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A PROBLEM INVOLVING THE p–LAPLACIAN OPERATOR
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Abstract. Using a variational technique we guarantee the existence of a solution to the reso-
nant Lane-Emden problem −Δpu = λ |u|q−2u , u|∂ Ω = 0 if and only if a solution to −Δpu =
λ |u|q−2u+ f , u|∂ Ω = 0 , f ∈ Lp′ (Ω) ( p′ being the conjugate of p ), exists for q∈ (p, p∗) under
certain condition on λ , where p∗ is the Sobolev conjugate of p .

1. Introduction

The study of partial differential equations involving a p -Laplacian differential op-
erator has become a major case of study in the recent times although it is still far from
being completely understood, especially when p = 1 or ∞ . A few evidences of the
limiting case can be found in [18], [20]. In fact, existence of a positive eigenvector to
the eigenvalue problem can be found in [7]. When p = 2, the usual Laplacian is ob-
tained for which a vast literature exists ([10], [11] and the references therein). For p �= 2
the p -Laplacian operator has physical applications in the study of non-Newtonian flu-
ids (dilatant fluids when p > 2) [15]. In practical life most of the problems are non
linear by nature for which a numerical solution is seeked for, however, unearthing the
existence of solution leads to a rich theory hidden behind the partial differential equa-
tions. The problems we are going to address in this article are the following. Let Ω
be a bounded subset of R

n , n � 3 with a Lipschitz boundary ∂Ω . Given 1 < p < ∞
and q ∈ (p, p∗) , where p∗ = np

n−p if 1 < p < n and p∗ = ∞ if p � n , we consider the
following problems.

1. −Δpu = λ |u|q−2u , u|∂Ω = 0. This problem is also known as the resonant Lane-
Emden problem.

2. −Δpu = λ |u|q−2u+ f , f ∈ Lp′(Ω) , u|∂Ω = 0.

where λ is a real number, Δp = ∇ · (| · |p−2∇·) . Throughout this paper we shall refer
the problems in 1 and 2 as the first and the second problem respectively.

We call the first problem to be of sub-liear type if 1 < q < p < p∗ and of super-
linear type when 1 < p < q < p∗ . In this article, we restrict the first problem to be of
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super-linear type. It is found in [5, 6] that a unique solution exists to the first problem for
the sub-linear case whereas uniqueness is lost for the super-linear case. Readers inter-
ested in knowing more about the first problem can refer to examples found in [8], [16],
where the domain is ring shaped for q∼ p∗ and the solution is non-unique. Kawohl [2]
showed the same but the domain which was considered is of annulus type with the annu-
lus being sufficiently small in size. Uniqueness of solution is also guaranteed in [9] for
the sub-linear case whereas a subdifferential method has been used to prove existence
in [13] for both sub and super linear cases. Grumiau and Parini [3] discussed the asymp-
totic behavior of the ground state solutions as q → p . In recent times Véron et al [12]
considered a similar problem but with a measure instead of the function f . They have
characterized the ‘good’ measures for which the problem - Δpu+g(x,u)= μ , u|∂Ω = 0
- where g(., .) is non-decreasing, Ω is a bounded domain in R

n - has a solution. Inter-
ested readers can also refer to the work of Giri and Choudhuri [19] (and the references
therein) who have used the notion of ‘reduced limit’ for problems with measure data.

In this paper we will use a well known variational technique to show the existence
of a solution in W 1,p

0 (Ω) = {v ∈ Lp(Ω) : ∇v ∈ Lp(Ω),v|∂Ω = 0} . A Fredholm type
alternative is also proposed thus showing a connection between the first and the second
problem. We organize the paper into two sections. In Section 2 we give the Mathe-
matical formulation. In Section 3 we discuss a few preliminary results and the main
result.

