC updating law (1.4) guarantees that lim

k→∞
‖ek(0)‖λ = 0 .

THEOREM 2. Assumptions (A1)–(A3) hold. For fractional-order nonlinear sys-
tem (3.1) and given reference yd(t) , if the assumptions in Lemma 6 are met, further-
more, suppose that

min
{∣∣1+ γ2η1

∣∣, ∣∣1+ γ2η2
∣∣} � σ3 > 1, (3.13)

where σ3 is constant, then for arbitrary initial input u0 , the closed-loop P-type ILC
updating law (1.4) guarantees that yk tends to yd ∈ C (J,R) in the sense of the (1−
α,λ )-weighted norm for a sufficiently large λ > 0 .

Proof. The proof is similar to Theorem 1, we present main different parts. Firstly,

ek+1(t) = ek(t)−gx(ξ )Δxk(t)−gu(ξ )γ2ek+1(t).

So, we derive that

(1+gu(ξ )γ2)ek+1(t) = ek(t)−gx(ξ )Δxk(t),

where ξ (·) ∈ (·,xk(·)+ θxk(·),uk(·)+ θuk(·)) , θ ∈ (0,1) .
And then, we obtain

|1+gu(ξ )γ2|‖ek+1(t)‖ � ‖ek(t)‖+ |gx(ξ )|‖Δxk(t)‖,
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which implies that

|1+gu(ξ )γ2|‖ek+1‖1−α ,λ � ‖ek‖1−α ,λ + |gx(ξ )|‖Δxk‖1−α ,λ .

It means that

‖ek+1‖1−α ,λ �
∣∣∣∣ 1
1+gu(ξ )γ2

∣∣∣∣‖ek‖1−α ,λ +
∣∣∣∣ gx(ξ )
1+gu(ξ )γ2

∣∣∣∣‖Δxk‖1−α ,λ . (3.14)

As for ‖Δxk‖1−α ,λ , we take formula (3.11) into (3.14), we obtain

‖ek+1‖1−α ,λ �
∣∣∣∣ 1
1+gu(ξ )γ2

∣∣∣∣‖ek‖1−α ,λ +
∣∣∣∣ gx(ξ )
1+gu(ξ )γ2

∣∣∣∣
[‖Δxk(0)‖λ

Γ(α)
Eα(MLT )

+
T 1−αML|γ2|

λ α Eα(MLT )‖ek+1‖1−α ,λ

]

�
∣∣∣∣ 1
1+gu(ξ )γ2

∣∣∣∣‖ek‖1−α ,λ +
∣∣∣∣ gx(ξ )
1+gu(ξ )γ2

∣∣∣∣‖Δxk(0)‖λ
Γ(α)

Eα(MLT )

+
∣∣∣∣ gx(ξ )
1+gu(ξ )γ2

∣∣∣∣T 1−αML|γ2|
λ α Eα(MLT )‖ek+1‖1−α ,λ .

Finally, we get

‖ek+1‖1−α ,λ �
‖ek‖1−α ,λ∣∣1+gu(ξ )γ2

∣∣− gx(ξ )c∗
λ α

+
gx(ξ )Eα(MLT )L‖ek(0)‖λ

[
∣∣1+gu(ξ )γ2

∣∣− gx(ξ )c∗
λ α ]Γ(α)

, (3.15)

where c∗ = T 1−αMLEα(MLT )|γ2| .
There exists a sufficiently large λ such that ε := gx(ξ )c∗

λ α > 0 is very small and
σ3− ε > 1. Then by (3.13), one can obtain

ζ :=
1∣∣1+gu(ξ )γ2

∣∣− gx(ξ )c∗
λ α

� 1
σ3− ε

< 1.

