
D ifferential
Equations

& Applications

Volume 9, Number 2 (2017), 147–160 doi:10.7153/dea-09-12

ON NONLINEAR FRACTIONAL–ORDER BOUNDARY

VALUE PROBLEMS WITH NONLOCAL MULTI–POINT

CONDITIONS INVOLVING LIOUVILLE–CAPUTO DERIVATIVE

RAVI P. AGARWAL, AHMED ALSAEDI, ALAA ALSHARIF AND BASHIR AHMAD

(Communicated by Jin-Rong Wang)

Abstract. In this paper, we study some new nonlinear boundary value problems of Liouville-
Caputo type fractional differential equations supplemented with nonlocal multi-point conditions
involving lower order fractional derivative. We make use of some well known tools of the fixed
point theory to establish the existence of solutions for problems at hand. For illustration of the
obtained results, several examples are discussed.

1. Introduction

We introduce a new class of boundary value problems of Liouville-Caputo type
fractional differential equations supplemented with nonlocal multi-point boundary con-
ditions involving lower-order fractional derivative. Instead of writing the so-called “Ca-
puto” derivative, we will call it “Liouville-Caputo” derivative as it was introduced by
Liouville many decades ago. As a first problem, for 1 < q � 2 and 0 < σ < ζ1 < β1 <
β2 < .. . < βm−2 < ζ2 < 1, we consider

cDqx(t) = f (t,x), 1 < q � 2, t ∈ [0,1], (1.1)

x(0) = δx(σ), a cDpx(ζ1)+b cDpx(ζ2) =
m−2

∑
i=1

αix(βi), 0 < p < 1, (1.2)

where cDq denote Caputo derivative of order q and f : [0,1]×R → R is a given con-
tinuous function and δ , a , b , αi ∈ R. The multi-point boundary conditions in (1.2)
implies that the linear combination of the values of the fractional derivative of the un-
known function at nonlocal positions ζ1 and ζ2 is equal to the linear combination of
the values of the unknown function at βi , i = 1,2, . . .m−2, while the value of the un-
known function at the left end point (t = 0) of the interval [0,1] is proportional to its
value at the nonlocal position σ .
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In the second problem, we discuss the existence of solutions of (1.1) subject to the
boundary conditions:

x(0) = δ1

∫ σ

0
x(s)ds, a cDpx(ζ1)+b cDpx(ζ2) =

m−2

∑
i=1

αix(βi), 0 < p < 1. (1.3)

In (1.3), the first condition can be interpreted as the value of the unknown function
at t = 0 is proportional to the continuous distribution of the unknown function over a
strip of an arbitrary length σ .

Fractional differential equations are found to be of great value and interest in view
of their extensive applications. As a matter of fact, fractional-order operators describe
some interesting characteristics of the real world phenomena such as hereditary prop-
erties of the processes and materials involved in the phenomena, which could not be
explored with the modeling techniques of traditional calculus. For examples and de-
tails, see [16, 17, 18, 19, 23, 24].

The boundary value problems of fractional differential equations supplemented
with a variety of initial, boundary, nonlocal and integral conditions have been investi-
gated by many researchers and the literature on the topic is now much enriched. Exam-
ples and details can be found in a series of articles [1, 2, 4, 5, 6, 8, 9, 12, 14, 21, 22, 25,
26, 27] and the references cited therein.

We emphasize that nonlocal conditions are important as they can describe some
peculiarities of physical, chemical or other processes happening inside the domain [10],
while the integral boundary conditions find useful applications in blood flow problem
[3] and regularization of ill-posed parabolic backward problems in time partial differen-
tial equations, for example, mathematical models for bacterial self-regularization [11].

The paper is organized as follows. Section 2 contains some preliminary concepts
of fractional calculus and an auxiliary lemma related to the linear variant of problem
(1.1)–(1.2). In Section 3, we derive the existence and uniqueness results for the given
problem via some standard tools of the fixed point theory. Examples are also included
for illustration of the main results. The paper concludes with some interesting remarks.