2. Mathematical formulation

The following definitions and theorems will be used in the main result we prove.
2.1 Definition: Let X be a Banach space and H : X → R a C1 functional. It is

said to satisfy the Palais-Smale condition (PS) if the following holds.
Whenever {un} is a sequence in X such that {H(un)} is bounded and H

′
(un)→ 0

strongly in X
′
(the dual space), then {un} has a strongly convergent subsequence in X .

The (PS) condition is a strong condition as very “well-behaved” function do not
satisfy it (Example: f (x) = c , x ∈ R , c a real constant).

We now state the following important theorem due to Ambrosetti and Rabinowitz [1]
which is a common tool used in the theory of modern PDEs.

Mountain-pass theorem: Let H : X → R be a C1 functional satisfying (PS). Let
u0 , u1 ∈ X , c0 ∈ R and r > 0 such that

1. ||u1−u0|| > r

2. H(u0) , H(u1) < c0 � H(v) , ∀v such that ||v− u0|| = r . Then H has a critical
value c � c0 defined by

c = inf
Γ∈℘

max
t∈[0,1]

H(Γ(t)), (2.1)

where ℘ is the collection of all continuous paths Γ : [0,1]→ X such that Γ(0) =
u0 , Γ(1) = u1 .
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2.2 Weak formulation of the problem: We now give the weak formulation of the
first problem. We say that u ∈W 1,p

0 (Ω) is a weak solution of the first problem if
∫

Ω
|∇u|p−2∇u ·∇vdx−λ

∫
Ω
|u|q−2uvdx = 0 (2.2)

for every v ∈W 1,p
0 (Ω) .

The weak solutions of the Lane-Emden problem are the critical points of the en-
ergy function defined by

Jq(u) =
1
p

∫
Ω
|∇u|pdx− λ

q

∫
Ω
|u|qdx. (2.3)

The following compact embedding theorems, due to Rellich-Kondrachov will be used
in our work.

1. if p < n , W 1,p
0 (Ω) ↪→ Lq(Ω) , 1 � q < p∗ ,

2. if p = n , W 1,n
0 (Ω) ↪→ Lq(Ω) , 1 � q < ∞ ,

3. if p > n , W 1,p
0 (Ω) ↪→C(Ω) .

We consider the non-homogeneous counterpart of the first problem - which is the sec-
ond problem - and is as follows.

−Δpu = λ |u|q−2u+ f ,

u|∂Ω = 0, (2.4)

where f ∈ Lp
′
(Ω) , p

′
being the conjugate of p , which is equal to p

p−1 . Let the corre-
sponding energy functional be denoted by J which is defined as follows.

J(u) =
1
p

∫
Ω
|∇u|pdx− λ

q

∫
Ω
|u|qdx−

∫
Ω

f udx. (2.5)

The Fréchet derivative of J , which is in W−1,p
′

0 (Ω) where p
′
= p

p−1 , is

< J
′
(u),v > =

∫
Ω
|∇u|p−2∇u ·∇vdx−λ

∫
Ω
|u|q−2uvdx−

∫
Ω

f vdx, (2.6)

∀v ∈W 1,p
0 (Ω) . Thus u ∈W 1,p

0 (Ω) is a weak solution of the second problem if

∫
Ω
|∇u|p−2∇u ·∇vdx−λ

∫
Ω
|u|q−2uvdx−

∫
Ω

f vdx = 0.

3. Few preliminary results and the main theorem

The main result of this paper, stated informally, is as follows. The problem −Δpu =
λ |u|q−2u , u|∂Ω = 0 has a weak solution if and only if the problem −Δpu = λ |u|q−2u+
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f , u|∂Ω = 0, where f ∈ Lp/p−1(Ω) , has a weak solution. We prove the result for p < n .
The case of p � n follows the same proof as in the case p < n which is based on the
results on compact embedding stated after equation (2.3). But first we present a few
technical lemmas on which the proof of this result will rely upon.

