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A PROBLEM INVOLVING THE p-LAPLACIAN OPERATOR
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Abstract. Using a variational technique we guarantee the existence of a solution to the reso-
nant Lane-Emden problem —A,u = Alu|9"%u, u|yq =0 if and only if a solution to —A,u =
AMulT2u+ f, ulgqo =0, feLF (Q) (p being the conjugate of p), exists for g € (p, p*) under
certain condition on A, where p* is the Sobolev conjugate of p.

1. Introduction

The study of partial differential equations involving a p-Laplacian differential op-
erator has become a major case of study in the recent times although it is still far from
being completely understood, especially when p =1 or . A few evidences of the
limiting case can be found in [18], [20]. In fact, existence of a positive eigenvector to
the eigenvalue problem can be found in [7]. When p = 2, the usual Laplacian is ob-
tained for which a vast literature exists ([10], [11] and the references therein). For p # 2
the p-Laplacian operator has physical applications in the study of non-Newtonian flu-
ids (dilatant fluids when p > 2) [15]. In practical life most of the problems are non
linear by nature for which a numerical solution is seeked for, however, unearthing the
existence of solution leads to a rich theory hidden behind the partial differential equa-
tions. The problems we are going to address in this article are the following. Let Q
be a bounded subset of R”, n > 3 with a Lipschitz boundary dQ. Given 1 < p < oo
and g € (p,p*), where p* = % if 1 <p<nand p*=e if p>n, we consider the
following problems.

1. —Apu = Alu|?"?u, u|yq = 0. This problem is also known as the resonant Lane-
Emden problem.

2. —Apu=Auliut f, fe LV (Q), ulyo=0.

where A is a real number, A, = V- (|- |P=2V-). Throughout this paper we shall refer
the problems in 1 and 2 as the first and the second problem respectively.

We call the first problem to be of sub-liear type if 1 < ¢ < p < p* and of super-
linear type when 1 < p < g < p*. In this article, we restrict the first problem to be of
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super-linear type. Itis foundin [5, 6] that a unique solution exists to the first problem for
the sub-linear case whereas uniqueness is lost for the super-linear case. Readers inter-
ested in knowing more about the first problem can refer to examples found in [&], [16],
where the domain is ring shaped for g ~ p* and the solution is non-unique. Kawohl [2]
showed the same but the domain which was considered is of annulus type with the annu-
lus being sufficiently small in size. Uniqueness of solution is also guaranteed in [9] for
the sub-linear case whereas a subdifferential method has been used to prove existence
in [13] for both sub and super linear cases. Grumiau and Parini [3] discussed the asymp-
totic behavior of the ground state solutions as ¢ — p. In recent times Véron et al [12]
considered a similar problem but with a measure instead of the function f. They have
characterized the ‘good’ measures for which the problem - Aju+g(x,u) =1, ulyo =0
- where g(.,.) is non-decreasing, Q is a bounded domain in R” - has a solution. Inter-
ested readers can also refer to the work of Giri and Choudhuri [19] (and the references
therein) who have used the notion of ‘reduced limit” for problems with measure data.

In this paper we will use a well known variational technique to show the existence
of a solution in WOI”’(Q) ={vell(Q): Vv e LP(Q),v|yo = 0}. A Fredholm type
alternative is also proposed thus showing a connection between the first and the second
problem. We organize the paper into two sections. In Section 2 we give the Mathe-
matical formulation. In Section 3 we discuss a few preliminary results and the main
result.

2. Mathematical formulation

The following definitions and theorems will be used in the main result we prove.

2.1 Definition: Let X be a Banach space and H : X — R a C! functional. It is
said to satisfy the Palais-Smale condition (PS) if the following holds.

Whenever {u,} is asequence in X such that {H (u,)} is bounded and H' (u,) — 0
strongly in X ' (the dual space), then {u, } has a strongly convergent subsequence in X .

The (PS) condition is a strong condition as very “well-behaved” function do not
satisfy it (Example: f(x) =c, x € R, ¢ areal constant).

We now state the following important theorem due to Ambrosetti and Rabinowitz [1]
which is a common tool used in the theory of modern PDEs.