2. Preliminaries

This section is devoted to some preliminary concepts of fractional calculus that we
need in the forthcoming analysis [15, 28].

DEFINITION 1. The fractional integral of order r with the lower limit zero for a
function f : [0,∞) → R is defined as

Ir f (t) =
1

Γ(r)

∫ t

0

f (s)
(t− s)1−r ds, t > 0, r > 0,

provided the right hand-side is point-wise defined on [0,∞) , where Γ(·) is the gamma
function, which is defined by Γ(r) =

∫ ∞
0 tr−1e−tdt .
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DEFINITION 2. The Riemann-Liouville fractional derivative of order r > 0, n−
1 < r < n , n ∈ N for a function f : [0,∞) → R is defined as

Dr
0+ f (t) =

1
Γ(n− r)

(
d
dt

)n ∫ t

0
(t− s)n−r−1 f (s)ds,

where the function f : [0,∞) → R has absolutely continuous derivative up to order
(n−1) .

DEFINITION 3. The Caputo derivative of order r for a function f : [0,∞) → R
can be written as

cDr f (t) = Dr
0+

(
f (t)−

n−1

∑
k=0

tk

k!
f (k)(0)

)
, t > 0, n−1 < r < n.

REMARK 1. If f (t) ∈Cn[0,∞), then

cDr f (t) =
1

Γ(n− r)

∫ t

0

f (n)(s)
(t − s)r+1−n ds = In−r f (n)(t), t > 0, n−1 < q < n.

Now we present an auxiliary lemma to define the solution for the problem (1.1)–
(1.2).

LEMMA 1. Let y ∈ C[0,1]. Then the problem consisting of linear fractional dif-
ferential equation

cDqx(t) = y(t), n−1 < q � n, n � 2, t ∈ [0,1], (2.1)

supplemented with boundary conditions (1.2) is equivalent to the fractional integral
equation

x(t) =
∫ t

0

(t− s)q−1

Γ(q)
y(s)ds+

δ
1− δ

∫ σ

0

(σ − s)q−1

Γ(q)
y(s)ds

+
[ δσ
A(1− δ )

+
t
A

][(
1− δ

)(m−2

∑
i=1

αi

∫ βi

0

(βi − s)q−1

Γ(q)
y(s)ds

−a
∫ ζ1

0

(ζ1− s)q−p−1

Γ(q− p)
y(s)ds−b

∫ ζ2

0

(ζ2 − s)q−p−1

Γ(q− p)
y(s)ds

)

+δ
∫ σ

0

(σ − s)q−1

Γ(q)
y(s)ds

m−2

∑
i=1

αi

]
, (2.2)

where

A =
[(aζ 1−p

1 +bζ 1−p
2

Γ(2− p)
−

m−2

∑
i=1

αiβi

)(
1− δ

)
− δσ

m−2

∑
i=1

αi

]
�= 0. (2.3)
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Proof. As argued in [15], the solution of fractional differential equation (2.1) can
be written as

x(t) =
∫ t

0

(t − s)q−1

Γ(q)
y(s)ds+ c0 + c1t, (2.4)

where c0 , c1 ∈ R are arbitrary constants. Using the boundary conditions (1.2) in (2.4),
we find that

c0 =
δ

1− δ

∫ σ

0

(σ − s)q−1

Γ(q)
y(s)ds

+
[ δσ
A(1− δ )

][(
1− δ

)(m−2

∑
i=1

αi

∫ βi

0

(βi − s)q−1

Γ(q)
y(s)ds

−a
∫ ζ1

0

(ζ1 − s)q−p−1

Γ(q− p)
y(s)ds−b

∫ ζ2

0

(ζ2 − s)q−p−1

Γ(q− p)
y(s)ds

)

+δ
∫ σ

0

(σ − s)q−1

Γ(q)
y(s)ds

m−2

∑
i=1

αi

]

and

c1 =
1
A

[(
1− δ

)(m−2

∑
i=1

αi

∫ βi

0

(βi − s)q−1

Γ(q)
y(s)ds

−a
∫ ζ1

0

(ζ1 − s)q−p−1

Γ(q− p)
y(s)ds−b

∫ ζ2

0

(ζ2 − s)q−p−1

Γ(q− p)
y(s)ds

)

+δ
∫ σ

0

(σ − s)q−1

Γ(q)
y(s)ds

m−2

∑
i=1

αi

]
.