We first assume that a nontrivial solution exists to the problem

−Δpu = λ |u|q−2u,

u|∂Ω = 0.
(3.1)

THEOREM 1. The mapping J defined in (2.5) is a C1 -functional over W 1,p
0 (Ω) .

Proof. The functional J is differentiable which can be seen by extending the ar-
guments in [17], Theorem 5.3.1. Thus it is enough to show that J′ is continuous. Now
from (2.6), we have

| < J
′
(u),v > | � |

∫
Ω
|∇u|p−2∇u ·∇vdx|+ |λ |

∫
Ω
|u|q−1|v|dx+

∫
Ω
| f ||v|dx

� ||∇u|| p
p−1

||∇v||p + |λ |||u|| q
q−1

||v||q + || f || p
p−1

||v||p
�
[
||∇u|| p

p−1
+C1|λ |||u|| q

q−1
+C2|| f || p

p−1

]
||∇v||p, (3.2)

∀v ∈ W 1,p
0 (Ω) , where C1 , C2 are the constants due to the embedding of W 1,p

0 (Ω) in

Lq(Ω) for q ∈ [1, p∗] . From (3.2) one can see that J is a C1 functional over W 1,p
0 (Ω) .

THEOREM 2. There exists u0,u1 ∈W 1,p
0 (Ω) and a positive real number c0 such

that J(u0),J(u1) < c0 and J(v) � c0 , for every v satisfying ||v−u0||1,p = r .

Proof. Let u0 = 0. Clearly u0 is a solution of (3.1) and J(0) = 0. Now let
w ∈ B(0,1) = {u ∈ W 1,p

0 (Ω) : ||u||1,p = 1} and consider v = u0 + rw for r > 0 and
hence ||v− u0||1,p = r . We first show the existence of r0 , c0 such that for each v we
have ||v−u0||1,p = r0 and for which J(v) � c0 , where c0 > 0.
Since p < q < p∗ , we have

J(u0 + rw)− J(u0) =
rp

p

∫
Ω
|∇w|pdx− rqλ

q

∫
Ω
|w|qdx− r

∫
Ω

f wdx,

=
rp

p
− rqλ

q

∫
Ω
|w|qdx− r

∫
Ω

f wdx. (3.3)

Further, |w|1,p = 1 and hence |∫Ω wpdx| � ∫
Ω |wp|dx = ||w||pp � c1|w|p1,p = c1 . Simi-

larly, |∫Ω wqdx| � c2 . Using these arguments leads to

J(u0 + rw)− J(u0) � r

[
rp−1

p
− rq−1λ

q
c2− c1/p

1 || f ||p′
]
. (3.4)
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We first analyze the term

[
rp−1

p
− rq−1λ

q
c2 − c1/p

1 || f ||p′
]

= F(r)

(say). Clearly F(0) < 0 and for r0 =
(

q(p−1)
p(q−1)

1
λ c2

) 1
q−p

we see that F ′(r0) = 0. A bit of

calculus guarantees that F ′′(r0) < 0 and hence r0 is a maximizer of F . Note that, if

0 < λ < λ1 =
q(p−1)

c2p(q−1)
.

⎛
⎝ q− p

p(q−1)
.

1

c
1
p
1 || f ||p′

⎞
⎠

q−p
p−1

,

then F(r0) > 0. As r → ∞ we have F(r) →−∞ . Hence there exists r1,r2 > 0, r0 > 0
(this r0 could be different from the above one) such that r1F(r1) = r2F(r2) = c′ (say),
r1 < r0 < r2 and rF(r) > 0 for each r ∈ (r1,r2) . Thus for v such that ||v−u0||1,p = r0

we have J(v) � c′ > 0 for each v ∈ B(0,r0) ⊂W 1,p
0 (Ω) .

