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Abstract. The aim of this paper is to give some Ulam-Hyers-Rassias stability results for Volterra-
type stochastic integral equations. The argument makes use of Gronwall lemma and Banach’s
fixed point theorem.

1. Introduction

The study of stability problems for various functional equations originated from a
famous talk given by Ulam in 1940. In the talk, Ulam discussed a problem concerning
the stability of homomorphisms (see [21] and [22]). More precisely, he proposed the
following problem:

Given a group Gj, a metric group (G,,d) and a positive number €, does there
exista 6 > 0 such that if a function f : G; — G, satisfies the following inequality

d(f(xy), f(x)f(y)) <8,

for all x,y € Gy, then there exists a homomorphism T : G; — G» such that:

d(f(x),T(x)) <e,

forall xe G, ?

When this problem has a solution, we say that the homomorphisms from G to G;
are stable, or that the equation defining group homomorphisms are stable (in the sense
of Ulam).

In 1941, D. H. Hyers (see [8]) gave a partial solution of Ulam’s problem under the
assumption that Gy and G, are Banach spaces. In 1950, T. Aoki (see [2]) studied the
stability problem for additive mappings by using unbounded Cauchy differences (see
also [14]). In 1978, Th. M. Rassias (see [18]) studied a similar problem. The stability
considered in [18] is often called the Ulam-Hyers-Rassias stability.

In [17], V. Radu introduced a simple and nice proof for the Hyers-Ulam stability of
the Cauchy additive functional equation. Using the idea of V. Radu, S.M. Jung proved
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in [10] the Hyers-Ulam-Rassias stability of some Volterra integral equations defined
on a finite interval. After that, in [5], L. P. Castro and D. A. Ramos investigated the
stability of Volterra integral equation of second kind for not only the finite case but also
the infinite case. A simple proof of Jung’s problem was later given in [19] by using
some Gronwall lemmas.

In the references, at the end of this paper, we have listed other papers dealing with
the stability of functional equations.

For a large amount of information on the stability of functional equations, the
reader is invited to consult the books [60], [9] and [1 1] (see also the papers [1], [4], and
others). Especially, in [4], the authors presented some recent developments in Ulam’s
type stability.

In this paper, we first introduce the notion of Hyers-Ulam-Rassias stability for a
Volterra-type stochastic integral equation and then prove that kind of equation has the
Hyers-Ulam-Rassias stability.

2. Definitions and Preliminaries

Fix a probability space (Q,.#,P). Let |- |/, = (E|- |p)% be a norm of the space
L,(Q,P), where p > 0. Let W; be a Brownian motion defined in (Q,.%#,P) and let
{F,a <t < b} be the natural filtration associated to W, .

Denote by L” ([a,b],Q) the space of stochastic processes f(¢,®) such that each

f(t, ) is adapted to the filtration {.%;} and E (fub |f(t)\1’dt> < oo,

Let A(¢,x) and B(t,x) be measurable functions of ¢ € [a,b] and x € R. Consider
the stochastic integral equation of Volterra type:

5 !
X, =& —l—/ A(s,XS)ds—f—/ B(s,X;)dWs, a<t<b, (1)

where & is a %, measurable random variable.
One has the following result for the existence and uniqueness of solution of Equa-
tion (1).

THEOREM 1. ([13]) Let A(t,x) and B(t,x) be measurable functions on [a,b] x
R satisfying the Lipschitz and linear growth conditions in x. Suppose & is an %,
measurable random variable with E(E?) < oo. Then stochastic integral equation in
Equation (1) has a unique continuous solution X;.

In the following definitions, we introduce the Ulam-Hyers-Rassias stability of a
stochastic integral equation.

DEFINITION 1. Equation (1) is said to have the Ulam-Hyers stability with respect

to € if there exists a constant ¢ > 0 such that for each solution X; € L” ([a,b],Q) of
the inequality

1 1
||xt—§—/ A(s,XS)ds—/ B(s,X,)dW,|l, < &, a<t<b, )
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there exists a solution U; € L? ([a,b],Q) of Equation (1) such that:
HX; — Ut”p < CE, 1 € [a7b].

DEFINITION 2. Equation (1) is said to have the Ulam-Hyers-Rassias stability with
respect to ¢(z) if there exists a constant My > 0 such that for each solution X; €
L? ([a,b],Q) of the inequation

1 1
IX—&~ [ AGX)ds— [ BX)aW], <o), a<i<p, ()
a a
there exists a solution U; € L? ([a,b],Q) of Equation (1) such that:
[ X: _UIHP < M¢¢(l‘), e [a7b]’
where My is a constant that does not depend on X; .

