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Abstract. The aim of this paper is to give some Ulam-Hyers-Rassias stability results for Volterra-
type stochastic integral equations. The argument makes use of Gronwall lemma and Banach’s
fixed point theorem.

1. Introduction

The study of stability problems for various functional equations originated from a
famous talk given by Ulam in 1940. In the talk, Ulam discussed a problem concerning
the stability of homomorphisms (see [21] and [22]). More precisely, he proposed the
following problem:

Given a group G1 , a metric group (G2,d) and a positive number ε , does there
exist a δ > 0 such that if a function f : G1 −→ G2 satisfies the following inequality

d( f (xy), f (x) f (y)) < δ ,

for all x,y ∈ G1 , then there exists a homomorphism T : G1 −→ G2 such that:

d( f (x),T (x)) < ε,

for all x ∈ G1 ?
When this problem has a solution, we say that the homomorphisms from G1 to G2

are stable, or that the equation defining group homomorphisms are stable (in the sense
of Ulam).

In 1941, D. H. Hyers (see [8]) gave a partial solution of Ulam’s problem under the
assumption that G1 and G2 are Banach spaces. In 1950, T. Aoki (see [2]) studied the
stability problem for additive mappings by using unbounded Cauchy differences (see
also [14]). In 1978, Th. M. Rassias (see [18]) studied a similar problem. The stability
considered in [18] is often called the Ulam-Hyers-Rassias stability.

In [17], V. Radu introduced a simple and nice proof for the Hyers-Ulam stability of
the Cauchy additive functional equation. Using the idea of V. Radu, S.M. Jung proved
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in [10] the Hyers-Ulam-Rassias stability of some Volterra integral equations defined
on a finite interval. After that, in [5], L. P. Castro and D. A. Ramos investigated the
stability of Volterra integral equation of second kind for not only the finite case but also
the infinite case. A simple proof of Jung’s problem was later given in [19] by using
some Gronwall lemmas.

In the references, at the end of this paper, we have listed other papers dealing with
the stability of functional equations.

For a large amount of information on the stability of functional equations, the
reader is invited to consult the books [6], [9] and [11] (see also the papers [1], [4], and
others). Especially, in [4], the authors presented some recent developments in Ulam’s
type stability.

In this paper, we first introduce the notion of Hyers-Ulam-Rassias stability for a
Volterra-type stochastic integral equation and then prove that kind of equation has the
Hyers-Ulam-Rassias stability.

2. Definitions and Preliminaries

Fix a probability space (Ω,F ,P) . Let ‖ · ‖p = (E| · |p) 1
p be a norm of the space

Lp(Ω,P) , where p > 0. Let Wt be a Brownian motion defined in (Ω,F ,P) and let
{Ft ,a � t � b} be the natural filtration associated to Wt .

Denote by Lp
ad([a,b],Ω) the space of stochastic processes f (t,ω) such that each

f (t,ω) is adapted to the filtration {Ft} and E
(∫ b

a | f (t)|pdt
)

< ∞ .

Let A(t,x) and B(t,x) be measurable functions of t ∈ [a,b] and x ∈ R . Consider
the stochastic integral equation of Volterra type:

Xt = ξ +
∫ t

a
A(s,Xs)ds+

∫ t

a
B(s,Xs)dWs, a � t � b, (1)

where ξ is a Fa measurable random variable.
One has the following result for the existence and uniqueness of solution of Equa-

tion (1).

THEOREM 1. ([13]) Let A(t,x) and B(t,x) be measurable functions on [a,b]×
R satisfying the Lipschitz and linear growth conditions in x . Suppose ξ is an Fa

measurable random variable with E(ξ 2) < ∞ . Then stochastic integral equation in
Equation (1) has a unique continuous solution Xt .

In the following definitions, we introduce the Ulam-Hyers-Rassias stability of a
stochastic integral equation.

DEFINITION 1. Equation (1) is said to have the Ulam-Hyers stability with respect
to ε if there exists a constant c > 0 such that for each solution Xt ∈ Lp

ad([a,b],Ω) of
the inequality

‖Xt − ξ −
∫ t

a
A(s,Xs)ds−

∫ t

a
B(s,Xs)dWs‖p � ε, a � t � b, (2)
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there exists a solution Ut ∈ Lp
ad([a,b],Ω) of Equation (1) such that:

‖Xt −Ut‖p � cε, t ∈ [a,b].