Choice of u1 : Let wq be a nontrivial solution to the equation −Δpwq = λ |wq|q−2wq

in Ω , wq = 0 on ∂Ω . Consider the function g = kwq , k ∈ R , where we have normal-
ized wq with respect to the Sobolev norm on W 1,p

0 (Ω) without changing its notation.
Note that,

J(g) =
(

kp

p
− λkq ∫

Ω |wq|qdx

q

)
− kC,

where C =
∫

Ω f wqdx . Since p < q < p∗ , we choose k0 to be sufficiently large so that
kp
0

p
− λkq

0

∫
Ω |wq|qdx

q
− k0C < 0. Then J(k0wq) < 0 and hence J(k0wq) < J(u0) . Thus

we can choose u1 = k0wq , where k0 > r0 , due to which ||u1−u0||1,p > r0 . Hence the
result.

THEOREM 3. The functional J satisfies the Palais-Smale condition.

Proof. Let un be a sequence in W 1,p
0 (Ω) such that |J(un)| � M and J

′
(un) → 0

as n → ∞ in W−1,p
′

0 (Ω) , p′ being the conjugate of p . Now

J(un) =
1
p

∫
Ω
|∇un|pdx− λ

q

∫
Ω
|un|qdx−

∫
Ω

f undx, (3.5)

< J
′
(un),v > =

∫
Ω
|∇un|p−2∇un.∇vdx−λ

∫
Ω
|un|q−2unvdx−

∫
Ω

f vdx, (3.6)
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for all v ∈W 1,p
0 (Ω) . Consider the following.

< J
′
(un),un > =

∫
Ω
|∇un|pdx−λ

∫
Ω
|un|qdx−

∫
Ω

f undx, (3.7)

J(un) =
1
p

∫
Ω
|∇un|pdx− λ

q

∫
Ω
|un|qdx−

∫
Ω

f undx,

=
1
p
|un|p1,p−

λ
q

∫
Ω
|un|qdx−

∫
Ω

f undx

λ
∫

Ω
|un|qdx =

q
p
|un|p1,p−qJ(un)−q

∫
Ω

f undx,

p−q
p

|un|p1,p = < J
′
(un),un > −qJ(un)− (q−1)

∫
Ω

f undx. (3.8)

From (3.8) {un} is bounded in W 1,p
0 (Ω) and hence by Eberlein-Šmulian’s theorem

(refer Dunford-Schwartz [1; p. 430] [14]) it has a weakly convergent subsequence, say
{unk} , in W 1,p

0 (Ω) .

Claim. The subsequence {unk} is strongly convergent in W 1,p
0 (Ω) .

Proof. Applying limit nk → ∞ to (3.6) (refer Appendix) and using the strong
convergence of (unk) in Lq(Ω) due to compact embedding we obtain∫

Ω
|∇u|p−2∇u ·∇vdx = λ

∫
Ω
|u|q−2uvdx+

∫
Ω

f vdx, (3.9)

We then pass on the limit nk → ∞ to (3.7) to get

lim
nk→∞

|unk |p1,p = λ
∫

Ω
|u|qdx+

∫
Ω

f udx = |u|p1,p. (3.10)

Since, a weakly convergent sequence which is convergent in norm is strongly conver-
gent, hence unk → u in W 1,p

0 (Ω) as nk → ∞ .

So, by the Mountain-pass theorem an extreme point for J exists in W 1,p
0 (Ω) .

We summarize the results proved in Theorems 1, 2 and 3 in the form of a unified
theorem as follows.

THEOREM 4. Suppose −Δpu = λ |u|q−2u, u|∂Ω = 0 has a nontrivial solution for
some λ > 0 , where q∈ (p, p∗) . Then the problem −Δpu = λ |u|q−2u+ f , f ∈ Lp′(Ω) ,
u|∂Ω = 0 has a nontrivial solution whenever λ ∈ (0,λ ′] where λ ′ < λ1 and λ1 =

q(p−1)
c2 p(q−1) .