Mountain-pass theorem: Let H : X — R be a C' functional satisfying (PS). Let
uy, u1 € X, cp € R and r > 0 such that

1. Hm —uo” >r
2. H(ug), H(uy) < co < H(v), Vv such that ||v —ug|| = r. Then H has a critical
value ¢ > c¢g defined by

= inf H(T 2.1
¢ = jinf max (r@)), 2.1)

where & is the collection of all continuous paths T": [0, 1] — X such that T'(0) =
up, F(l) =uj.
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2.2 Weak formulation of the problem: We now give the weak formulation of the
first problem. We say that u € WOl P (Q) is a weak solution of the first problem if

/ \Vu\p_2Vu-Vvdx—7L/ |u|92uvdx = 0 (2.2)
Q Q

for every v € Wy 7 (Q).
The weak solutions of the Lane-Emden problem are the critical points of the en-
ergy function defined by

1 A
Jy(u) = —/ \Vu\pdx——/ |u|9dx. (2.3)
pPJja qJQ
The following compact embedding theorems, due to Rellich-Kondrachov will be used
in our work.
1. if p<n, WOI’ (Q) = L1(Q), 1 <g<p*,
2. if p=n, W,"(Q) — LI(Q), 1 < g < oo,
3. if p>n, W, P(Q) — CQ).

We consider the non-homogeneous counterpart of the first problem - which is the sec-
ond problem - and is as follows.

—Apu = Auli?u+ f,
ulya =0, (2.4)

where f € LP (Q), p being the conjugate of p, which is equal to Ll Let the corre-
sponding energy functional be denoted by J which is defined as follow

'B

1 A
—— Py Ay —
J(u) p/Q|Vu| dx q/Q|u\ dx /qudx. (2.5)

i

The Fréchet derivative of J, which is in W, " (Q) where p' = -2, is

<Jl(u),v> z/ \VuVFzVu-Vvdx—)L/ |u\‘172uvdx—/fvdx, (2.6)
Q Q Q
Vv € W, 7 (). Thus u € W, " () is a weak solution of the second problem if
/ \Vu\p_2Vu-Vvdx—7L/ |u\q_2uvdx—/fvdx: 0.
Q Q Q

3. Few preliminary results and the main theorem

The main result of this paper, stated informally, is as follows. The problem —A,u =
Alul772u, u|yq = 0 has a weak solution if and only if the problem —A,u = A |u|9"u+
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f. ulyq =0, where f € LP/P~1(Q), has a weak solution. We prove the result for p < n.
The case of p > n follows the same proof as in the case p < n which is based on the
results on compact embedding stated after equation (2.3). But first we present a few
technical lemmas on which the proof of this result will rely upon.

We first assume that a nontrivial solution exists to the problem

—Apu = Alul??u,
3.1
ulaq = 0.

THEOREM 1. The mapping J defined in (2.5) is a C' -functional over Wol"p(Q).

Proof. The functional J is differentiable which can be seen by extending the ar-
guments in [17], Theorem 5.3.1. Thus it is enough to show that J’ is continuous. Now
from (2.6), we have

| <J )v>] < |/ |vu|P*2vu.vvdx\+m|/ |u\q*1|v|dx+/ 1flIvldx
Q Q Q

< Va2 (VW] p (A el ] [Vl g + 17112 V]

=

< [IVull o, + il o, +GallALp, JIVV B2
Vv € W, ?(Q), where Cy, C, are the constants due to the embedding of W, (Q) in
L4(Q) for g € [1,p*]. From (3.2) one can see that J is a C' functional over WOI”’(Q).

THEOREM 2. There exists ug,u; € Wol’p (Q) and a positive real number ¢y such
that J(uo),J (u1) < co and J(v) = cg, for every v satisfying ||v—uol||1p, =r.

Proof. Let up = 0. Clearly up is a solution of (3.1) and J(0) = 0. Now let
weB(0,1)={uc W()17p(§2) :||ul[1,, = 1} and consider v = ug+ rw for r > 0 and
hence ||v —uol|1,, = r. We first show the existence of rg, ¢y such that for each v we
have ||v —uol|1,, = ro and for which J(v) > ¢, where ¢o > 0.

Since p < g < p*, we have

rP riA
J(uo +rw) — J(up) —/ |Vw\pdx——/ |w|qu—r/ fwdx,
p JQ q JQ Q

P P

-~ qgx —
B p /Q|w| dx r/gfwdx. (3.3)

Further, |w[; , = 1 and hence | fowdx| < [q[wP|dx = [[w|[; < c1|w]], = c1. Simi-

larly, | [ w?dx| < ¢;. Using these arguments leads to

b i)
p

J(uo—|—rw)—J(u0)>r[ c2—c}/p|f|pr]. (3.4)
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We first analyze the term

oo c}/"|f|p/] —F ()

1
(say). Clearly F(0) <0 and for rg = (Z%Z:B i) " we see that F’(ry) =0. A bit of

calculus guarantees that F”(rg) < 0 and hence rg is a maximizer of F. Note that, if

q(p—1) q—p 1

O<A<A = . .
—1 -1 4
cplq ) \ rlq ) C{ Hf”p’

then F(rg) > 0. As r — o we have F(r) — —eo. Hence there exists rj,r, >0, ro >0
(this ry could be different from the above one) such that r{F(ry) = rF (r2) = ¢’ (say),
r1 <rog <rp and rF(r) >0 foreach r € (ri,r2). Thus for v such that ||[v —ug||1,, = ro
we have J(v) > ¢’ > 0 foreach v € B(0,ry) C W()17p(Q).