DEFINITION 2. Equation (1) is said to have the Ulam-Hyers-Rassias stability with
respect to φ(t) if there exists a constant Mφ > 0 such that for each solution Xt ∈
Lp

ad([a,b],Ω) of the inequation

‖Xt − ξ −
∫ t

a
A(s,Xs)ds−

∫ t

a
B(s,Xs)dWs‖p � φ(t), a � t � b, (3)

there exists a solution Ut ∈ Lp
ad([a,b],Ω) of Equation (1) such that:

‖Xt −Ut‖p � Mφ φ(t), t ∈ [a,b],

where Mφ is a constant that does not depend on Xt .

In order to show that Equation (1) is stable in the sense of Ulam-Hyers-Rassias,
we will need Gronwall lemma (see [7], [19], [20]), the Banach fixed point theorem and
an inequality for the moment of Ito integral (see [24]).

LEMMA 1. Let φ(t),ψ(t) ∈C([a,b],R+) be two functions. We suppose that φ(t)
is nondecreasing. If x(t) ∈C([a,b],R+) is a solution of the following inequation

x(t) � φ(t)+
∫ t

a
ψ(s)x(s)ds,t ∈ [a,b],

then

x(t) � φ(t)exp

(∫ t

a
ψ(s)ds

)
.

THEOREM 2. ([3]) (Banach’s fixed point theorem) Suppose that (X ,d) is a com-
plete metric space and T : X →X is a contraction (for some λ ∈ [0,1)),d(T (x),T (y) �
λd(x,y) for all x,y∈X . Suppose that there exist an element u∈ X and a number δ > 0
such that

d(u,T (u)) � δ .

Then there exists a unique p ∈ X such that p = T (p) . Moreover, d(u, p) � δ
1−λ

.

THEOREM 3. ([24]) Let p � 2 and let g ∈ L2
ad([a,b],Ω) be such that

E

[∫ b

a
|g(t)|2dt

]
< ∞,

then

E

∣∣∣∣
∫ b

a
g(t)dWt

∣∣∣∣
p

� C1.E

[∫ b

a
|g(t)|pdt

]
, (4)

where C1 =
(

p(p−1)
2

) p
2

(b−a)
p−2
2 .
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In the next two sections, we will investigate Equation (1) under the following as-
sumptions with respect to the random functions A(t,x),B(t,y) and the random variable
ξ defined for a � t � b and −∞ < x,y < ∞ :

(A1) A(t,x) and B(t,x) are measurable functions on [a,b]×R ;
(A2) There exists a constant K > 0 such that

|A(t,x)−A(t,y)|� K|x− y|, ∀x,y ∈ R,

|B(t,x)−B(t,y)|� K|x− y|, ∀x,y ∈ R;

(A3) There exists a constant L > 0 such that

|A(t,x)| � L(1+ |x|), ∀x ∈ R,

|B(t,x)| � L(1+ |x|), ∀x ∈ R;

(A4) The random variable ξ is Fa measurable with E(ξ p) < ∞ , where p � 2.

3. Gronwall lemma approach

In the following theorem, we will use the Gronwall lemma approach to the Ulam-
Hyers-Rassias stability of Equation (1).

THEOREM 4. (Ulam-Hyers-Rassias stability)
Suppose that the assumptions (A1), (A2), (A3), (A4) together with the following

assumption is satisfied:
(A5) The function φ(t) is nonnegative and the function φ p(t) is nondecreasing;
Then:
a) Equation (1) has a unique continuous solution which belongs to the space

Lp
ad([a,b],Ω) .

b) Equation (1) has the Ulam-Hyers-Rassias stability with respect to φ(t) in the
space Lp

ad([a,b],Ω) .

Proof. a) According to Lyapunov’s inequality, we have ‖ · ‖2 � ‖ · ‖p,∀p � 2.
Therefore, ‖ξ‖2 � ‖ξ‖p . Consequently, Equation (1) has a unique continuous solution.
If Ut is the continuous solution of Equation (1) then we need to prove that Ut belongs
to the space Lp

ad([a,b],Ω) .
We have

Ut = ξ +
∫ t

a
A(s,Us)dt +

∫ t

a
B(s,Us)dWs.

Using the inequalities (a+b)p � 2p−1(ap+bp) , (a+b+c)p � 3p−1(ap+bp+cp)
and the linear growth conditions of A(t,x),B(t,x) , one gets

|Ut |p � 3p−1
{
|ξ |p +

∣∣∣∣
∫ t

a
A(s,Us)ds

∣∣∣∣
p

+
∣∣∣∣
∫ t

a
B(t,Us)dWs

∣∣∣∣
p}
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and∣∣∣∣
∫ t

a
A(s,Us)ds

∣∣∣∣
p

�
(∫ t

a
L(1+ |Us|)ds

)p

� Lp2p−1
((∫ t

a
ds

)p

+
(∫ t

a
|Us|ds

)p)
�

� Lp2p−1
(

(b−a)p +
(∫ t

a
|Us|ds

)p)
.