Substituting the values of c0 and c1 in (2.4) completes the solution (2.2). �

3. Existence results

In Lemma 1, we replace y(t) by f (t,x(t)) and define an operator S : K −→ K
associated with problem (1.1)–(1.2) as follows:

(S x)(t) =
∫ t

0

(t− s)q−1

Γ(q)
f (s,x(s))ds+

δ
1− δ

∫ σ

0

(σ − s)q−1

Γ(q)
f (s,x(s))ds

+
[ δσ
A(1− δ )

+
t
A

][(
1− δ

)(m−2

∑
i=1

αi

∫ βi

0

(βi− s)q−1

Γ(q)
f (s,x(s))ds

−a
∫ ζ1

0

(ζ1 − s)q−p−1

Γ(q− p)
f (s,x(s))ds−b

∫ ζ2

0

(ζ2− s)q−p−1

Γ(q− p)
f (s,x(s))ds

)

+δ
∫ σ

0

(σ − s)q−1

Γ(q)
f (s,x(s))ds

m−2

∑
i=1

αi

]
, t ∈ [0,1] (3.1)
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where K = C([0,1] , R) denote the Banach space of all continuous functions from
[0,1] to R endowed with the norm: ‖x‖ = sup{|x(t)|, t ∈ [0,1]} . Observe that the
problem (1.1)–(1.2) has solutions if and only if the operator S has fixed points.

In the sequel, we set

ϑ =
1

Γ(q+1)
+

|δ |σq

|1− δ |Γ(q+1)
+
[ |δ |σ
|A(1− δ )| +

1
|A|
]

×
[
|1− δ |

(m−2

∑
i=1

|αi|β q
i

Γ(q+1)
+

|a|ζ q−p
1 + |b|ζ q−p

2

Γ(q− p+1)

)
+

|δ |σq

Γ(q+1)

m−2

∑
i=1

|αi|
]
. (3.2)

Now we are in a position to present the main results of our paper. The first one
dealing with the existence and uniqueness of solutions for problem (1.1)–(1.2) is based
on Banach’s contraction mapping principle.

THEOREM 1. Let f : [0,1]×R−→ R be a continuous function satisfying the Lip-
schitz condition:

(A1) | f (t,x)− f (t,y)| � �|x− y| , � > 0 , ∀t ∈ [0,1] , x,y ∈ R .

Then the problem (1.1)–(1.2) has a unique solution if ϑ� < 1 , where ϑ is given by
(3.2).

Proof. In the first step, we show that the operator S defined by (3.1) satis-
fies the relation: S Br ⊂ Br, where Br = {x ∈ K : ‖x‖ � r} , r � ϑϕ/(1− ϑ�) ,
supt∈[0,1] | f (t,0)| = ϕ . For x ∈ Br , t ∈ [0,1], using the assumption (A1), we get

| f (t,x(t))| = | f (t,x(t))− f (t,0)+ f (t,0)|
� | f (t,x(t))− f (t,0)|+ | f (t,0)|� �‖x‖+ ϕ � �r+ ϕ . (3.3)

In view of (3.2) and (3.3), we obtain

‖(S x)‖ � sup
t∈[0,1]

{∫ t

0

(t− s)q−1

Γ(q)
| f (s,x(s))|ds+

|δ |
|1− δ |

∫ σ

0

(σ − s)q−1

Γ(q)
| f (s,x(s))|ds

+
[ |δ |σ
|A(1− δ )| +

t
|A|
][
|1− δ |

(m−2

∑
i=1

|αi|
∫ βi

0

(βi− s)q−1

Γ(q)
| f (s,x(s))|ds

+|a|
∫ ζ1

0

(ζ1 − s)q−p−1

Γ(q− p)
| f (s,x(s))|ds+ |b|

∫ ζ2

0

(ζ2− s)q−p−1

Γ(q− p)
| f (s,x(s))|ds

)

