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ANTI-PERIODIC SOLUTIONS OF ABEL DIFFERENTIAL
EQUATIONS WITH STATE DEPENDENT DISCONTINUITIES

J.-M. BELLEY AND A. GUEYE

Abstract. Given T > 0, the Abel-like equation 6’ = fo + ¥ jen fjej is generalized to the case
where 6 and 6’ are real functions on [0,T] subject to given state dependent discontinuities.
Each f; is a real function of bounded variation for which f;(0) = (—1)/*!f;(T). Under ap-
propriate conditions, this equation is shown to admit a solution of bounded variation on [0,7]
which is T -anti-periodic in the sense that 6(0) = —6(T). The contraction principle yields a
bound for the rate of uniform convergence to the solution of a sequence of iterates.
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