Applying the Hölder inequality, we obtain

∫ t

a
|Us|ds �

(∫ t

a
ds

) p−1
p

(∫ t

a
|Us|pds

) 1
p

� (b−a)
p−1
p

(∫ t

a
|Us|pds

) 1
p

.

Thus, ∣∣∣∣
∫ t

a
A(s,Us)ds

∣∣∣∣
p

� Lp2p−1(b−a)p−1
(

b−a+
∫ t

a
|Us|pds

)
.

Using the inequality (4) in Theorem 3, one obtains

E

∣∣∣∣
∫ t

a
B(s,Us)dWs

∣∣∣∣
p

� C1E
∫ t

a
|B(s,Us)|pds � C1L

pE
∫ t

a
(1+ |Us|)pds �

� C1L
pE

∫ t

a
2p−1(1+ |Us|p)ds �

� C1L
p2p−1

(
b−a+

∫ t

a
E|Us|pds

)
,

where C1 is the constant in Theorem 3.
Therefore,

E|Ut |p � C2 +C3

∫ t

a
E|Us|pds,

where

{
C2 = 3p−1

(
E|ξ |p +Lp2p−1(b−a)p +C1Lp2p−1(b−a)

)
,

C3 = 3p−1
(
Lp2p−1(b−a)p−1 +C1Lp2p−1

)
.

According to Lemma 1 , we have the following estimate

E|Ut |p � C2 exp

(∫ t

a
C3ds

)
� C2 exp((b−a)C3) < ∞.

Hence, Ut ∈ Lp
ad([a,b],Ω) .

b) Let Xt be a solution of Inequation (3) and let Ut be the solution of Equation
(1). Using again the inequality (a+b+ c)p � 3p−1(ap +bp + cp) , we obtain

|Xt −Ut|p � 3p−1{
∣∣∣∣Xt − ξ −

∫ t

a
A(s,Xs)ds−

∫ t

a
B(s,Xs)dWs

∣∣∣∣
p

+
∣∣∣∣
∫ t

a
(A(s,Xs)−A(s,Us))ds

∣∣∣∣
p

+
∣∣∣∣
∫ t

a
(B(s,Xs)−B(s,Us))dWs

∣∣∣∣
p

}.
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We have

E

∣∣∣∣Xt − ξ −
∫ t

a
A(s,Xs)ds−

∫ t

a
B(s,Xs)dWs

∣∣∣∣
p

� φ p(t).

Using the Lipschitz conditions and the Hölder inequality, we get

∣∣∣∣
∫ t

a
(A(s,Xs)−A(s,Us))ds

∣∣∣∣
p

�
(∫ t

a
K|Xs−Us|ds

)p

�

� Kp
(∫ t

a
ds

)p−1 ∫ t

a
|Xs−Us|pds � Kp(b−a)p−1

∫ t

a
|Xs −Us|pds.

Using the inequality (4) in Theorem 3, we obtain

E

∣∣∣∣
∫ t

a
(B(s,Xs)−B(s,Us))dWs

∣∣∣∣
p

� C1.E
∫ t

a
|B(s,Xs)−B(s,Us)|pds �

� C1K
p
∫ t

a
E|Xs−Us|pds.

where C1 is the constant given in Theorem 3.
Therefore,

E|Xt −Ut|p � C4φ p(t)+C5

∫ t

a
E|Xs−Us|pds,

where C4 = 3p−1,C5 = 3p−1Kp
(
(b−a)p−1 +C1)

)
.

According to Lemma 1, we obtain

E|Xt −Ut |p � C4φ p(t)exp(
∫ t

a
C5ds) � C4φ p(t)exp(C5(b−a)).

Hence,

‖Xt −Ut‖p � Mφ φ(t),

where Mφ = C
1
p
4 exp

(
C5(b−a)

p

)
, which implies that Equation (1) has the Ulam-

Hyers-Rassias stability.

REMARK 1. The constant Mφ in Theorem 4 does not depend on φ(t) .

COROLLARY 1. (Ulam-Hyers stability)
We suppose that the assumptions (A1), (A2), (A3) and (A4) are satisfied. Then:
a) Equation (1) has a unique continuous solution belonging to the space Lp

ad([a,b],Ω) .
b) Equation (1) has the Ulam-Hyers stability in the space Lp

ad([a,b],Ω) .
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4. Fixed point approach

In the following theorems, we will use fixed point approach to the Ulam-Hyers-
Rassias stability of Equation (1).