(
q−p

p(q−1) .
1

c
1
p
1 || f ||p′

) q−p
p−1

, p′ = p
p−1 , c1/p

1 , c1/q
2 are the Sobolev constants corre-

sponding to the embedding of W 1,p
0 (Ω) in Lp(Ω) , Lq(Ω) respectively.

Arguing on similar lines, as in Theorems 1, 2 and 3, we conclude the following
result.
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THEOREM 5. If the eigenvalue problem

−Δpu = λ |u|p−2u in Ω,

u|∂Ω = 0 on ∂Ω,

has a nontrivial solution, then the non homogeneous Lane-Emden problem

−Δpu = λ |u|q−2u+ f , f ∈ Lp′(Ω),
u|∂Ω = 0,

has a nontrivial solution for q ∈ (p, p∗) whenever λ ∈ (0,λ ′] where λ ′ < λ1 and

λ1 = q(p−1)
c2 p(q−1) .

(
q−p

p(q−1) .
1

c
1
p
1 || f ||p′

) q−p
p−1

, p′ = p
p−1 , c1/p

1 , c1/q
2 are the Sobolev constants

corresponding to the embedding of W 1,p
0 (Ω) in Lp(Ω) , Lq(Ω) respectively.

Conversely, suppose to each f ∈ Lp′(Ω) the problem

−Δpu = λ |u|q−2u+ f ,

u|∂Ω = 0, (3.11)

has a nontrivial solution on the set M = {u ∈W 1,p
0 (Ω) : ||u||q = 1} for some λ > 0,

where q ∈ [p, p∗) . Existence of such solution can be assumed from the weak lower
semi continuity and coercivity of the corresponding energy functional J on the subset
M of W 1,p

0 (Ω) (refer [17]). In order to prove the existence of nontrivial solution of the

first problem for q ∈ [p, p∗) , we let { fn} ⊂ Lp
′
(Ω) be a sequence such that fn → 0 in

Lp′(Ω) . Then for each fn , there exists a solution, say un .
We have

B[u,v] =
∫

Ω
|∇u|p−2∇u ·∇vdx−λ

∫
Ω
|u|q−2uvdx,

=
∫

Ω
f vdx, ∀v ∈W 1,p

0 (Ω), (3.12)

where B is a ‘non linear form’ in two variables u and v . It is easy to check that
B(., .) is the Fréchet derivative of the C1 functional 1

p

∫
Ω |∇u|p− λ

q

∫
Ω |u|q and hence is

continuous.
Clearly, for each v ∈W 1,p

0 (Ω) we have

B[un,v] =
∫

Ω
|∇un|p−2∇un ·∇vdx−λ

∫
Ω
|un|q−2unvdx,

=
∫

Ω
fnvdx,

� || fn||p′ ||v||p → 0 as n → ∞. (3.13)

Hence
∫

Ω fnvdx → 0 as n → ∞ . Consider Tn(v) =
∫

Ω
|∇un|p−2∇un ·∇vdx . Then Tn ’s

are bounded linear over W 1,p
0 (Ω) and ||Tn||= |||∇un|p−1||p′ for n � 1. From the above
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definition of Tn , for a fixed v ∈W 1,p
0 (Ω) we have the sequence {Tn(v)} to be bounded

which implies that {Tn(v)} is pointwise bounded. Thus by the uniform boundedness
principle {||Tn||} is bounded. Thus {||∇un||p} is bounded. Hence, there exists a sub-
sequence {unk} which weakly converges to u∞ with respect to the norm || · ||1,p in

W 1,p
0 (Ω) . Hence we have

lim
nk→∞

∫
Ω
|∇v|p−2∇v ·∇unkdx =

∫
Ω
|∇v|p−2∇v ·∇u∞dx,∀v ∈W 1,p

0 (Ω).