Choice of u; : Let w, be a nontrivial solution to the equation —A,w, = A|wy|? 2w,
in Q, w, =0 on 0Q. Consider the function g = kwg, k € R, where we have normal-
ized w, with respect to the Sobolev norm on WO1 P(Q) without changing its notation.
Note that,

P q
J(g)= <k__lkqfﬂwq| dx)—kc,
p q

where C = [, fwqdx. Since p < g < p*, we choose ky to be sufficiently large so that
% _ AKG Jo [wql"dx
p .

we can choose u; = kow,, where ko > ro, due to which ||u; — uol|1,, > ro. Hence the
result.

—koC < 0. Then J(kow,) < 0 and hence J(kowy) < J(up). Thus

THEOREM 3. The functional J satisfies the Palais-Smale condition.

Proof. Let u, be a sequence in WOI”’(Q) such that [J(u,)| < M and J (u,) — 0

as n— oo in Wofl’p (Q), p’ being the conjugate of p. Now

J(uy) = Il)/gVun|pd)c—%/g|un‘1a')c—/qundx7 (3.5)

<J,(un),v>:/ \Vun\p72Vun.Vvdx—7L/ |un|’172unvdx—/fvdx, (3.6)
Q Q Q
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forall v e Wol’p (). Consider the following.
<J,(u,,),u,,> =/ |Vu,,\”dx—l/ \un|qu—/fundx, 3.7
Q Q Q
1 A
J(uy) = —/ \Vun|pdx——/ |un\qu—/fundx,
pJa qJQ Q

A
pr——/ |un|qu—/fundx
PoqJa Q

JL/ |y |Tdx = g|un\1f —qJ (uy) —q/ Sundx,
Q D P Q
P—q

1
= = |uy
P

ual? , = < T (tn)tn > —qJ (1) — (g — 1)/qundx. (3.8)

From (3.8) {u,} is bounded in WO1 ?(Q) and hence by Eberlein-Smulian’s theorem
(refer Dunford-Schwartz [1; p. 430] [14]) it has a weakly convergent subsequence, say
{tt, }, in W, P (Q2).

Claim. The subsequence {uy, } is strongly convergent in WO1 7(Q).

Proof. Applying limit ny — oo to (3.6) (refer Appendix) and using the strong
convergence of (uy,,) in L7(Q) due to compact embedding we obtain

/ |VulP=2Vu - Vvdx = k/ \u|q_2uvdx+/ fvdx, (3.9)
Q Q Q

We then pass on the limit n; — oo to (3.7) to get
: P _ q _ 1P
n}clinw\unk|l7p—l/9|u\ dx—l—/gfudx— ulf . (3.10)

Since, a weakly convergent sequence which is convergent in norm is strongly conver-
gent, hence u,, — u in W, ”(Q) as ny — oo.

So, by the Mountain-pass theorem an extreme point for J exists in WO1 P(Q).
We summarize the results proved in Theorems 1, 2 and 3 in the form of a unified
theorem as follows.

THEOREM 4. Suppose —Apu= A lu|972u, u|y0 =0 has a nontrivial solution for
some A >0, where q € (p,p*). Then the problem —Ayu=Alu|92u+f, f € LY (Q),

ulyo = 0 has a nontrivial solution whenever A € (0,A'] where A" < Ay and A =
q9-p

=T
1 — 1 1
ap=l) ( _g-p_ - 0= cl/p, cz/q are the Sobolev constants corre-
crlg=1)"\ prl¢=1) am p-

cr [l

sponding to the embedding of WO1 P(Q) in LP(Q), L1(Q) respectively.

Arguing on similar lines, as in Theorems 1, 2 and 3, we conclude the following
result.
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THEOREM 5. [f the eigenvalue problem
—Apu = AulPuin Q,
ulgo = 00on dQ,
has a nontrivial solution, then the non homogeneous Lane-Emden problem
—Apu = Au|"Pu+ f, f € L7 (Q),
ulga =0,

has a nontrivial solution for q € (p,p*) whenever A € (0,A'] where A" < A and
—p

p—1

_ alp=1) q-p 1 r_ p I/p 1/q

M= o@D (17(!11)' %Hfu s D= 5o 6, ¢ are the Sobolev constants
Cl [7/

corresponding to the embedding of WOl P(Q) in LP(Q), L1(Q) respectively.