In order to show that Equation (1) is stable in the sense of Ulam-Hyers-Rassias,
we will need Gronwall lemma (see [7], [19], [20]), the Banach fixed point theorem and
an inequality for the moment of Ito integral (see [24]).

LEMMA 1. Let ¢(1),y (1) € C([a,b],R+) be two functions. We suppose that ¢(r)
is nondecreasing. If x(t) € C([a,b],R4) is a solution of the following inequation

x(0) < 00)+ [ wis)x(s)ds.t €la.p)
then

0 <o ( [ wisyas)

THEOREM 2. ([3]) (Banach’s fixed point theorem) Suppose that (X,d) is a com-
plete metric space and T : X — X is a contraction (for some A € [0,1)),d(T (x),T(y) <
Ad(x,y) forall x,y € X. Suppose that there exist an element u € X and a number 6 >0
such that

d(u,T(u)) <9.

)
Then there exists a unique p € X such that p =T (p). Moreover, d(u,p) < -7

THEOREM 3. ([24]) Let p >2 andlet g € L2 ([a,b],Q) be such that
b
B| [ 1P| <o

[ swan

then
E

P b
<CLE [ / g(z)l’dr] , @)

p
1)\ 2 _
where C) = (%) (b—a)p22.
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In the next two sections, we will investigate Equation (1) under the following as-
sumptions with respect to the random functions A(#,x),B(¢,y) and the random variable
& defined for a <t < b and —eo < x,y < oo:

(A1) A(z,x) and B(t,x) are measurable functions on [a,b] x R;

(A2) There exists a constant K > 0 such that

|A(t7x)_A(t7y)| <I<|x_y|7 Vx7yGIR7

|B(tax)_B(t’y)| <K|X—y|, VX,yER;

(A3) There exists a constant L > 0 such that
|A(z,x)] < L(14|x|), VxR,

IB(t,x)| < L(1+|x]), Vx€R;

(A4) The random variable & is .%, measurable with E(E”) < oo, where p > 2.

3. Gronwall lemma approach

In the following theorem, we will use the Gronwall lemma approach to the Ulam-
Hyers-Rassias stability of Equation (1).

THEOREM 4. (Ulam-Hyers-Rassias stability)

Suppose that the assumptions (Al), (A2), (A3), (A4) together with the following
assumption is satisfied:

(A5) The function ¢(t) is nonnegative and the function ¢?(t) is nondecreasing;

Then:

a) Equation (1) has a unique continuous solution which belongs to the space
LZd([aJ)]’Q)'

b) Equation (1) has the Ulam-Hyers-Rassias stability with respect to ¢(t) in the
space L' ([a,b],Q).

Proof. a) According to Lyapunov’s inequality, we have |- |l < |- ||,.Vp =2
Therefore, ||&|» <||&]],. Consequently, Equation (1) has a unique continuous solution.
If U; is the continuous solution of Equation (1) then we need to prove that U, belongs
to the space L ([a,b],Q).

We have

1 t
U =€+/ A(s7Us)dt+/ B(s,Us)dW;.

Using the inequalities (a+b)? < 2P~ Y(a? +bP), (a+b+c)P <3P~ (aP +bP +cP)
and the linear growth conditions of A(z,x),B(t,x), one gets
)

/ASU

U, P <3P~ 1{|§1’+ /Bt Uy )dW;
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(/L1+|U| ) < Lror-! (/utds>p+</atUsds>p)<
<! ((b—a)l’+ (/t Us|ds)p) .

Applying the Holder inequality, we obtain

1 1 prl 1 % I
/ |Us|ds < (/ ds) (/ Us|pds> a) v (/ |Uy |pds>
' P
/A(S,U_Y)ds

Using the inequality (4) in Theorem 3, one obtains

/AsU

Thus,
T
<LP2P Y b —a)P™! (b—a—i—/ |U_Y1’ds>.

p t t
<C1E/ \B(S,U_Y)\pdsgcleE/ (14 |Uy|)Pds <
a a

t
< CleE/ 2071+ |U|P)ds <
T
< Lt (b—a+/ EUS|1’ds>,

where C; is the constant in Theorem 3.
Therefore,

t
E|U,V’<C2+C3/ E|U|ds,
a

where Cy=3r"1 (E|’g' P+ 1P2P (b —a)P +C1LP2P~ (b — a)) ,
C; =371 (LP2r~ (b —a)P '+ C 2P 1)
According to Lemma 1 , we have the following estimate
1
E|U:|P < Crexp (/ C3ds) <Gexp((b—a)CG) <

Hence, U; € LY ([a,b],9Q).

b) Let X; be a solution of Inequation (3) and let U; be the solution of Equation
(1). Using again the inequality (a+ b+ c)? < 37~ (a? + b + cP), we obtain