Therefore, from inequality (3.15) and Lemma 6, we have lim
k→∞

‖ek‖1−α ,λ = 0. The

proof is completed. �

REMARK 3. For system (3.2), if we assume that lim
t→0+

(Dα−1
0+ xk)(0) = x(0) and

Lf (t) = Lf , I f (t) = I f for t ∈ J , then the assumption (A3 ) can be removed. Moreover,
one can find that closed-loop P-type ILC updating law (1.4) guarantees that yk tends to
yd in the sense of λ −norm for a sufficiently large λ satisfying

|1+ γ2gu(ξ )|− η4I f |γ1|Eα(Lf T α)
λ α � σ3 − η4I f |γ1|Eα(Lf T α)

λ α > 1.
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4. Convergence analysis of D-type for 1 < α < 2

We consider Riemann-Liouville fractional-order nonlinear system of order 1 <
α < 2 with impulses:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(Dα
0+xk)(t) = μxk(t)+ f (t,xk(t),uk(t)), t ∈ J, μ < 0,

limt→0+(Dα−1
0+ xk)(t) = xk(0),

limt→0+(Dα−2
0+ xk)(t) = x̂k(0),

yk(t) = cxk(t)+d
∫ t
0 uk(s)ds, c,d ∈ R.

(4.1)

where k denotes the k th learning iteration, T denotes pre-fixed iteration domain length.
The nonlinear terms f : J×R×R → R . The variables xk(t),uk(t),yk(t) ∈ R are de-
noted by state, input and output, respectively. In addition, lim

t→0+
(Dα−1

0+ xk)(t) = xk(0)

and lim
t→0+

(Dα−2
0+ xk)(t) = x̂k(0) denotes initial condition. Dα−1

0+ and Dα−2
0+ denotes

Riemann-Liouville fractional derivative (see [18, Formula (4.1.2)]). With the initial
condition, the solution of (4.1) equivalent to the solution of following integral equation
(see [18, Formula (4.1.10)]):

xk(t) = xk(0)tα−1Eα ,α(μtα)+ x̂k(0)tα−2Eα ,α−1(μtα)

+
∫ t

0
(t − s)α−1Eα ,α(μ(t − s)α) f (s,xk(s),uk(s))ds. (4.2)

4.1. Open-loop case

THEOREM 3. Assumptions (A1) and (A2) with Lf (t) = Lf , I f (t)= I f , hold. Tak-
ing (1.5) into the fractional-order nonlinear system (4.1) and the initial condition at
each iteration remains the desired, i.e., ek(0) = 0 , ėk(0) = 0 and x̂k(0) is constant,
k = 0,1,2, . . . . If |1− dγ1| < 1 , for arbitrary initial input u0(t) , then the open-loop
D-type ILC updating law (1.5) guarantees that yk tends to yd ∈ C (J,R) in the sense of
the λ norm for a sufficiently large λ > 0 .

Proof. Note that

ėk+1(t) = ẏd(t)− ẏk+1(t) = ėk(t)+ c[ẏk(t)− ẏk+1(t)]
= ėk(t)+ c[ẋk(t)− ẋk+1(t)]−dΔuk(t)
= ėk(t)−dγ1ėk(t)+ c[ẋk(t)− ẋk+1(t)]
= (1−dγ1)ėk(t)+ c[ẋk(t)− ẋk+1(t)].

Due to (4.2), Lemma 1, Lemma 2 and the conditions of Theorem 3, we obtain that

ėk+1(t) = (1−dγ1)ėk(t)

+c
∫ t

0
(t−s)α−2Eα ,α−1(μ(t−s)α)[ f (s,xk(s),uk(s))− f (s,xk+1(s),uk+1(s))]ds

� (1−dγ1)ėk(t)

+c
∫ t

0
(t− s)α−2 1

Γ(α −1)
[ f (s,xk(s),uk(s))− f (s,xk+1(s),uk+1(s))]ds.
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Note Lemma 1, and take norm on the above equality, then we can get