+|δ |
∫ σ

0

(σ − s)q−1

Γ(q)
| f (s,x(s))|ds

m−2

∑
i=1

|αi|
]}

� (�r+ ϕ) sup
t∈[0,1]

{ tq

Γ(q+1)
+

|δ |σq

|1− δ |Γ(q+1)
+
[ |δ |σ
|A(1− δ )| +

t
|A|
]

×
[
|1− δ |

(m−2

∑
i=1

|αi|β q
i

Γ(q+1)
+

|a|ζ q−p
1 + |b|ζ q−p

2

Γ(q− p+1)

)
+

|δ |σq

Γ(q+1)

m−2

∑
i=1

|αi|
]}

� (�r+ ϕ)ϑ � r.
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This shows that S Br ⊂ Br.
Again making use of the condition (A1) and (3.2), we obtain

‖(S x)− (S y)‖ � sup
t∈[0,1]

{∫ t

0

(t − s)q−1

Γ(q)
ds+

|δ |
|1− δ |

∫ σ

0

(σ − s)q−1

Γ(q)
ds

+
[ |δ |σ
|A(1− δ )| +

t
|A|
][
|1− δ |

(m−2

∑
i=1

|αi|
∫ βi

0

(βi − s)q−1

Γ(q)
ds

+|a|
∫ ζ1

0

(ζ1 − s)q−p−1

Γ(q− p)
ds+ |b|

∫ ζ2

0

(ζ2− s)q−p−1

Γ(q− p)
ds
)

+|δ |
∫ σ

0

(σ − s)q−1

Γ(q)
ds

m−2

∑
i=1

|αi|
]}

�‖x− y‖

� ϑ�‖x− y‖,
which shows that the operator S is a contraction according to the given condition
ϑ� < 1. Thus, by Banach’s contraction mapping principle, there exists a unique fixed
point for the operator S which corresponds to the unique solution for the problem
(1.1)–(1.2). This completes the proof. �

Our next existence result is based on Krasnoselskii’s fixed point theorem [20].

THEOREM 2. Let f : [0,1]×R→ R be a continuous function satisfying (A1). In
addition it is assumed that | f (t,x)| � μ(t) , ∀(t,x) ∈ [0,1]×R , and μ ∈C([0,1],R+) .
Then the problem (1.1)–(1.2) has at least one solution on [0,1] if �(ϑ −1/Γ(q+1)) <
1, where ϑ is given by (3.2).

Proof. Let us consider a set Bν = {x ∈ K : ‖x‖ � ν} with ν � ϑ‖μ‖
(supt∈[0,1] |μ(t)| = ‖μ‖ ). In order to satisfy the hypothesis of Krasnoselskii’s fixed
point theorem, we define two operators S1 and S2 on Bν as

(S1x)(t) =
∫ t

0

(t − s)q−1

Γ(q)
f (s,x(s))ds,

(S2x)(t) =
δ

1− δ

∫ σ

0

(σ − s)q−1

Γ(q)
f (s,x(s))ds

+
[ δσ
A(1− δ )

+
t
A

][(
1− δ

)(m−2

∑
i=1

αi

∫ βi

0

(βi − s)q−1

Γ(q)
f (s,x(s))ds

−a
∫ ζ1

0

(ζ1 − s)q−p−1

Γ(q− p)
f (s,x(s))ds−b

∫ ζ2

0

(ζ2 − s)q−p−1

Γ(q− p)
f (s,x(s))ds

)

+δ
∫ σ

0

(σ − s)q−1

Γ(q)
f (s,x(s))ds

m−2

∑
i=1

αi

]
.