⇒ lim
nk→∞

∫
Ω
|∇unl |p−2∇unl ·∇unkdx =

∫
Ω
|∇unl |p−2∇unl ·∇u∞dx, (3.14)

for a fixed l . Therefore, since unk ⇀ u∞ in W 1,p
0 (Ω) implies that |∇unk |p−1 ⇀ |∇u∞|p−1

(for a subsequence) in Lp′(Ω) (Refer Appendix). But W 1,p
0 (Ω) ↪→ Lp(Ω) ↪→W−1,p

′
(Ω)

and hence

lim
nl→∞

∫
Ω
|∇unl |p−2∇unl ·∇vdx =

∫
Ω
|∇u∞|p−2∇u∞ ·∇vdx,∀v ∈W 1,p

0 (Ω),

⇒ lim
nl→∞

∫
Ω
|∇unl |p−2∇unl ·∇u∞dx =

∫
Ω
|∇u∞|pdx. (3.15)

Therefore, limnk→∞
∫

Ω |∇unk |pdx =
∫

Ω |∇u∞|pdx . It immediately can be concluded that

there exists a u∞ such that unk → u∞ in W 1,p
0 (Ω) . Hence using the continuity of B[., .]

in (3.12) we have

lim
nk→∞

B[unk ,v] = lim
nk→∞

∫
Ω
|∇unk |p−2∇unk ·∇vdx− lim

nk→∞
λ
∫

Ω
|unk |q−2unkvdx,

= lim
nk→∞

∫
Ω

fnkvdx,

⇒ B[u∞,v] = 0,∀v ∈W 1,p
0 (Ω).

In other words,∫
Ω
|∇u∞|p−2∇u∞ ·∇vdx−λ

∫
Ω
|u∞|q−2u∞vdx = 0,∀v ∈W 1,p

0 (Ω). (3.16)

Assume that λ ∈
(

0, inf
u �=0∈W1,p

0 (Ω)

{∫
Ω |∇u|p∫
Ω |u|q

}]
(infimum exists and is strictly greater

than zero which follows from the embedding result for p < N ). Since ||unk ||q = 1 and

unk → u∞ in W 1,p
0 (Ω) , hence we have

0 < λ � liminf

∫
Ω |∇unk |p∫

Ω |unk |q

= liminf
∫

Ω
|∇unk |p

= liminf ||∇unk ||pp = ||∇u∞||pp = ||u∞||p1,p

This implies that u∞ is a nontrivial solution of the first problem. Thus we summarize
the result proved as follows.
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THEOREM 6. Suppose to each f ∈Lp′(Ω) , p′ = p
p−1 , the problem −Δpu = λ |u|q−2u+

f , u|∂Ω = 0 has a solution in M ⊂ W 1,p
0 (Ω) for some λ > 0 , then the problem

−Δpu = λ |u|q−2u, u|∂Ω = 0 , has a nontrivial solution in W 1,p
0 (Ω) for q ∈ [p, p∗) ,

whenever λ ∈
(

0, inf
u �=0∈W1,p

0 (Ω)

{∫
Ω |∇u|p∫
Ω |u|q

}]
.

We end this section with a small observation from Theorem 6 that if to each f ∈
Lp′(Ω) , the problem −Δpu = λ |u|q−2u+ f , u|∂Ω = 0 has a solution in M ⊂W 1,p

0 (Ω)
for some λ > 0 and q∈ [p, p∗) then the eigenvalue problem −Δpu = λ |u|p−2u , u|∂Ω =

0, has a nontrivial solution in W 1,p
0 (Ω) , whenever λ ∈

(
0, inf

u �=0∈W1,p
0 (Ω)

{∫
Ω |∇u|p∫
Ω |u|q

}]
.