S

Conversely, suppose to each f € L (Q) the problem

—Apu = Aul"Pu At f,
ulgo =0, (3.11)
has a nontrivial solution on the set 9 = {u € Wol’p(Q) 2 ||u]lg = 1} for some A >0,
where g € [p,p*). Existence of such solution can be assumed from the weak lower

semi continuity and coercivity of the corresponding energy functional J on the subset
M of WO1 P(Q) (refer [17]). In order to prove the existence of nontrivial solution of the

first problem for ¢ € [p,p*), we let {f,} C L? (Q) be a sequence such that f,, — 0 in
L’ (Q). Then for each f,, there exists a solution, say u,.
We have

Blu,v] =/ \VuVFszVvdx—?L/ |u|9~ 2uvdx,
Q Q
_ / Fvdx, ¥y € WiP(Q), (3.12)
Q

where B is a ‘non linear form’ in two variables u and v. It is easy to check that
B(.,.) is the Fréchet derivative of the C' functional % JoIVulP — % Jo |u|? and hence is
continuous.

Clearly, for each v € WO1 P(Q) we have

Bluy, V] :/ \Vun\p_2Vun~Vvdx—7L/ \un\q_zunvdx,
Q Q

- / fuvdx,
Q

<Al IVl — 0asn — oo (3.13)

Hence [ fyvdx — 0 as n — oo. Consider 7,(v) :/ |Vit,|P~2Vu, - Vvdx. Then T,,’s
Q

are bounded linear over W()17p(§2) and ||T;,|| = |||Vun|P~ ||,/ for n > 1. From the above
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definition of T,,, for a fixed v € WO1 P(Q) we have the sequence {7 (v)} to be bounded
which implies that {7,,(v)} is pointwise bounded. Thus by the uniform boundedness
principle {||7;||} is bounded. Thus {||Vu,||,} is bounded. Hence, there exists a sub-
sequence {u, } which weakly converges to u.. with respect to the norm || -|[; , in

W, (). Hence we have

lim \Vv|p Vv Vi, dx —/ IVV[P=2Vy - Vitedx, Wy € W, P ().
Q

nj—ro0

= lim / \Vu, |p* Vuy, - Vg, dx = / |Vu, \1’72Vun, - Vuodx, (3.14)
=0 JQ Q

forafixed /. Therefore, since u,, — i in Wol’p(Q) implies that |V, [P~! — |Viue|P~!

(for a subsequence) in L” (Q) (Refer Appendix). But Wol’p (Q) — LP(Q) — WP (Q)

and hence

lim / \Vity, |P~*Vity, - Vvdx = / |Viteo P2V, - Vvdx, Wy € WOI"p(Q),
Q

np—e JQ

= lim/|Vun,\p_2Vunl-Vu.x,dx=/ |Vuo|Pdx. (3.15)
Q

np—oo JQ)

Therefore, limy,, e [o |Vitn |Pdx = [o |Vue|Pdx. It immediately can be concluded that

there exists a u. such that u,, — u. in WO1 7(Q). Hence using the continuity of Bl[.,.]
in (3.12) we have

lim Bluy,,v] = lim / Vit |P~*Vity, - Vvdx — lim l/ |ty |91ty v,
nj—oo ng—eo JQ ny—oo Q
= lim /fnkvdx,
np—eo JQ

= Blue.,v] = 0,%v € Wy 7 (Q).

In other words,

/ \Viteo| P> Viter - Vvdx — k/ |tteo| T tteovdx = 0,y € Wol’p(Q). (3.16)
Q Q

Assume that A € (07 inf {f?glmy }] (infimum exists and is strictly greater
u#0eW, " (Q

than zero which follows from the embedding result for p < N). Since ||up ||, =1 and
Up, — Ueo 1N W()l’p(Q), hence we have

JalV “nk\
fQ ‘u"k‘q

— liminf / Vit |”