X, —U|P <377 1{|x, —

E— /utA(s7Xs)ds— ut

p

}.

p

n /I:(A(S,Xv)—A(s,UY))ds + /at(B(s,X_Y)—B(s,UY))dWY
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‘We have

p

Bl g [ A xpas— [ Bo.x)aw] <o7(0)

Using the Lipschitz conditions and the Holder inequality, we get

14 t 14
< (/ KIXS—Usds> <

t =1 t
< K? (/ dS) / ‘X\ - U.\'|pd5 < Kp(b - a)pil/ |X‘ - U-"‘pds'
a a @

/u "(A(5,Xs) — A(s, Uy))ds

Using the inequality (4) in Theorem 3, we obtain

t P t
E / (B(s,X,) — B(s,Us))dW,| < Ci.E / IB(s, X,) — B(s, Uy)|"ds <

t
<ak? [ X -ujrds.
a

where Cj is the constant given in Theorem 3.
Therefore,
!
EIX, — U|? < G207 (1) +c5/ E|X, — Uy |Pds,

where C4 =3771,Cs =3P'KP (b—a)’ ' + (1))
According to Lemma 1, we obtain

E|X, — Uy|? < C407 (¢) exp( / ' Cyds) < Ca0P (1) exp(Cs (b — a).

Hence,
X —Ullp < Myp9(2),

1 C<(b—
where My = C; exp <M> , which implies that Equation (1) has the Ulam-
p
Hyers-Rassias stability.

REMARK 1. The constant My in Theorem 4 does not depend on ¢(z).

COROLLARY 1. (Ulam-Hyers stability)

We suppose that the assumptions (Al), (A2), (A3) and (A4) are satisfied. Then:

a) Equation (1) has a unique continuous solution belonging to the space LZ 4([a,b],Q).
b) Equation (1) has the Ulam-Hyers stability in the space L' ([a,b],Q).
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4. Fixed point approach

In the following theorems, we will use fixed point approach to the Ulam-Hyers-

Rassias stability of Equation (1).

THEOREM 5. (Ulam-Hyers stability)

Suppose that the assumptions (Al), (A2), (A3), (A4) together with the following

assumption is satisfied:
-1 1
(AS5) ZPTK{(b —a)’+Ci(b—a)}? <1, where C is the constant in Theorem 3.
Then:
a) Equation (1) has a unique solution which belongs to the space LZ 4([a,b],Q).
b) Equation (1) has the Ulam-Hyers stability in the space L ([a,b],Q).

Proof.
Note that L ([a,b],€Q) is a Banach space when equipped with the norm

1
Xt [l p.ee = (sup E(|X:[7))7.

t€la,b]

Let us now introduce the operator 7 which is defined by:
1 t
T(X,)=2¢ +/ A(s,Xs)der/ B(s,X,)dW's,
a a

forall X; € L' ([a,b],Q) and 1 € [a,b].
As in Theorem 4, we have the following estimate

t
EIT(X)|? <c2+c3/ E|X,|ds
a

which implies that ||7(X;)|| .. < e=. Hence, T(L?,([a,b],Q)) C L ([a,b],Q).
Forall XY, € L" ([a,b],Q), we have:

p

700) - TP <2 [ (4. %) ~As. V)

p

2

+ /I(B(S,X.y) — B(s,Yy))dW;

From the proof of Theorem 4, we obtain

1
E|T(X;)—T(Y,)|P < ZI”IKI’{(b—a)I”I—i-Cl}/ E|X, —Y,|Pds.
a
Therefore,

sup E|T(X,) —T(Y,)|P <2/ 'KP{(b—a)’ '+ C 1} (b—a) sup E|X, - Y,|".
t€la,b] t€la,b]
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Hence,
1T (X:) = T ()|l p.eo < CollXs = Yol poos

where Cs = 27 K {(b—a)? + C1(b—a)}7 .

Thus, by assumption (A5), T is a contraction so that the fixed point theorem for
contractions on Banach spaces ensures that there exists a unique U; € L’a’ ,([a,b],Q)
such that U, = T (Uy).

We assume that X; is a solution of Inequation (2). We have ||X; —T(X;)||, <
€, Vt € [a,b] which implies that ||X; — T'(X;)||y~ < €. By the estimate in Theorem 2,

we obtain
€

Xi — Ul poo £ ——.
H 1 t||P7 1_C6

On the other hand, we have

1X: = Utllp < [|Xe = Ut| poey V2 € [a,b].