4. Appendix

We show that

lim
n→∞

∫
Ω
|∇un|p−2∇un ·∇vdx =

∫
Ω
|∇u|p−2∇u ·∇vdx, ∀v ∈W 1,p

0 (Ω). (4.1)

We divide the explanation into two cases:

Case 1: When p > 2.
This implies that p′ , the conjugate of p , should be lesser than 2, i.e., 1 < p′ <

2 < p . Thus we have W 1,p
0 (Ω) ↪→compact Lp′(Ω) (since W 1,p

0 (Ω) ↪→compact Lq(Ω) for
q ∈ [1, p∗)). Since ∇un converges weakly to, say ∇u , in Lp(Ω) , hence < |∇un| −
|∇u|,v >→ 0 for each v ∈ Lp′(Ω) . Thus < |∇un| − |∇u|, |∇un| − |∇u| >→ 0, i.e.,
||∇un||2 → ||∇u||2 . Hence ||∇un||p′ → ||∇u||p′ because p′ < 2 < p . By the Riesz-
Fischer theorem [4], there exists a subsequence of {∇un} which converges pointwise
a.e., i.e., |∇un(x)| → |∇u(x)| . So |∇un(x)|p−1 → |∇u(x)|p−1 and hence |∇un|p−1 ⇀

|∇u|p−1 in Lp′(Ω) . Thus we have limn→∞
∫

Ω |∇un|p−2∇un ·∇vdx =
∫

Ω |∇u|p−2∇u ·
∇vdx , ∀v ∈W 1,p

0 (Ω) .

Case 2: When p < 2.
This implies that p′ , the conjugate of p , should be greater than 2, i.e., p < 2 < p′ .
Look at the map F : W 1,p

0 (Ω) → Lp′(Ω) defined by u �→ |∇u|p−1 . Consider the

range of F , i.e., R(F) = {|∇u|p−1 : u ∈W 1,p
0 (Ω)} .

Observe that the map F is bounded in the sense that bounded sets are mapped to
bounded sets. Hence if un ⇀ u in W 1,p

0 (Ω) implies that {un} is bounded in W 1,p
0 (Ω) .

Hence {F(un)} = {|∇un|p−1} is bounded in Lp′(Ω) . Since Lp′(Ω) is reflexive, hence
there exists a subsequence of {|∇un|p−1} which weakly converges to, say, w in Lp′(Ω) .

We have the following: un ⇀ u in W 1,p
0 (Ω) so |∇un|p−1 ⇀ w in Lp′(Ω) . This

implies that

< |∇un|p−1−w,v > → 0,∀v ∈ Lp(Ω)
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Since p < 2 < p′ hence |∇un|p−1 −w ∈ Lp(Ω) . Thus |||∇un|p−1 −w||2 → 0 and
hence |||∇un|p−1 −w||p → 0. Therefore we have a subsequence of {|∇un|p−1} such

that |∇un|p−1 → w pointwise a.e. (implying |∇un| → w
1

p−1 pointwise a.e.) and so

|∇un| ⇀ w
1

p−1 in Lp(Ω) . Hence w = |∇u|p−1 .
Thus in all the above cases we found the following.

lim
n→∞

∫
Ω
|∇un|p−2∇un ·∇vdx =

∫
Ω
|∇u|p−2∇u ·∇vdx, ∀v ∈W 1,p

0 (Ω). (4.2)

Hence by the compact embedding due to Rellich-Kondrachov it can be concluded un →
u in Lq(Ω) . Thus we also have

lim
n→∞

∫
Ω
|un|q−2unvdx =

∫
Ω
|u|q−2uvdx, ∀v ∈W 1,p

0 (Ω). (4.3)

5. Conclusions

The resonant Lane-Emden problem has been studied. An existence result has been
established to the non-homogeneous Lane-Emden problem for the super-linear case -
1 < p < q < p∗ for λ ∈ (0,λ ′] - λ ′ being sufficiently large - if it is assumed that
a solution exists to the homogeneous Lane-Emden problem for the super-linear case
- 1 < p < q < p∗ . We further proved the ‘converse’ that if the non-homogeneous
problem has a solution then a solution to the homogeneous problem exists for the super
linear case. We also established an ‘equivalence’ of eigenvalue problem and the non
homogeneous Lane-Emden problem.
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