For x,y ∈ Bν , it is easy to show that ‖(S1x)+ (S2y)‖ � ‖μ‖ϑ � ν (ϑ is given by
(3.2)), which means that S1x+S2y ∈ Bν .
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Using (A1) and (3.2), for x,y ∈ R , t ∈ [0,1], we obtain

‖(S2x)− (S2y)‖

� sup
t∈[0,1]

{ |δ |
|1− δ |

∫ σ

0

(σ − s)q−1

Γ(q)
| f (s,x(s))− f (s,y(s))|ds

+
[ |δ |σ
|A(1− δ )| +

t
|A|
][
|1− δ |

(m−2

∑
i=1

|αi|
∫ βi

0

(βi − s)q−1

Γ(q)
| f (s,x(s))− f (s,y(s))|ds

+|a|
∫ ζ1

0

(ζ1− s)q−p−1

Γ(q− p)
| f (s,x(s))− f (s,y(s))|ds

+|b|
∫ ζ2

0

(ζ2− s)q−p−1

Γ(q− p)
| f (s,x(s))− f (s,y(s))|ds

)

+|δ |
∫ σ

0

(σ − s)q−1

Γ(q)
| f (s,x(s))− f (s,y(s))|ds

m−2

∑
i=1

|αi|
]}

� �(ϑ −1/Γ(q+1))‖x− y‖.
This shows that S2 a contraction in view of the condition �(ϑ −1/Γ(q+1)) < 1.

Continuity of f implies that the operator S1 is continuous. Also, S1 is uniformly
bounded on Bν as

‖(S1x)‖ � sup
t∈[0,1]

{∫ t

0

(t− s)q−1

Γ(q)
| f (s,x(s))|ds

}
� ‖μ‖

Γ(q+1)
.

Moreover, with sup(t,x)∈[0,1]×Bν | f (t,x)| = f < ∞ and 0 < t1 < t2 < 1, we have

∣∣∣(S1x)(t2)− (S1x)(t1)
∣∣∣� f

Γ(q+1)

(
2|t2− t1|q + |tq2 − tq1 |

)
,

which tends to zero independent of x as (t2−t1)→ 0. This implies that S1 is relatively
compact on Bν . Hence by the Arzelá− Ascoli theorem, S1 is compact on Bν .
Thus the hypothesis of Krasonselskii’s fixed theorem is satisfied and consequently the
problem (1.1)–(1.2) has at least one solution on [0,1]. This completes the proof. �

Our next result relies on the following fixed point theorem [20].

THEOREM 3. Let X be a Banach space. Assume that T : X −→ X is a completely
continuous operator and the set V = {u ∈ X |u = εTu, 0 < ε < 1} is bounded. Then T
has a fixed point in X .

THEOREM 4. Assume that exists a positive constant L1 such that | f (t,x)| � L1

for all t ∈ [0,1] , x ∈ R. Then there exists at least one solution for the problem (1.1)–
(1.2) on [0,1] .

Proof. In the first step, we show that the operator S is completely continuous.
Clearly continuity of S follows from the continuity of f and it is easy to establish
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by the given assumption that |(S x)(t)| � L1ϑ = L2, where ϑ is given by (3.2). Let
0 < t1 < t2 < 1, we get

|(S x)(t2)− (S x)(t1)|

� L1

{2|t2− t1|q + |tq2 − tq1 |
Γ(q+1)

+
|t2− t1|
|A|

[
|1− δ |

(m−2

∑
i=1

|αi|β q
i

Γ(q+1)

+
|a|ζ q−p

1 + |b|ζ q−p
2

Γ(q− p+1)

)
+

|δ |σq

Γ(q+1)

m−2

∑
i=1

|αi|
]}

.

Clearly, the right-hand side tends to zero independently of x ∈ Bρ as t2 −→ t1. Thus,
by the Arzel á theorem, the operator S is completely continuous.