THEOREM 5. (Ulam-Hyers stability)
Suppose that the assumptions (A1), (A2), (A3), (A4) together with the following

assumption is satisfied:

(A5) 2
p−1
p K {(b−a)p +C1(b−a)} 1

p < 1 , where C1 is the constant in Theorem 3.
Then:
a) Equation (1) has a unique solution which belongs to the space Lp

ad([a,b],Ω) .
b) Equation (1) has the Ulam-Hyers stability in the space Lp

ad([a,b],Ω) .

Proof.
Note that Lp

ad([a,b],Ω) is a Banach space when equipped with the norm

‖Xt‖p,∞ = ( sup
t∈[a,b]

E(|Xt |p))
1
p .

Let us now introduce the operator T which is defined by:

T (Xt) = ξ +
∫ t

a
A(s,Xs)ds+

∫ t

a
B(s,Xs)dWs,

for all Xt ∈ Lp
ad([a,b],Ω) and t ∈ [a,b] .

As in Theorem 4, we have the following estimate

E|T (Xt)|p � C2 +C3

∫ t

a
E|Xs|pds

which implies that ‖T (Xt)‖p,∞ < ∞ . Hence, T (Lp
ad([a,b],Ω)) ⊂ Lp

ad([a,b],Ω) .
For all Xt ,Yt ∈ Lp

ad([a,b],Ω) , we have:

|T (Xt)−T(Yt)|p � 2p−1{
∣∣∣∣
∫ t

a
(A(s,Xs)−A(s,Ys))ds

∣∣∣∣
p

+
∣∣∣∣
∫ t

a
(B(s,Xs)−B(s,Ys))dWs

∣∣∣∣
p

},

From the proof of Theorem 4, we obtain

E|T (Xt)−T (Yt)|p � 2p−1Kp {
(b−a)p−1 +C1

}∫ t

a
E|Xs−Ys|pds.

Therefore,

sup
t∈[a,b]

E|T (Xt)−T (Yt)|p � 2p−1Kp {
(b−a)p−1 +C1

}
(b−a) sup

t∈[a,b]
E|Xt −Yt |p.
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Hence,
‖T (Xt)−T (Yt)‖p,∞ � C6‖Xt −Yt‖p,∞,

where C6 = 2
p−1
p K {(b−a)p +C1(b−a)} 1

p .
Thus, by assumption (A5) , T is a contraction so that the fixed point theorem for

contractions on Banach spaces ensures that there exists a unique Ut ∈ Lp
ad([a,b],Ω)

such that Ut = T (Ut) .
We assume that Xt is a solution of Inequation (2). We have ‖Xt − T (Xt)‖p �

ε, ∀t ∈ [a,b] which implies that ‖Xt −T (Xt)‖p,∞ � ε . By the estimate in Theorem 2,
we obtain

‖Xt −Ut‖p,∞ � ε
1−C6

.

On the other hand, we have

‖Xt −Ut‖p � ‖Xt −Ut‖p,∞, ∀t ∈ [a,b].

Thus, ‖Xt −Ut‖p � ε
1−C6

, which implies that Equation (1) has the Ulam-Hyers sta-

bility.

THEOREM 6. (Ulam-Hyers-Rassias stability) Suppose that the assumptions (A1),
(A2), (A3), (A4) together with the following assumptions is satisfied:

(A5) The function φ(t) is positive and there exists a constant Nφ > 0 such that

∫ t

a
φ p(s)ds � Nφ φ p(t), ∀t ∈ [a,b];

(A6) 2
p−1
p K

(
(b−a)p−1 +C1

) 1
p N

1
p

φ < 1 , where C1 is the constant in the Theorem
3.

Then:
a) Equation (1) has a unique solution which belongs to the space Lp

ad([a,b],Ω) .
b) Equation (1) has the Ulam-Hyers-Rassias stability with respect to φ(t) in

Lp
ad([a,b],Ω) .

Proof. We choose a continuous function ψ : [a,b] → (0,∞) such that:

∫ t

a
ψ p(s)ds � Nφ ψ p(t).

Let αφ and βφ be two positive numbers such that:

αφ ψ(t) � φ(t) � βφ ψ(t), ∀t ∈ [a,b].