‖ėk+1(t)‖ � |1−dγ1|‖ėk(t)‖
+|c|

∫ t

0
(t− s)α−2 1

Γ(α −1)
‖ f (s,xk(s),uk(s))− f (s,xk+1(s),uk+1(s))‖ds

� |1−dγ1|‖ėk(t)‖+
|c|

Γ(α −1)

∫ t

0
(t − s)α−2Lf ‖Δxk(s)‖ds

+
|c|

Γ(α −1)

∫ t

0
(t− s)α−2I f ‖Δuk(s)‖ds. (4.3)

Note that

‖Δxk(s)‖ � ‖sα−1Eα ,α(μsα)Δxk(0)‖
+

∫ s

0
(s− τ)α−1 1

Γ(α −1)
‖ f (τ,xk(τ),uk(τ))− f (τ,xk+1(τ),uk+1(τ))‖dτ.

Since Δxk(0) = Lėk(0) = 0, we have

‖Δxk(s)‖ � Lf

Γ(α −1)

∫ s

0
(s− τ)α−1‖Δxk(τ)‖dτ +

I f

Γ(α −1)

∫ s

0
(s− τ)α−1‖Δuk(τ)‖dτ.

According to Lemma 4, we have

‖Δxk(s)‖ � I f

Γ(α −1)

∫ s

0
(s− τ)α−1‖Δuk(τ)‖dτ · e

∫ s
0

I f
Γ(α−1) (s−τ)α−1dτ

� I f

Γ(α −1)

∫ s

0
(s− τ)α−1‖Δuk(τ)‖dτ · e

I f sα

αΓ(α−1)

� I f

Γ(α −1)

∫ s

0
(s− τ)α−1eλ τe−λ τ‖Δuk(τ)‖dτ · e

I f Tα

αΓ(α−1)

� I f

Γ(α −1)

∫ s

0
(s− τ)α−1eλ τdτ‖Δuk‖λe

I f Tα

αΓ(α−1)

� hIf

αΓ(α −1)
eλ ssα‖Δuk‖λ , h = e

I f Tα

αΓ(α−1) .

Hence, we can obtain

e−λ s‖Δxk(s)‖ � hIf

αΓ(α −1)
sα‖Δuk‖λ ,

which means that

‖Δxk‖λ � hIf

αΓ(α −1)
Tα‖Δuk‖λ . (4.4)
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And then, we have

Lf

∫ t

0
(t − s)α−2‖Δxk(s)‖ds = Lf

∫ t

0
(t − s)α−2eλ se−λ s‖Δxk(s)‖ds

� Lf

∫ t

0
(t − s)α−2eλ sds‖Δxk‖λ

� Lf

∫ t

0
(t − s)(α−1)−1eλ sds‖Δxk‖λ

� Lf ‖Δxk‖λ
eλ t

λ α−1 Γ(α −1). (4.5)

Similarly, we have

I f

∫ t

0
(t − s)α−2‖Δuk(s)‖ds � I f

∫ t

0
(t − s)α−2eλ sds‖Δuk‖λ

� I f

∫ t

0
(t − s)(α−1)−1eλ sds‖Δuk‖λ

� I f ‖Δuk‖λ
eλ t

λ α−1 Γ(α −1). (4.6)

Taking (4.5) and (4.6) into (4.3), we get

‖ėk+1(t)‖ � |1−dγ1|‖ėk(t)‖+
eλ tL f |c|

λ α−1 ‖Δxk‖λ +
eλ t I f |c|
λ α−1 ‖Δuk‖λ .

So we get

‖ėk+1‖λ � |1−dγ1|‖ėk‖λ +
Lf |c|
λ α−1 ‖Δxk‖λ +

I f |c|
λ α−1 ‖Δuk‖λ . (4.7)

Taking (4.4) into (4.7), we get

‖ėk+1‖λ � |1−dγ1|‖ėk‖λ +
h|c|Lf I f T α

αλ α−1Γ(α −1)
‖Δuk‖λ +

I f |c|
λ α−1 ‖Δuk‖λ

� |1−dγ1|‖ėk‖λ +
[

h|c|Lf I f Tα

αλ α−1Γ(α −1)
+

I f |c|
λ α−1

]
‖Δuk‖λ , h = e

I f Tα

αΓ(α−1) .