Next, we consider the set V = {x ∈K : x = εS x, 0 < ε < 1} . To show that V is
bounded, let t ∈ [0,1] . Then

x(t) =
∫ t

0

(t− s)q−1

Γ(q)
f (s,x(s))ds+

δ
1− δ

∫ σ

0

(σ − s)q−1

Γ(q)
f (s,x(s))ds

+
[ δσ
A(1− δ )

+
t
A

][(
1− δ

)(m−2

∑
i=1

αi

∫ βi

0

(βi− s)q−1

Γ(q)
f (s,x(s))ds

−a
∫ ζ1

0

(ζ1− s)q−p−1

Γ(q− p)
f (s,x(s))ds−b

∫ ζ2

0

(ζ2 − s)q−p−1

Γ(q− p)
f (s,x(s))ds

)

+δ
∫ σ

0

(σ − s)q−1

Γ(q)
f (s,x(s))ds

m−2

∑
i=1

αi

]
.

Then it is easy to show that |x(t)|= ε|(S x)(t)|� L1ϑ = L2 . Hence, ‖x‖� L2 , ∀x∈V ,
t ∈ [0,1] . So V is bounded. Thus, the conclusion of Theorem 3 applies and the problem
(1.1)–(1.2) has at least one solution on [0,1] . This completes the proof. �

LEMMA 2. (Nonlinear alternative for single valued maps [13]) Let E be a Ba-
nach space E1 a closed, convex subset of E , V an open subset of E1 , and 0 ∈ V .
Suppose that U : V −→ E1 is a continuous, compact (that is, U (V ) is a relatively
compact subset ofE1 ) map. Then either

(i) U has a fixed point in V , or

(ii) there is a x ∈ ∂V (the boundary of V in E1 ) and κ ∈ (0,1) with x = κ U (x) .

THEOREM 5. Let f : [0,1]×R −→ R be a continuous function. Further, it is
assumed that

(A2) there exist a function p ∈C([0,1],R+)and a nondecreasing function ψ : R
+ −→

R
+ such that | f (t,x)| � p(t)ψ(‖x‖), ∀(t,x) ∈ [0,1]×R;

(A3) there exists a constant M > 0 such that M/ψ(M)‖p‖ϑ > 1, where ϑ is given
by (3.2).
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Then the problem (1.1)–(1.2) has at least one solution on [0,1].

Proof. Let us consider the operator S : K −→ K defined by (3.1) and show
that S maps bounded sets into bounded sets in K . For a given positive number ρ ,
let Bρ = {x ∈ K : ‖x‖ � ρ} be a bounded set in K . Then, for x ∈ Bρ together with
(A2), we obtain

|(S x)(t)| �
∫ t

0

(t − s)q−1

Γ(q)
p(s)ψ(‖x‖)ds+

|δ |
|1− δ |

∫ σ

0

(σ − s)q−1

Γ(q)
p(s)ψ(‖x‖)ds

+
[ |δ |σ
|A(1− δ )| +

t
|A|
][
|1− δ |

(m−2

∑
i=1

αi

∫ βi

0

(βi− s)q−1

Γ(q)
p(s)ψ(‖x‖)ds

+|a|
∫ ζ1

0

(ζ1 − s)q−p−1

Γ(q− p)
p(s)ψ(‖x‖)ds+ |b|

∫ ζ2

0

(ζ2 − s)q−p−1

Γ(q− p)
p(s)ψ(‖x‖)ds

)

+|δ |
∫ σ

0

(σ − s)q−1

Γ(q)
p(s)ψ(‖x‖)ds

m−2

∑
i=1

|αi|
]

� ψ(ρ)‖p‖ϑ ,

where A is given by (2.3). As in the proof of the previous result, for 0 < t1 < t2 < 1
and x ∈ Bρ . we have that the operator S is completely continuous. Thus, it follows
that S maps bounded sets into equicontinuous sets of K .

Let x be a solution for the given problem. Then, for λ ∈ (0,1), as before, we
obtain

|x(t)| = ‖λ (S x)(t)‖ � ψ(‖x‖)‖p‖ϑ ,

which, on taking the norm for t ∈ [0,1], yields

‖x‖/ψ(‖x‖)‖p‖ϑ � 1.