€
Thus, [|X; — Ui, < ¢ which implies that Equation (1) has the Ulam-Hyers sta-
—Ce
bility.
THEOREM 6. (Ulam-Hyers-Rassias stability ) Suppose that the assumptions (Al),

(A2), (A3), (A4) together with the following assumptions is satisfied:
(A5) The function §(t) is positive and there exists a constant Ny > 0 such that

/t 07 (s)ds < Np@? (1), Yt € [a,b];

—1 1 1
(A6) 27K (b—a)p=t+Cy)” Ng <1, where C\ is the constant in the Theorem
Then:
a) Equation (1) has a unique solution which belongs to the space L ([a,b],Q).
b) Equation (1) has the Ulam-Hyers-Rassias stability with respect to ¢(t) in
LZd([avaQ)'

Proof. We choose a continuous function v : [a,b] — (0,0) such that:

1
[ wrs)as <Nowr ().
a
Let oy and By be two positive numbers such that:

o wr) < 9(1) < Bow(s), Vi € [a]
Forall XY, € L! ([a,b],Q), we set

X, —Y,
ay(x.1) = sup 12Tl
t€(a,b) W(Z)
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It is known that (L” ([a,b],Q),d) is a complete metric space.

According to Theorem 4, we have T(L? ([a,b],Q)) C L (a,b],Q), where T (X;) =
E+ [P A(s,X,)ds+ [1 B(s,X;)dWs.

We assert that T is strictly contractive on L?,([a,b],Q). Given any X,,Y; €
L' ([a,b],Q), let Cy, y, € [0,0) be an arbitrary constant with dy(X;,Y;) < Cx,y, , that
is

1%~ Yillp < Cr W), ¥ € [a.B).

As in Theorem 5, we have the following estimate:

!
EIT05) - TP <2 K7 {(b -+ 01} [ EIX, - TPas

Therefore,

t
EIT(X) = TP < 207K {(b-a)r ' +Ci} [ €y w(s)7ds
a
<27 'KP{(b—a)’ '+ C1}NoCE (1),

Hence,
1T(X:) —TX)|p < GCx vy (1),

— 1
where C7 = ZPTIK{(b —a)P '+ } ’ qu . Itimplies that dy (T (X;),T(Y;)) < C1Cx, y, -
We may conclude that dy (T'(X;),T(Y;)) < Crdy(X;,Y;) for any X;,Y; € L? ([a,b],9Q).
By assumption (A6), the mapping T is strictly contractive on the metric space
(LY ,(la,b],Q2),dy). Thus, by the Banach fixed point principle, Equation (1) has a
unique solution.
Let X; be a solution of Inequation (3) and let U; be the solution of Equation (1).
By the triangle inequality, we have
dy (X, Up) < dy (X, T (X)) +dy(T(X:),Ur) = dy (X, T(X;)) +dy(T (X)), T(U;) <

ﬁq) +C7d(X:,Uy)

NN

which implies that

Bo
-G

dy(X:,U;) <

Hence,

Bo

X —Ullp < ——
|| t IHP 1—C7

y(1) < Myo(1),
Bs

Oy (1 — C7)

bility. The proof of the theorem thus is complete.

where My = . It means that Equation (1) has the Ulam-Hyers-Rassias sta-
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5. Examples

In this section, we consider the case p =2, [a,b] = [0,1]. Remark that ¢(z), ¢ €
[0,1], is a function satisfying the condition (A5) in Theorem 4 and the condition (A5)
in Theorem 6.

Consider the following stochastic integral equation (see Example 10.1.8. in [13])

't t
X=t+ [ Xids+ [ X2aw. 5)
0 0

Here, & and the functions A, B are given by
E=1, A(t,x) =x°, B(t,x) =x*

satisfying all the hypotheses of Theorem 4. Hence, Equation (5) has Ulam-Hyer-
Rasiass stability and its solution is given by

1
=T

Xi

In order to illustrate Theorem 5 and Theorem 6, we continue considering the
Langevin equation (see Example 10.1.1. in [13])

t 1
Xt = X0 — / (XdeS + / ﬂdWS‘; (6)
0 0

where o, 3 are constants.

In the case p =2, [a,b] =0,1], the condition (A5) in Theorem 5 is equivalent to
K< % . Clearly, the functions A(¢,x) = —owx and B(f,x) = 3 satisfy Lipschitz condition
in x with Lipschitz constant K = |c|. So that, with || < 1, all the assumptions of
Theorem 5 are satisfied.

In addition, with choosing ¢(r) =¢ and Ny = %, the condition (A6) in Theorem
6 becomes K < % In the case K = |o] < %, all the hypotheses of Theorem 6 are
satisfied. Thus, Equation (6) has Ulam-Hyer-Rasiass stability with respect to ¢(r) =1
and its solution is an Ornstein-Uhlenbeck process given by

t
X, =e %xo+ ﬁ/o e =) gw,.
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