For all Xt ,Yt ∈ Lp
ad([a,b],Ω) , we set

dψ(Xt ,Yt) = sup
t∈[a,b]

‖Xt −Yt‖p

ψ(t)
< ∞.
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It is known that (Lp
ad([a,b],Ω),d) is a complete metric space.

According to Theorem 4, we have T (Lp
ad([a,b],Ω))⊂ Lp

ad([a,b],Ω) , where T (Xt)=
ξ +

∫ t
a A(s,Xs)ds+

∫ t
a B(s,Xs)dWs.

We assert that T is strictly contractive on Lp
ad([a,b],Ω) . Given any Xt ,Yt ∈

Lp
ad([a,b],Ω) , let CXt ,Yt ∈ [0,∞) be an arbitrary constant with dψ(Xt ,Yt) � CXt ,Yt , that

is

‖Xt −Yt‖p � CXt ,Yt ψ(t), ∀t ∈ [a,b].

As in Theorem 5, we have the following estimate:

E|T (Xt)−T (Yt)|p � 2p−1Kp {
(b−a)p−1 +C1

}∫ t

a
E|Xs−Ys|pds.

Therefore,

E|T (Xt)−T (Yt)|p � 2p−1Kp {
(b−a)p−1 +C1

}∫ t

a
Cp

Xt ,Yt
ψ(s)pds

� 2p−1Kp {
(b−a)p−1 +C1

}
NφCp

Xt ,Yt
ψ(t)p.

Hence,

‖T (Xt)−T(Yt)‖p � C7CXt ,Yt ψ(t),

where C7 = 2
p−1
p K

{
(b−a)p−1 +C1

} 1
p N

1
p

φ . It implies that dψ(T (Xt),T (Yt))�C7CXt ,Yt .

We may conclude that dψ(T (Xt),T (Yt)) � C7dψ(Xt ,Yt) for any Xt ,Yt ∈ Lp
ad([a,b],Ω) .

By assumption (A6) , the mapping T is strictly contractive on the metric space
(Lp

ad([a,b],Ω),dψ) . Thus, by the Banach fixed point principle, Equation (1) has a
unique solution.

Let Xt be a solution of Inequation (3) and let Ut be the solution of Equation (1).
By the triangle inequality, we have

dψ(Xt ,Ut) � dψ(Xt ,T (Xt))+dψ(T (Xt),Ut) = dψ(Xt ,T (Xt))+dψ(T (Xt),T (Ut) �
� βφ +C7d(Xt ,Ut)

which implies that

dψ(Xt ,Ut) � βφ

1−C7
.

Hence,

‖Xt −Ut‖p � βφ

1−C7
ψ(t) � Mφ φ(t),

where Mφ =
βφ

αφ (1−C7)
. It means that Equation (1) has the Ulam-Hyers-Rassias sta-

bility. The proof of the theorem thus is complete.
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5. Examples

In this section, we consider the case p = 2, [a,b]≡ [0,1] . Remark that φ(t), t ∈
[0,1] , is a function satisfying the condition (A5) in Theorem 4 and the condition (A5)
in Theorem 6.

Consider the following stochastic integral equation (see Example 10.1.8. in [13])

Xt = 1+
∫ t

0
X3

s ds+
∫ t

0
X2

s dWs. (5)

Here, ξ and the functions A , B are given by

ξ = 1, A(t,x) = x3, B(t,x) = x2

satisfying all the hypotheses of Theorem 4. Hence, Equation (5) has Ulam-Hyer-
Rasiass stability and its solution is given by

Xt =
1

1−Wt
.

In order to illustrate Theorem 5 and Theorem 6, we continue considering the
Langevin equation (see Example 10.1.1. in [13])

Xt = x0−
∫ t

0
αXsds+

∫ t

0
βdWs, (6)

where α,β are constants.
In the case p = 2, [a,b]≡ [0,1] , the condition (A5) in Theorem 5 is equivalent to

K < 1
2 . Clearly, the functions A(t,x)=−αx and B(t,x)= β satisfy Lipschitz condition

in x with Lipschitz constant K = |α| . So that, with |α| < 1
2 , all the assumptions of

Theorem 5 are satisfied.
In addition, with choosing φ(t) = t and Nφ = 1

2 , the condition (A6) in Theorem
6 becomes K < 1√

2
. In the case K = |α| < 1√

2
, all the hypotheses of Theorem 6 are

satisfied. Thus, Equation (6) has Ulam-Hyer-Rasiass stability with respect to φ(t) = t
and its solution is an Ornstein-Uhlenbeck process given by

Xt = e−αtx0 + β
∫ t

0
e−α(t−s)dWs.
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