In view of (A3), there exists M such that ‖x‖ �= M. Let us choose M1 = {x∈K : ‖x‖<
M + 1}. Since the operator S : M1 → K is continuous and completely continuous.
From the choice of M1 , there is no x ∈ ∂M1 such that x = λS (x) for some λ ∈ (0,1).
Consequently, by Lemma 2, we deduce that the operator S has a fixed point x ∈ M1

which is a solution of the problem (1.1)–(1.2). This completes the proof. �

EXAMPLE 1. Consider a fractional boundary value problem given by⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

cDqx(t) = f (t,x), 1 < q � 2, t ∈ [0,1],

x(0) = δx(σ),

a cDpx(ζ1)+b cDpx(ζ2) =
m−2

∑
i=1

αix(βi),

0 < σ < ζ1 < β1 < β2 < .. . < βm−2 < ζ2 < 1, 0 < p < 1, αi ∈ R.

(3.4)



156 R. P. AGARWAL, A. ALSAEDI, A. ALSHARIF AND B. AHMAD

Here, δ = 1/2, q = 7/4, a = 1, b = 2, m = 5, σ = 1/6, ζ1 = 1/3, β1 = 1/2,
β2 = 2/3, β3 = 3/4, ζ2 = 4/5, α1 = α2 = α3 = 1, p = 1/2, and f (t,x) = sinx√

t2+225
+

(t +5)
1
2 . With the given data, � = 1/15, |A| 	 0.126655 and ϑ 	 12.193711, where

ϑ is given by(3.2). Obviously all the conditions of Theorem 1 are satisfied with �ϑ <
1. Therefore, by the conclusion of Theorem 1, there exists a unique solution for the
problem (3.4) on [0,1].

EXAMPLE 2. Consider the problem (3.4) with

f (t,x) =
1

5t +6

[ 1
1+ |x| +

sinx
3

]
. (3.5)

Clearly | f (t,x)| � p(t)ψ(‖x‖) with p(t) = 1
5t+6 , ψ(‖x‖) = 1+ ‖x‖

3 . By the as-
sumption (A3) of Theorem 5, we find that M > 6.30026. Thus, by Theorem 5, there
exists at least one solution for the problem (3.4) with f (t,x) given by (3.5).

REMARK 2. (Concerning problem (1.1)–(1.3)) As done for problem (1.1)–(1.2),
we can find the operator S1 : K → K associated with problem (1.1)–(1.3), which is
given by

(S1x)(t) =
∫ t

0

(t − s)q−1

Γ(q)
f (s,x(s))ds+

δ1

1− δ1σ

∫ σ

0

∫ s

0

(s−u)q−1

Γ(q)
f (u,x(u))duds

+
[ δ1σ2

2A1(1− δ1σ)
+

t
A 1

][(
1− δ1σ

)(m−2

∑
i=1

αi

∫ βi

0

(βi− s)q−1

Γ(q)
f (s,x(s))ds

−a
∫ ζ1

0

(ζ1 − s)q−p−1

Γ(q− p)
f (s,x(s))ds−b

∫ ζ2

0

(ζ2 − s)q−p−1

Γ(q− p)
f (s,x(s))ds

)

+δ1

∫ σ

0

∫ s

0

(s−u)q−1

Γ(q)
f (u,x(u))duds

m−2

∑
i=1

αi

]
, (3.6)

where

A1 =
[(aζ 1−p

1 +bζ 1−p
2

Γ(2− p)
−

m−2

∑
i=1

αiβi

)(
1− δ1σ

)
− δ1σ2

2

m−2

∑
i=1

αi

]
�= 0. (3.7)

Using the operator S1 , we can obtain the existence results for problem (1.1)–(1.3)
similar to the ones obtained for problem (1.1)–(1.2) in Section 3.