Since we can choose λ large enough such that |1− dγ1| < 1, we can get that lim
k→∞

‖ėk‖λ = 0. Since ek(0) = 0, k = 0,1,2, . . . , then we obtain lim
k→∞

‖ek‖λ = 0. The proof

is finished. �

4.2. Closed-loop case

THEOREM 4. Assumptions (A1) and (A2) with Lf (t) = Lf , I f (t)= I f , hold. Tak-
ing (1.6) into the fractional-order nonlinear system (4.1) and the initial condition at
each iteration remains the desired, i.e., ek(0) = 0 , ėk(0) = 0 and x̂k(0) is constant,
k = 0,1,2, . . . . If | 1

1+dγ2
| < 1 , for arbitrary initial input u0 , then the closed-loop D-

type ILC updating law (1.5) guarantees that yk tends to yd ∈ C (J,R) in the sense of
the λ norm for a sufficiently large λ > 0 .
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Proof. The main proof is similar to Theorem 3, we present the different steps.
Note,

ėk+1(t) = ėk(t)+ c[ẋk(t)− ẋk+1(t)]−dΔuk(t)
= ėk(t)−dγ2ėk+1(t)+ c[ẋk(t)− ẋk+1(t)]

=
1

1+dγ2
ėk(t)+

c
1+dγ2

[ẋk(t)− ẋk+1(t)].

Then,

‖ėk+1(t)‖ �
∣∣∣∣ 1
1+dγ2

∣∣∣∣‖ėk(t)‖+
∣∣∣∣ c
1+dγ2

∣∣∣∣‖ẋk(t)− ẋk+1(t)‖

�
∣∣∣∣ 1
1+dγ2

∣∣∣∣‖ėk(t)‖+
∣∣∣∣ c
(1+dγ2)Γ(α −1)

∣∣∣∣
∫ t

0
(t− s)α−2Lf ‖Δxk(s)‖ds

+
∣∣∣∣ c
(1+dγ2)Γ(α −1)

∣∣∣∣
∫ t

0
(t− s)α−2I f ‖Δuk(s)‖ds. (4.8)

By adopting the same method of proving the Theorem 3 to deal with (4.8), we can get

‖ėk+1(t)‖ �
∣∣∣∣ 1
1+dγ2

∣∣∣∣‖ėk(t)‖+
∣∣∣∣ c
(1+dγ2)Γ(α −1)

∣∣∣∣‖Δxk‖λ
eλ t

λ α−1 Γ(α −1)

+
∣∣∣∣ c
(1+dγ2)Γ(α −1)

∣∣∣∣‖Δuk‖λ
eλ t

λ α−1 Γ(α −1).

And then, we have

‖ėk+1‖λ �
∣∣∣∣ 1
1+dγ2

∣∣∣∣‖ėk‖λ +
∣∣∣∣ c
1+dγ2

∣∣∣∣‖Δxk‖λ
1

λ α−1 +
∣∣∣∣ c
1+dγ2

∣∣∣∣‖Δuk‖λ
1

λ α−1

�
∣∣∣∣ 1
1+dγ2

∣∣∣∣‖ėk‖λ +
∣∣∣∣ c
1+dγ2

∣∣∣∣ hIf T α

αΓ(α −1)
‖Δuk‖λ

1
λ α−1

+
∣∣∣∣ c
1+dγ2

∣∣∣∣‖Δuk‖λ
1

λ α−1

�
∣∣∣∣ 1
1+dγ2

∣∣∣∣‖ėk‖λ +
[∣∣∣∣ c

1+dγ2

∣∣∣∣ hIf Tα

αΓ(α −1)λ α−1 +
∣∣∣∣ c
1+dγ2

∣∣∣∣ 1
λ α−1

]
γ2‖ėk+1‖λ .