0< A < liminf =——%—

= liminf ||Vuy, ||} = || Vua|[h) = Hu.x,H

This implies that .. is a nontrivial solution of the first problem. Thus we summarize
the result proved as follows.
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THEOREM 6. Suppose to each f € LV (Q), p' = 1%’ the problem —Apu = A|u|92u+

f» ulpa =0 has a solution in M C Wol’p(Q) for some A >0, then the problem
—Apu = A|u|9%u, ulyq =0, has a nontrivial solution in WOI"p(Q) for q € [p,p*),

whenever A € |0,  inf {j?lmy} .
uA0EW, P (Q) © ¢

We end this section with a small observation from Theorem 6 that if to each f €
LP (Q), the problem —A,u = A|u|9"2u+ f, u|yq = 0 has a solution in 9 C WOI”’(Q)
for some A >0 and g € [p, p*) then the eigenvalue problem —A u = A|u|P~2u, u|yq =

0, has a nontrivial solution in WO1 P(Q), whenever A € [ 0,  inf {f?‘my} .
uA0EW P (Q) © ¢

4. Appendix

We show that

lim/ |Vun\1”2Vun~Vvdx:/ \Vu|P~2Vu - Vvdsx, VVEWOI"p(Q). 4.1)
Q Q

n—o0

We divide the explanation into two cases:

Case 1: When p > 2.

This implies that p’, the conjugate of p, should be lesser than 2, i.e., 1 < p’ <
2 < p. Thus we have WO1 P(Q) = compact LY (Q) (since WO1 P(Q) —compact L1(Q) for
g € [1,p*)). Since Vu, converges weakly to, say Vu, in L?(Q), hence < |Vu,|—
|Vu|,v >— 0 for each v € L" (Q). Thus < |Vu,|— |Vu|,|Vu,| — |Vu| >— 0, ie.,
[[Vun||2 — ||Vull2. Hence ||Vuy,||,; — ||Vul|,; because p’ <2 < p. By the Riesz-
Fischer theorem [4], there exists a subsequence of {Vu,} which converges pointwise
ae., i.e., |[Vu,(x)| — [Vu(x)|. So [Vu,(x)|P~! — |Vu(x)[P~! and hence |Vu,|P~! —
\Vu|P~" in LV (Q). Thus we have lim, .. o |Vita|?2Vu, - Vvdx = [o |Vul?~2Vu -
Vvdx, Wv e W, 7 (Q).

Case 2: When p < 2.

This implies that p’, the conjugate of p, should be greater than 2,i.e., p <2 <p'.

Look at the map F : WOI”’(Q) — L' (Q) defined by u — |Vu|P~!. Consider the
range of F,i.e., R(F) = {|Vul[P~1:u e WOI"p(Q)}.

Observe that the map F is bounded in the sense that bounded sets are mapped to
bounded sets. Hence if u, — u in W, ”(€) implies that {u,} is bounded in W, ”(<Q).
Hence {F(uy)} = {|Vu,|P~'} is bounded in L” (Q). Since L” (Q) is reflexive, hence
there exists a subsequence of {|Vu,|?~'} which weakly convergesto, say, w in L” (Q).

We have the following: u, — u in WOI’F(Q) 50 |Vu,|P~! — w in LP(Q). This
implies that

< Vun|P —wv > — 0,¥v € LF(Q)
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Since p <2 < p’ hence |Vu,|[P~! —w € LP(Q). Thus |||Vuu|P~! —w|[ — 0 and
hence |||Vu,|P~! —w||, — 0. Therefore we have a subsequence of {|Vu,|?~!'} such

N
that |Vu,|?~! — w pointwise a.e. (implying |Vu,| — w?T pointwise a.e.) and so

1
|Vu,| — w?T in LP(Q). Hence w = |Vu|P~!.
Thus in all the above cases we found the following.

lim [ |Vu,|P~2Vu, - Vvdx = / \VulP~2Vu - Vvdx, v e WOI"p(Q). 4.2)
Q Q

n—o0

Hence by the compact embedding due to Rellich-Kondrachov it can be concluded u,, —
u in L4(Q). Thus we also have

lim | |un|? 2upvdx = / |u|? 2uvdx, Vv e WOI"p(Q). 4.3)
Q Q

n—o0

5. Conclusions

The resonant Lane-Emden problem has been studied. An existence result has been
established to the non-homogeneous Lane-Emden problem for the super-linear case -
l1<p<gq<p*for A € (0,A] - A" being sufficiently large - if it is assumed that
a solution exists to the homogeneous Lane-Emden problem for the super-linear case
- 1< p<gq<p*. We further proved the ‘converse’ that if the non-homogeneous
problem has a solution then a solution to the homogeneous problem exists for the super
linear case. We also established an ‘equivalence’ of eigenvalue problem and the non
homogeneous Lane-Emden problem.

Acknowledgement. We would like to thank the anonymous referee(s) for carefully
reading this paper and making many useful comments.
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