REMARK 3. (Special cases) We can record some special cases (of course new)
of the results obtained in this paper. For instance, by taking δ = 0 in (1.2), ours re-
sults correspond the ones for fractional differential equation (1.1) equipped with the
boundary conditions of the form:

x(0) = 0, a cDpx(ζ1)+b cDpx(ζ2) =
m−2

∑
i=1

αix(βi).
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If we choose a = 0, b = 1 and ζ2 → 1 in (1.2), then we obtain the results for fractional
differential equation (1.1) subject to the boundary conditions:

x(0) = δx(σ), cDpx(1) =
m−2

∑
i=1

αix(βi).

In a similar manner, we can get the results for fractional differential equation (1.1)
with the boundary data:

x(0) = δ1

∫ σ

0
x(s)ds, cDpx(1) =

m−2

∑
i=1

αix(βi).

REMARK 4. (Some more problems) In (1.2), we replace the multi-point boundary
condition by the following one:

cDpx(1) =
m−2

∑
i=1

αi
cDpx(βi). (3.8)

In this case, the associated fixed point problem is

S2x = x,

where

(S2x)(t) =
∫ t

0

(t − s)q−1

Γ(q)
f (s,x(s))ds+

δ
1− δ

∫ σ

0

(σ − s)q−1

Γ(q)
f (s,x(s))ds

+
[ δσ
A2(1− δ )

+
t

A2

](m−2

∑
i=1

αi

∫ βi

0

(βi − s)q−p−1

Γ(q− p)
f (s,x(s))ds

−
∫ 1

0

(1− s)q−p−1

Γ(q− p)
f (s,x(s))ds

)
, (3.9)

A2 =
[1−∑m−2

i=1 αiβ 1−p
i

Γ(2− p)

]
�= 0. (3.10)

Instead of (1.2), if we take the boundary conditions:

x(0) = 0, cDpx(ζ1) =
m−2

∑
i=1

αi
cDpx(βi), (3.11)

then the related fixed point problem is

S3x = x,

where

(S3x)(t) =
∫ t

0

(t− s)q−1

Γ(q)
f (s,x(s))ds+

t
A3

(m−2

∑
i=1

αi

∫ βi

0

(βi − s)q−p−1

Γ(q− p)
f (s,x(s))ds

−
∫ ζ1

0

(ζ1 − s)q−p−1

Γ(q− p)
f (s,x(s))ds

)
, (3.12)
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A3 =
[ζ 1−p

1 −∑m−2
i=1 αiβ 1−p

i

Γ(2− p)

]
�= 0. (3.13)

Next, replacing (1.2) with the following boundary conditions

x(0) = 0, cDpx(0) =
m−2

∑
i=1

αi
cDpx(βi), (3.14)

the associated fixed point problem is

S4x = x,

where

(S4x)(t) =
∫ t

0

(t− s)q−1

Γ(q)
f (s,x(s))ds− t

A4

(m−2

∑
i=1

αi

∫ βi

0

(βi− s)q−p−1

Γ(q− p)
f (s,x(s))ds

)
,

A4 =
m−2

∑
i=1

αiβ 1−p
i

Γ(2− p)
�= 0. (3.15)

We can obtain the existence and uniqueness results for all the problems introduced in
this remark by following the methodology employed in Section 3.

4. Conclusions

We have studied the existence and uniqueness of solutions for nonlinear Liouville-
Caputo type fractional differential equations equipped with nonlocal multi-point condi-
tions involving lower order fractional derivatives. The uniqueness result is obtained by
applying Banach’s contraction mapping principle, while the existence results are estab-
lished by means of Krasnoselskii’s fixed point, Schaefer like fixed point theorem and
Leray-Schauder type nonlinear alternative. Several variants of the given problem are
also discussed. It is worth-mentioning that some existence results for Caputo type frac-
tional differential equations equipped with nonlocal strip conditions were obtained in
[7]. On the other hand, the present work deals with a variety of problems of Liouville-
Caputo type fractional differential equations supplemented with nonlocal multi-point
and integral boundary conditions.
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