So we have

‖ėk+1‖λ �
{

1−
[∣∣∣∣ c

1+dγ2

∣∣∣∣ hIf T α γ2

αΓ(α −1)λ α−1 +
∣∣∣∣ c
1+dγ2

∣∣∣∣ γ2

λ α−1

]}−1∣∣∣∣ 1
1+dγ2

∣∣∣∣‖ėk‖λ .

Due to the fact that exist a sufficiently large λ , and | 1
1+dγ2

| < 1, such that

{
1−

[∣∣∣∣ c
1+dγ2

∣∣∣∣ hIf Tα γ2

αΓ(α −1)λ α−1 +
∣∣∣∣ c
1+dγ2

∣∣∣∣ γ2

λ α−1

]}−1∣∣∣∣ 1
1+dγ2

∣∣∣∣ < 1

we can get that lim
k→∞

‖ėk‖λ = 0. Then we obtain lim
k→∞

‖ek‖λ = 0. The proof is fin-

ished. �
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5. Simulation examples

In this section, two numerical examples are presented to demonstrate the validity
of the designed method. In order to describe the stability of the system which is as-
sociated with the increase of iterations, we denote the total energy in k th iteration as
Ek = ‖uk‖∞ .

EXAMPLE 5.1. Consider

⎧⎪⎪⎨
⎪⎪⎩

(D0.5
0+xk)(t) = −xk(t)+0.5(t +1)uk(t),

lim
t→0+

(D−0.5
0+ xk)(t) = 0,

yk(t) = xk(t)+1.2uk(t),

(5.1)

and P-type ILC

{
xk+1(0) = xk(0)+0.5ek(0),
uk+1(t) = uk(t)+ ek(t).

Set uk(0) = 0, γ1 = 1 and η1 = η2 = d = 1.2. Obviously, |1− γ1η1| = 0.2 <
1. All the conditions of Theorem 1 are satisfied. The original reference trajectory is
r(t) = 3t1.5(t2− t0.5 +1).
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Figure 1: The system output and the tracking error.

The upper figure of Figure 1 shows the equation (5.1) output yk of the 10th itera-
tions and the reference trajectory yd . The lower figure of Figure 1 shows the ∞-norm
of the tracking error in each iteration.
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EXAMPLE 5.2. Consider⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(D1.5
0+xk)(t) = −xk(t)+ sin(t)uk(t),

lim
t→0+

(D0.5
0+xk)(t) = 0,

lim
t→0+

(D−0.5
0+ xk)(t) = 0,

yk(t) = xk(t)+1.2
∫ t

0
uk(s)ds,

(5.2)

and D-type ILC {
xk+1(0) = xk(0)+0.5ėk(0),
uk+1(t) = uk+1(t)+0.6ėk(t).

Set uk(0) = 0, x̂k(0) = 0, γ1 = 0.6 and d = 1.2. Obviously, |1− dγ1| = 0.28 <
1. All the conditions of Theorem 3 are satisfied. The original reference trajectory is
r(t) = 3t2(t −1).
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Figure 2: The system output and the tracking error.

The upper figure of Figure 2 shows the equation (5.2) output yk of the 10th itera-
tions and the reference trajectory yd . The lower figure of Figure 2 shows the ∞-norm
of the tracking error in each iteration.

6. Conclusion

In this paper, iterative learning control for two class of Riemann-Liouville type
fractional-order differential systems (one is 0 < α < 1, the other is 1 < α < 2) are
firstly introduced to tracking the target with initial state offset. Secondly, the techniques
of generalized Grownwall inequality and properties of Mittag-Leffler type functions
are utilized to make estimation of the error. Finally, sufficient conditions for iterative
learning law convergence are given in the sense of (1−α,λ )-weighted norm and λ -
weighted norm.
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